computer
communications

T
ELSEVIER

Computer Communications 25 (2002) 1230-1242

www.elsevier.com/locate/comcom

Predictive flow control for TCP-friendly end-to-end real-time
video on the Internet

Yeali S. Sun®*, Fu-Ming Tsou”', Meng Chang Chen®"?

“Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC
®Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, ROC
“Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC

Received 21 December 2000; revised 1 November 2001; accepted 12 November 2001

Abstract

In order to cope with time-varying conditions in networks with no or limited QoS support like the current Internet, schemes have been
proposed for real-time applications to dynamically adjust traffic sources’ data sending rate. However, employing adaptive rate control may
not be sufficient to prevent or handle network congestion. As most of the real-time applications are based on RTP/UDP protocols, an issue of
possibly unfair sharing of bandwidth between TCP and UDP applications has been raised. In this paper, we propose an application-level
control protocol called Real-time Rate and Retransmission Control Protocol Plus in which several control mechanisms are used and
integrated to maximize the delivery performance of UDP-based real-time continuous media over the Internet while friendly sharing network
bandwidth with TCP connections. Here we propose to use adaptive filters in network state characterization and inference. Both simulation
and actual implementation performance results show that recursive least square-based adaptive prediction makes good use of past measure-
ment in forecasting future condition and effectively avoids network congestion. It also shows that the scheme achieves reasonably friendly

resource sharing with TCP connections. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Flow/congestion control; End-to-end real-time video; Prediction; TCP-friendly

1. Introduction

Although there are many on-going research on end-to-end
QoS guarantee for the next generation Internet [1-4], it will
take some time to have such networks and services available
in general. In the meantime, there are growing interests and
activities on deploying multimedia services, including real-
time audio/video clips on the WWW, electronic commerce,
[P-telephone and Web TV over the existing Internet. How to
maximize the delivery quality of these streaming applica-
tions in a best-effort network while ‘friendly’ sharing band-
width with non-real time applications like TCP has become
an important issue.

In this paper, we consider real-time flow and congestion
control for stored multimedia applications, specifically
MPEG video over the Internet. Works on real-time stored
video transport in the past have focused on how to send

* Corresponding author. Tel.: +886-2236-30231; fax: +886-2362-1327.
E-mail addresses: sunny @im.ntu.edu.tw (Y.S. Sun), fmtsou@eagle.
ee.ntu.edu.tw (F.-M. Tsou), mcc@iis.sinica.edu.tw (M.C. Chen).
! Tel.: +886-2236-35251x554; fax: +886-2236-38247.
2 Tel.: +886-2278-83799x1802; fax: +886-2278-24814.

variable-bit-rate video streams over a constant-bit-rate
communication channel, e.g. Refs. [5—8]. They all assume
resource reservation and QoS support are supported in the
network. Recently, there were studies on stored variable-bit-
rate video over best-effort networks [9—14]. To cope with
time-varying network loads, these schemes focus on how a
real-time traffic source dynamically adjust its transmission
rate to prevent from sending excessive traffic into the
network.

Such rate adjustment is all based on the feedback infor-
mation from the receiver(s). They do not consider the effect
of such adjustment on other types of traffic, e.g. TCP
connections in the network. Differences between these
schemes are mainly in two areas: (a) characterization of
network state so the rate adjustment decision can be reliably
made; (b) the effects of such adjustment on the flow itself
and the efficiency of network bandwidth.

Employing adaptive rate control for real-time continuous
media transmission may not be sufficient. Congestion control
and avoidance have become an important issue in the Internet
due to possibly unfair bandwidth sharing caused by the very
different natures of the protocols used by real-time and
non-real time traffic. In general, real-time applications are

0140-3664/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(02)00002-6

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242 1231

transported using RTP and UDP protocols, whereas most
non-real time traffic is based on the TCP protocol. The
former implements no congestion control, while the latter
does. Research results have shown that this may lead to
unfair sharing of bandwidth in the two types of traffic. In
Ref. [15,16], the authors showed that TCP connections may
be starved if most of the bandwidth is taken by UDP/RTP
traffic. This is mainly due to the lack of congestion control
in UDP and the low update frequency of the sender reports
and receiver reports in RTP. On the other hand, when the
network experiences congestion, a TCP sender will reduce
its transmission window by half (in the Reno version) or
even down to one packet (in the Tahoe version) in one
round-trip time (RTT). Note that round-trip delays are typi-
cally smaller than the time interval between RTCP control
packets, e.g. 5 seconds. If a UDP flow cannot react to the
congestion as responsive as TCP flows, it may continue to
send more data and capture an arbitrarily large fraction of
the link bandwidth at the cost of other traffic. Therefore, it is
essential that the UDP-based real-time transport protocol be
aligned with TCP congestion control in the presence of
network congestion.

A main challenge in the design of flow/congestion control
scheme for UDP-based real-time applications is how to
make UDP flows behave as good ‘network’ citizens—
consuming only their fair share of bandwidth as with TCP
traffic at the bottleneck link given that they have rigid delay
and timing requirements. In this paper, we propose an appli-
cation-level control protocol called Real-Time Rate and
Retransmission Control Protocol Plus (R’CP) in which
several control mechanisms are used and integrated to maxi-
mize the delivery performance of UDP-based real-time
continuous media over the Internet while these flows can
friendly share network bandwidth with TCP connections.
Note that when congestion occurs, all the flows affected
will immediately experience performance degradation.
Two key issues are raised here. The first issue is how to
minimize such negative effect on real-time video sessions,
especially when all the senders might be forced to reduce
sending rates to relieve congestion. Second, can real-time
sessions behave smarter to more effectively avoid conges-
tion. Two methods are proposed here. The first method is to
take the receiving buffer as a reserve bank. A video source
will make use of the unused bandwidth available when the
network is in an unloaded or lightly loaded condition to
download additional packets to the receiver’s buffer. Such
packet store will help the receiver to cope with supply short-
age during congestion. In this paper, a target minimal queue
length of the receiving buffer is periodically recalculated
according to the network state. The second method is to
exercise selective transmission at the sender if the requested
sending rate is less than the desired sending rate during
congestion. In selective transmission mode, the sender
only transmits packets with higher levels of significance,
e.g. I frames. In the protocol, we also set the flow control
period in the order of a RTT so to assure both UDP sessions

and TCP connections act on congestion avoidance and
control at the same time scale.

Another important issue in designing feedback-based
congestion control mechanism is how to characterize
network state and complement current state measurement
so to achieve better flow control and avoid congestion. In
R3CP+, we show the effectiveness of adaptive filters in
network state forecase. Methods such as moving average
and exponential average have been commonly used. In
these schemes, the weighting factors of the current and
past information are constant which limits the ability for
systems to quickly adapt to network state changes while
retaining network stability. Different from Ref. [8], we use
an M-step adaptive linear predictor called recursive-least-
square (RLS) predictor [17] to forecast network state. In
RLS predictor, the weighting factor is corrected every
time a new measurement was taken. Particularly, it uses
the estimation error between current measurements and
previous prediction of them to adjust itself. It not only can
respond to network dynamics quickly but also remains
stable.

The rest of the paper is organized as follows. In Section 2,
we describe the recursive prediction algorithm in network
state characterization and forecast. The least mean-square
Kalman Filter is used to estimate packet loss probability and
RTT. In Section 3, the algorithms that compute the desired
sending rate and requested sending rate are presented. The
flow and congestion control schemes for real-time video
sessions are also described in detail. In Section 4, the perfor-
mance of the scheme is evaluated via simulation, and the
results are analyzed. The protocol was also implemented in
a MPEG video player/browser running on Windows95.
Some performance data run over the Internet are presented.
Finally, Section 5 gives a conclusion.

2. Characterization and recursive prediction of network
state

The characterization and inference of network state is
performed by the receiver of a real-time video session and
works as follows. Initially, before the sender starts sending
the data, the receiver will probe the network in order to set
proper initial values of several system parameters of the
session, including the minimal amount of pre-downloaded
data and the retransmission time interval for in-time packet
recovery. Specifically, during the session setup phase, when
the sender receives an acknowledgment of session establish-
ment from the sender, it will send a number of Network
Probe packets to collect the RTT and packet loss informa-
tion between the sender and receiver. The RTTs are used to
compute the minimal amount of data necessary to be pre-
downloaded to the receiver’s buffer before the playback
starts. The goal is to make use of such preloading to accom-
modate volatile delay variations to ensure smooth playback
during the session. During the data transfer phase, receive

1232 Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

q,,4 fln+| 4n+’
Receiver [\
C(VI,,_ %Mﬂp,, An %
Sender
Legend:

CM,,: rate control message

Fig. 1. Adaptive flow control between sender and receiver.

tries to maintain the data store in the receiving buffer at an
adaptive target size. It continuously monitors packet
receiving status and periodically sends flow control packets
to the sender to instruct how fast or slow it should send the
data. Sender always transmits packets at the rate as specified
in the flow control packet.

In Ref. [11], we showed that integrating rate control with
‘in-time’ packet retransmission can significantly improve
overall performance. On the contrary to the widespread
belief that ‘Retransmission of lost packets is unnecessary
for continuous media applications as late packets are of no
use as lost packets’, we show that in best-effort networks, a
major cause of performance degradation is due to packet
loss, especially in the case of congestion. Therefore, as
long as retransmitted packets can arrive at the destination
before the deadline, the overall viewing quality can be
greatly improved in particular for those packets carrying
important information like GOP in MPEG 2 video stream.
The RTT measured during each flow control period is used
to adjust retransmission time interval.

Here, two parameters are used to describe the state of a
transmission path: packet loss probability and RTT. The
packet loss probability is obtained based on the packet
receiving throughput and the expected amount of data
inferred by the receiver. The RTTs are measured through
flow control packets. Each parameter is recursively predi-
cated by an adaptive Kalman filter. Based on the forecast
and the desired sending rate, receiver computes the
requested sending rate. The design rationale is to let the
receiver decide based on its receiving and playout
conditions, at what rate it would like the sender to send
the data so it could share bandwidth with TCP connections
in a ‘reasonably friendly’ way while maximizing its
playback performance.

2.1. Prediction of packet loss probability

The end-to-end adaptive flow control is performed at
discrete time instants. The time interval between two conse-
cutive flow control points is called a flow control period. At
the end of each flow control period, the receiver will send a
flow control message to the sender specifying a new rate at
which the sender should send the packets, i.e. the requested
sending rate. Along with it are two other information: the

desired sending rate and the estimate of the duration of the
flow control period. If the requested sending rate is less than
the desired sending rate, selective transmission is
performed. Upon receiving a flow control message, the
sender immediately adjusts its sending rate to the new
requested rate. If network is stable, receiver expects packets
sent under the new rate to start to arrive after one RTT (see
Fig. 1). The duration of flow control periods are on the order
of one RTT. This is to ensure the congestion control of UDP
flows is at the same time scale as that in TCP.

The receiver computes packet loss probability at the end
of each flow control period, which is defined as follows:

n=12,.., ey

where 7, is the packet receiving rate measured during the
nth control period and p,—; is the requested sending rate sent
at the (n— 1)th period. For end-to-end adaptive flow
control, if the decision is made solely based on the current
state, a traffic source may over-react to transient changes of
network loads. Rapid oscillation of rate adjustment can
easily cause instability of the end systems as well as the
network. This indeed has severe impact on the loss and
delay jitter performance of real-time sessions. Conse-
quently, it is important that the receive be able to capture
both the trend and transience of the network load and
instruct the sender accurately and cautiously. Special
attention should be paid especially to the detection of
congestion, avoiding overlook of congestion and increasing
undue rate. These may result in bandwidth starvation of
TCP connections.

Assuming measured packet loss probabilities form a
random process. Here, a fixed amount of transmission
history is taken into account in the estimation of packet
loss probability. Let the size of the memory of the Kalman
filter be fixed and denoted as M. This is the amount of
previously measured data recorded. Let P(n) be a vector
random variable defined as follows:

B(l’l) = [pn»pnfl’ ~--,pn—M1055+1]T~ (2)

Next, we want to find a weighted vector w,(n) such that we
can predict p,+; given the memory P(n — 1) and the newly
measured data p,. The error between estimation and
measurement is corrected by defining a forward prediction
error parameter o, i.e.

&, = Pn _ﬁn’ 3)

where p, is our previous estimate. With a new measured
data, the estimator is corrected as follows:

&p(”) = wp(n -1+]_(p(n)anv 4
where k,(n) is the Kalman gain, defined as:

0~ 'P(n — p(n)
1+ G_IET(n)P(n — 1)[_7(11)’

ky(n) = &)

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242 1233

and

P(n—1)=6""P(n—2)— 0 'k,(n — Dp'(n — DP(n — 2),
(6)

where 0 is the memory factor whose value is no greater than
one but typically is very close to one. Typically, M. =
1/(1 — 6). The estimate of (n + 1)th is the minimum mean-
square estimate of the state p,;+; from Egs. (3) and (4). The
estimate of the packet loss probability for the next flow
control period is thus as follows:

Pus1 = wp (mp(n). 7)

2.2. Prediction of round-trip time for the flow control period

One of the main problems that causes TCP bandwidth
starvation when sharing a bottleneck link with UDP flows
is that when TCP connections reacts to congestion by
throttling their congestion window, UDP flows consider
the newly available bandwidth as an excess. In order to be
‘TCP-friendly’, it is important that the frequency of flow or
congestion control of real-time UDP sessions be synchro-
nized with that of TCP. That is, the flow control period
should be in the order of one RTT so to assure both UDP
and TCP connections act on congestion avoidance and
control at the same time scale. The estimate of RTT is
also used in the computation of the desired sending rate,
and the number of packets to skip in selective transmission.

The measurement of RTT is performed as follows. A field
is defined in the RTP header extension to distinguish
between packets sent under different flow control periods.
When a flow control message is sent, the receiver records its
sending time. Upon receiving a flow control message from
the receiver, the sender will immediately adjust its packet
sending rate and change the group indication field in the
RTP header extension to a new value to indicate the group
of packets sent under the new rate. When the receiver
receives the first packet of a new group, it timestamps the
arrival time. The difference between this arrival time and the
sending time of the flow control packet gives a new
measurement of the RTT between the receiver and the
sender.

The estimation of RTT d, follows the same approach as in
the prediction of packet loss probability [17]. The vector
random variable d,(n) = [dn,d,,_l,...,dn_MdumH]T is psed
to record the history of RTTs. Parameter 8, = d, — d,, is
used to correct the estimation error. The estimate of RTT is
obtained as follows:

dyiy = Whn)d(n), (8)

where W, (n) = Wwy(n — 1) + ky(n)B,.

3. Adaptive flow control—take receiving buffer as a
reserve bank

Note that when congestion occurs, all the flows affected
would immediately experience performance degradation.
Two key issues are raised in the design of congestion control
scheme for real-time video streams. The first issue is that
how to minimize such negative effect on the continuous
playback performance of a video session given that during
congestion fewer packet arrivals are expected. Second, can
real-time flows behave smarter to more effectively avoid
congestion. Two methods are proposed in this paper. The
first method is to have the sender transmit or pre-store more
data at the receiver side when the network is in an unloaded
or lightly loaded condition. When the state of congestion is
forecasted (i.e. such tendency has been inferred by the
receiver), the sender will refrain its packet sending via
early cease of rate increase to avoid congestion and taking
a more drastic rate decrease to quickly relieve congestion.
This is different from conventional methods used in TCP in
which window size is continuously increased until conges-
tion occurs and reduced afterwards. The idea is to make the
receiving buffer a reserve bank. A video source will make
use of the unused bandwidth available in the network to
download additional packets to receiver’s buffer whenever
allowed. These additional packets will help the receiver to
cope with supply shortage from the sender and maintain
continuous and smooth playback. In this paper, a minimal
amount of the target queue size is periodically recalculated
according to the network state.

The second method is to exercise selective transmission
at the sender. During a flow control period, if the requested
sending rate is less than the desired sending rate, the sender
will calculate the amount of data allowed to transmit. It only
transmits packets with higher levels of significance, e.g. I
frames. Our protocol adopts the principle of application
level framing [18] in the fragmentation of MPEG video
stream [19,20]. To play a video stream in real-time across
the Internet, it is pre-parsed to generate a meta data file. The
file describes the semantic data structures of the streams and
contains information such as stream resolution, nominal
frame rate, frame pattern, frame size and frame boundary.
The meta data file is used in selective transmission and the
segmentation and packetization of video frames at the
sender. To pick up packets to skip we start from those of
B type, then P type and so on. Among packets of the same
type, frames are randomly chosen in such a way to avoid
burst removal.

3.1. Receiver’s desired sending rate and target queue length

In the following, we present the method that computes the
desired sending rate. The idea is to take the receiving buffer
as a reserve bank and loaded with just enough amount of
data—neither too much to excessively increase buffer
space requirement nor too few not to be able to cope with

1234 Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

Table 1
Determination of the requested sending rate

Current state/forecast UNLOADED

LOADED

CONGESTED

UNLOADED Min(A g Pt + Aine)
LOADED min(A,,, p,—;) min(A ., p,—1)
CONGESTED min(K,,, P X aec) 3

mln(),\\ max> Pn—1 + 6inc)

mm(/\ ns Pn—1 X 8dec)

min(A,,, p,—1 + Sinc)
min(A ,, py—1)
min(/\n, Pn—1 X Adec)

short-term congestion. The buffer queue length aims at a
target minimal size at all times in accordance with the
predicted network state, i.e. target queue length. Here,
when we refer to the nth flow control point, we mean the
time instant at which the nth period starts. Let

X,,: the desired sending rate;

p,: the requested sending rate;

qy: the target queue length at the nth flow control point;
¢,: the number of packets seen at the nth flow control
point;

gy the virtual queue length at the nth flow control point;
Gy the estimate of the virtual queue length at the nth flow
control point;

M the average packet playback rate;

£, the amount of skipped packets in the nth flow control
period;

Gr™: the amount of packet retransmission in the nth flow
control period.

Two parameters are defined here regarding the control of
the receiving buffer queue length: target queue length and
virtual queue length. The target queue length represents the
receiver’s wish of how fast or slow the sender should send
the packets in the next flow control period. This rate may be
different from the requested sending rate—the rate
requested by the receiver in the flow control message. In
the case that the requested sending rate is less than the
desired sending rate, selective transmission is performed
at the sender. The sender gives higher transmission priority
to more important packets, e.g. packets of I frames and
retransmitted packets. As a result, less important frames
(packets) are purposely skipped. The virtual queue length
is the queue length if both selected and skipped packets
were sent and received by the receiver.

3.1.1. Target queue length

R’CP* supports packet retransmission. The key issue for
real-time packet retransmission is that one must detect the
loss of packets early enough—at least one RTT before its
deadline to make retransmission effective. In our previous
work [11], a minimal target queue length of the receiving
buffer is derived which is one RTT-equivalent amount of
data (P;). The simulation results showed that packet
retransmission for real-time sessions is feasible and effec-
tive. By maintaining only this minimal amount of packets at
the receiving buffer, one can achieve fairly good playback

performance. The target queue length is given as follows:
q: = P[jn + Pl_distance’ (9)

where P gisunce 18 the amount of packets in the retransmis-
sion window, i.e. the amount of packets checked in each
retransmission control.

3.1.2. Virtual queue length

When the requested sending rate is less than the desired
sending rate, selective transmission is performed. The
amount of packets to skip Z, is given as follows:

Zn = (/,\\n - pn)an + q;etxl (10)
Otherwise, ¢, is 0. The virtual queue length is defined as:
CIer=CIn+é:n—1~ (11)

To obtain the desired sending rate at the nth flow control
point, the receiver makes a prediction of the number of
packets that will be present in the buffer at the (n + 1)th
and (n + 2)th flow control points. First, we have

5];+l = q; - /J‘an + pn—l(l - ﬁn)an + Zn' (12)

The virtual queue length at the beginning of the (n + 1)th
flow control period is equal to the virtual queue length at the
nth period less the number of packets removed (at the rate of
1) plus new arrivals during the period, and the packets
skipped, if any. In the equation, the sender’s sending rate
is assumed to be the previous requested sending rate. Simi-
larly, we have

QI\;‘F?, = qx+1 - I*Lan + Xn(l _ﬁn)an- (13)
Here the sending rate is the desired sending rate to be
computed.

We wish that at the beginning of the (n + 2)th flow
control period, the virtual queue length can at least meet
the target queue length, i.e. 4., = ¢,4,. Rewriting Egs.
(12) and (13), the desired sending rate is obtained as
follows:

& PLdistance + 3:U’dn - qx B gn

Ay = ~ = Pn—1- (14)
(1 _pn)dn

3.2. Requested sending rate—storing extra data during
unloaded state and avoiding congestion otherwise

The desired sending rate only represents the receiver’s
wish to the sender to ensure continuous playback of frames.

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242 1235

However, over the Internet, packet delivery performance is
indeed dependent on the network load. The requested send-
ing rate is determined according to the following algorithm
where both the history and the forecast of the network
condition are taken into account. Strategically, receiver
uses different levels of rate increase and decrease in the
determination of the requested sending rate depending the
state of the network. The network is assumed to be in one of
the following three states:

e ‘UNLOADED’ if p, < piow;
e ‘LOADED’ if pioy < p, < Dhigh>
e ‘CONGESTED’ if pyign < pp.

The scheme is summarized in Table 1. The algorithm for
determining the requested sending rate is explained as
follows:

Case 1 (The current transmission path is in the state of
UNLOADED). If the current transmission path is in the
state of UNLOADED, the flow control strategy is to store as
many data as possible in the receiving buffer when the
delivery condition is good. In other words, receiver will
ask sender to increase its sending rate but with different
amount of increase depending on the forecast of the future
network load.

e If the forecast state is also UNLOADED, receiver makes
a more aggressive attempt to increase the rate with a
larger amount of increase 4;,. The final requested send-
ing rate is bounded by the peak rate of the session):max.

o If the forecast state is LOADED and the current observa-
tion is UNLOADED, it is considered that the current
measurement shows a sign of improvement of the
network condition. However, the receiver will take a
cautious step by increasing the sending rate with only a
smaller amount denoted by iy, Gine < Aine-

o If the forecast is in the CONGESTED state, the current
measurement is only considered as a signal of possible
congestion relief; more observations are needed. Thus,
the receiver takes the minimum of the current receiving
throughput and the previous requested rate plus a smaller
amount of increase.

Case 2 (The current transmission path is in the state of
LOADED). If the current measurement indicates that the
transmission path is in the LOADED state, the receiver will
be conservative; the strategy is to retain the status in quo—
no rate increase or decrease. The new requested sending rate
takes the minimum of the new desired sending rate and the
current sending rate (i.e. the previous requested sending
rate). It means that if the new desired sending rate is less
than the current sending rate, the receiver is not greedy; it
only asks the sender to send the data at the rate necessary to
maintain a reasonable smooth playback of the session even a

large amount of bandwidth may be available. Adversely, if
the current sending rate is smaller than the new desired
sending rate, the receiver (or the session) uses the current
sending rate as the requested rate. It is self-controlled rather
than using the network bandwidth arbitrarily without
considering others. The goal is to avoid congestion and be
fair to all other types of traffic.

o If the forecast state is UNLOADED, the current measure-
ment might show a transient behavior of the network or it
could be a sign that the network load is increasing. The
strategy is to retain the status in quo.

e If the forecast is also LOADED, the receiver infers that
the network condition is stable and the strategy is to keep
the status unchanged.

o If the forecast is CONGESTED, it is considered that with
a great chance that the network load will get worse. As a
result, receiver will just follow the previous requested
rate.

Case 3 (The current transmission path is in the state of
CONGESTED). If the current measurement of the trans-
mission path is in the CONGESTED state, it is inferred as a
sign of possible network congestion. The design rationale is
to start congestion avoidance by reducing sending rate.
Receiver will continuously ask the sender to decrease its
rate until the situation is relieved. Depending on the forecast
of the future state, different levels of multiplicative decrease
of the currently measured throughput are taken.

o If the forecast is UNLOADED or LOADED, receiver
will take a small reduction of the rate. Again the session
is self-controlled—only the minimum of the desired
sending rate and the reduced throughput is taken.

o If the forecast is CONGESTED, it is taken as an indica-
tion that the network situation will remain congested.
Receiver takes a larger rate reduction action to relieve
congestion.

In all cases, if the new desired sending rate is less than the
reduced throughput, the receiver takes only what it needs to
maintain the target queue length.

4. Performance evaluation

We have evaluated the proposed prediction-based flow/
congestion control protocol both via simulations and actual
Internet experiments. The protocol was implemented in a
video player/browser system on top of the RTP/UDP proto-
cols on Windows95. The simulations focused on the
detailed analysis of the protocol behavior. Some of the
Internet experimental results are presented here. There are
several goals: (a) to show the improvement of the proposed
scheme in maximizing the real-time playback performance

1236 Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

N*TCP N*TCP

sources sinks
1.5 Mbps, 100 ms

M*UDP M*UDP

sources sinks

Fig. 2. Simulation configuration.

100

B — D '

80 o
60 |- No Control —+— \'\ 1
TFCC —o—

40 | R3CP —5—]
R3CP+ —a—
20 3
0 1 1 1 1 1
0 025 05 075 1 1.25 15

Overall Playback Performance (%)

Normalized Offered Load

(a) overall playback performance

g
8
§ 100 ; e
é 80 - o o
& 60 No Control --—+---
x TFCC
S 40 -
Qo
& 20
‘:’, 0 1 I L 1
% 0 0.25 0.5 0.75 1 1.25 1.5
w Normalized Offered Load
(b) I frames
S
8
S 100 WS
E
g 80
& 60 - No Control -+
< TFCC ---0
8 40 R3CP ---3
3 2 R3CP+ ---=
o
ﬂE) 0 1 1 L 1 1
& 0 0.25 0.5 0.75 1 125 15
;_" Normalized Offered Load
(c) P frames
S
8
S 100 o = FErTT E— T T
- : Ry S
E 80 @ .. .]
"
& 6ot No Control -+ e oy o
™ TFCC -0 S
s 40 - R3CP @ - —
g 0L R3CP+ = P
Q 0 1 1 1 1 1
g 0 0.25 0.5 0.75 1 1.25 1.5
; Normalized Offered Load

(d) B frames

Fig. 3. Comparison of the playback percentage of video frames. (a) Overall playback performance; (b) I frames; (c) P frames; (d) B frames.

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242

800 T

1237

600

Packet Rate (Kbps)

T

“ A
B AR AT

W N f
A eal M

T T
loss prob. = 50% -~~~
loss prob. (%) ==~
actual RR ——

actual SR --------

150 175

200 225 250
Time (sec)

(a) under R3C P

800 T
700 |

Packet Rate (Kbps)

A '
U B A kit A

Vi ARA AT AW AN
A AT D AR,

T T
loss prob. =50% - -
loss prab. (%) - ~
actual RR
abtual SR

NSRS AR
A RVAVAVAATY ATHANAY

200 225 250
Time (sec)

(b) under TFCC

Fig. 4. Comparison of the packet sending rate, receiving rate and packet loss probability when the normalized offered load is 0.96. (a) Under R*CP*; (b) under

TFCC.

of stored video over the best-effort Internet; (b) to under-
stand how well the scheme can react to transient network
load fluctuation and loss; (c¢) to demonstrate the effective-
ness of the scheme in achieving fairness among real-time
traffic while avoiding network congestion; and (d) to
demonstrate the effectiveness of the scheme in achieving
reasonably fair bandwidth sharing with TCP connections.

To provide some context, we compare the performance of
R’CP* with that of three other schemes: transmission with-
out rate/congestion control, R°CP [11] and the triple-feed-
back based congestion control (TFCC) scheme. In R’CP,
the sender transmits data at the desired sending rate. It exhi-
bits the same behavior in bandwidth sharing as of typical
UDP-based real-time flows—they grab as much bandwidth
as they can. It is used as a baseline solely for comparison.
TFCC employs loss-based congestion control and the popu-
lar additive increase/multiplicative decrease algorithm to
control of rate adjustment, i.e.:

if Pn < Piow» requested_rate = max(current_throughtput
+ INC, max_rate);

else lf Piow < Pn < phigh’
throughtput;

else if ppign <py, requested_rate = max(current_
throughtput/DEC, min_rate).

requested_rate = current_

All simulations are performed by using ns [21]. The
network configuration is shown in Fig. 2. We consider a

single 1.5 Mbps congested link shared by a number of
TCP connections and UDP/RTP-based video flows. We
use an actual video trace (the ‘Star War’ movie [22]) as
the video traffic source in the simulation. The first ten-
minute section (14,400 frames and 28,120 packets) is
used. Some important meta data of the simulated video
stream are as follows: the nominal frame rate is
24 frames/s; the frame pattern is IBBPBBPBBPBB; hence,
I_distance is 12. For transmissions which do not use any
control mechanisms, in order to start the playback smoothly,
the first I frame is transmitted with error recovery; once the
first I frame has been successfully received, the playback
begins immediately. The target queue length in all the
experiments using R’CP or R*CP" is set to its minimum
value as required by the look-ahead retransmission scheme.

4.1. Playback performance

In Fig. 3, we show the overall playback performance and
the performances of individual frame types. The playback
performance is defined as the percentage of frames that are
successfully played back. In these experiments, an in-time
completely received frame is not played if its referenced
frame(s) is not present due to the inter-frame dependence.
Each video connection has an average rate of 378 Kbps.
From the figure, we can see that R’CP" outperforms the
other schemes in all ranges. This is mainly due to the
benefit of employing congestion control with a prediction

1238

Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

— 100 T T T T T
£ s .
()
5 60 - No Control ——+-— -
i TFCC --o-—
c 40 R3CP —-fm: oo
g R3CP+ —-m--
o 20 4
) e

0 alo Qe iie.

0 0.25 0.5 0.75 1 1.25

Normalized Offered Load

Fig. 5. Comparison of the percentage of broken frames.

mechanism and the in-time recovery of lost packets. R*CP*
uses more information to assess network states and, thus,
better adapts the sender’s sending behavior to the actual
network conditions. It successfully avoids the possibility
of congestion by not increasing the rate too quickly.
Notably, the percentage of type I frames that are success-
fully played back remains higher than 80% in the range
where the normalized offered load is over 0.75.

In Fig. 4, we show the histograms of the requested send-
ing rate, receiving throughput and packet loss probability
under R*CP" and TFCC. The normalized offered load is
0.96. We can see that under R*CP”, the packet loss prob-

100 T T

abilities are much lower than those in TFCC. This is again
because in R’CP ™, the rate adjustment is based on not only
newly sampled state information, but also on the history.
This helps avoid unnecessary response to transient load
changes and enhances the system stability. Moreover, one
can see in Fig. 4(a) that under the fine-grained rate adjust-
ment algorithm in R*CP*, the receiving throughput is close
to the sending rate. On the other hand, in TFCC, the receiv-
ing throughput is much lower than the sending rate, which
fluctuates wildly throughout the course. This results in a
large number of packet loss (i.e. up to more than 20% loss
ratio).

80
60

No Control
TFCC

Overall Frame Discarded Ratio(%)

0 CC —— /\+
F R3CP o ——t R ——
R3CP+ —=— —
“1 @4_@, /45/?——%;_‘ S
0 o e)
0 0.25 0.5 0.75 1 1.25 1.5
Normalized Offered Load
£ (a) overall frames
3
B
©
3
a 100 T T T T T
2 sl i
§
e 60 No Control ---+- -
o TFCC ---o
5 40 R3CP -
2 R3CP+ ---m---
D 20
3
¢ 0 Lo
= 0 0.25
@ Normalized Offered Load
=
£
Q
[&]
S (b) P frames
3
2
@©
&
a 100 T T T T T
8 80
§
[60 |- No Control -+ + . e
o TFCC o " =
5 40 R3CP -3 o e
2 R3CP+ @)
D 20 - R O o B
8 o oni e .
o 0 i 1 - 1 - p— . 1
T.‘>>‘ 0 0.25 0.5 0.75 1 1.25 1.5
;: Normalized Offered Load
€
o
o

(c) B frames

Fig. 6. Comparison of the total percentage of frames that are completely received but discarded due to the absence of the referenced frames. (a) Overall frames;

(b) P frames; (c) B frames.

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242 1239

% 1600 T T T T T T T
§ 1400 | o . TFCC connection 4
X 1200 I < CBR under TFCC ———- |
£ 1000 - 0 R3CP+ connection i
T i CBR under R3CP+ -~ -
o 800 - i
2 600 }\ ,]
3 400 - [N Bonh o g e e]
8 200 NN RIA S g
o 0 1 - 1 1 1 !
0 10 20 30 60 70 80
Time (sec)
(a) packet receiving rate
9
< 100 7 T I 7 T U
8 W ATV YW VYT
S 80 | b
£ ! i
5 oof i
$ 40f i | _TFCC connection
x R3CP+ connection -------
§ 20
5‘ 0 ’ | L 1
o 0 50 60 70 80
Time (sec)
(b) frame playback performance
2 2500
2 ' ' ' TFICC connectilon
g 2000 [R3CP+ connection"/‘
=3
£ 1500 -]
©
£ 1000 | /.// J
- _—
2 500 [- 4
3
g 0 ‘_-/‘)AT_\\\‘ s e [e [
0 10 20 30 40 50 60 70 80
Time (sec)
(¢) receiving buffer queue length
. 100
3 90 ' ' ' TFICC connecti‘on -
= 98 F R3CP+ connection -------- b
3 et 1
a 50 4
o 40 | .
o 30 f F’\ 4
§ 20 J““ B
4" A s .]

o

Time (sec)

(d) packet loss probability

Fig. 7. Responsiveness to transient and long-lasting congestion events. (a) Packet receiving rate; (b) frame playback performance; (c) receiving buffer queue

length; (d) packet loss probability.

Next, we analyze the performance between the frames
received and the frames that can be successfully played
out. For frames received, they can be distinguished in four
categories: broken frames, late frames, orphan frames and
playable frames. Because most of the frames are segmented
into a number of UDP packets, a frame is said to be broken if
any of its constituent packets are lost. Broken frames are not
playable. In Fig. 5, we compare the percentage of broken
frames when different control mechanisms are used. One
can see that R’CP" has the best performance. For those
runs without any additional transmission control, they
severely suffered from random packet loss. For R*CP¥,
the congestion control and the execution of selective trans-
mission, the real-time session focuses its packet delivery on
transmitting those most important frames given the limited

bandwidth available to it, thus achieving the best perfor-
mance.

Fig. 6 shows the comparison of the total percentage of
frames that are completely received on the schedule but
could not be played due to the loss of the referenced frames.
By employing selective retransmission of lost packets,
especially the important I frames, both R*CP* and TFCC
with R’CP achieve better overall playback performance and
bandwidth utilization.

4.2. Responsiveness and stability

In this section, we want to show the effectiveness of
the proposed rate/congestion control scheme in handling
long-lasting as well as transient congestion events. In the

1240

Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

gz o ' ' ' actual RR of R3CP+ - 0
actual O - — 4
g 6w actual RR of R3CP+ - 1 -
< 500 A] U
5 400
o 300 -
S 200
8 100 |
& 0 1 1 1 1 1
0 50 100 150 200 250 300
Time (sec)

Fig. 8. Bandwidth sharing between R*CP™.

experiments, two background traffic are generated: a
constant-bit-rate UDP flow which start to send fixed-size
packets (1000 bytes) at a rate of 1.454 Mbps from time
8.5 to time 38.5; and a burst of fixed-size UDP packets
(1000 bytes) which is injected into the congested link at a
rate of 1.454 Mbps from time 45.4 to time 46.4. We
compare the usage of various resources of a real-time flow
under R*CP* or TFCC. Playback of the video stream starts
at time 2. Fig. 7 shows the histograms of the packet receiv-
ing rate and the corresponding frame playback performance,
queue length and measured packet loss rate probability.
First, we can see that the flow using R’CP* scheme
converges to a steady state faster than does that under the
TFCC scheme. Notice that under TFCC, the flow continues

1500

to grab available bandwidth until it reaches its upper
bound, which is set to 800 Kbps. At time 8, congestion
occurs. The adaptive congestion control mechanism in
R’CP" is able to compete with the background UDP traffic
during the period of congestion and maintains a number of
packets in the receiving buffer so to ensure continuous
playback of video frames. On the other side, TFCC fails
to contend for bandwidth with aggressive UDP traffic.
From time 20 to time 40, no frames are played under
TFCC. In terms of the playback performance (in Fig.
7(b)), R’cp* performs much better than TFCC. When
congestion ended at time 38, both R*CP* and TFCC pick
up the bandwidth rapidly. Note that R*CP* converges to
the rate it needs (around 380 Kbps) while TFCC hoards the

1200

900 e

Throughput (Kbps)

T T
total thrput without R3CP+ —x—
g total thrput with 1 R3CP+ —&—

avg. tcp thrput without R3CP+ ------
avg. top thrput with 1 R3CP+ ---&---
avg. 1 R3CP+ thrput -—m-—

No. of TCP connections

(a) R?CP* flow

1500 T T

total thrput without TFCC —=—
total thrput with 1 TFCC —=—
avg. tcp thrput without TFCC ------

avg. tep thrput with 1 TFCC - &
avg. 1 TFCC thrput -—-m-

- /(/—%
——
1200 [,
Z
< 900 |
b .
= s
= *..
Ef
g 600
= —
300
0 1 1
1 2 3

No. of TCP connections

(b) TFCC flow

Fig. 9. Bandwidth sharing between congestion-controlled real-time flows and TCP connections. (a) R3CP* flow; (b) TFCC flow.

Y.S. Sun et al. / Computer Communications 25 (2002) 1230-1242 1241

Table 2
Statistics of the round-trip delay and loss probability

Source Avg. RTT (ms) Loss Prob.
NTU 10.205 0.1267
NCTU 32.378 0.0522
Stanford Univ. 258.891 0.00933

bandwidth, resulting in continuous growth of the buffer
queue length.

4.3. Fairness with real-time sessions

In Fig. 8, we study how real-time flows employing R*CP™*
control mechanisms share link bandwidth. First, R’CP*
flow starts at time 0.33, represented by the dark line.
Another R*CP™ flow joins at time 100.19, represented by
the dash line. A background UDP flow is always up which
sends packets at a rate of 909.09 Kbps. The link capacity is
1.5 Mbps. One can see that after the second flow enters the
congested link, the first flow detects this situation and
reduces its rate; in a very short period of time, two flows
reach almost the same throughput and share the link band-
width equally.

4.4. Fairness with TCP traffic

In this section, we will study the bandwidth shared
between R*CP* flows and TCP connections. definition of
TCP ‘friendliness’ has been widely adopted in the conges-
tion control of real-time applications [12—15]. In essence, if
a UDP connection shares a bottleneck link with TCP
connections of the same link, then the UDP connection
should receive the same share of bandwidth (i.e. achieve
the same throughput) as does a TCP connection. A concern
is raised with this approach. That is, real-time applications
have more stringent performance requirements than do non-
real time applications (those mainly using TCP). While
equally sharing the bandwidth over a bottleneck link
might sound fair at the first glance, we believe that relative
fairness between UDP and TCP traffic is only achievable if a
congestion control algorithm for real-time applications can
be shown to be ‘reasonably fair’ to TCP. This philosophy is
more practical to meet the performance objectives of both
types of applications as well as to maximize link utilization.
Nevertheless, one still needs to be careful about how much
more bandwidth should be given to a real-time connection,
which is still an open research issue [23]. In the following,
we will show that the proposed real-time flow/congestion

Table 3
Comparison of frame playback performance

Source R3CP* (%) R3CP (%) No control (%)
NTU 91.25 90.63 9.55
NCTU 90.24 93.36 8.27
Stanford Univ. 96.23 92.38 59.16

control scheme only allows a real-time connection to obtain
a slightly larger amount of resources than can TCP during
the congestion.

Let us look at the average throughput a TCP connection
can obtain when there are multiple TCP connections trans-
mitting over a shared link. In Fig. 9(a), one can see that the
average throughput continues to decline when more TCP
connections join in. Now, consider the addition of a
R’CP* connection. When there is no congestion, the
R’CP™ connection is very self-controlled because it adjusts
its rate without aggressively increasing it and causing
congestion. It takes only what it needs and shares bandwidth
with TCP connections in a consistent and friendly manner.
When more TCP connections are added to the link, the
network becomes congested. The R’CP* connection
executes its congestion control and reduces the rate. There
is no ‘TCP bandwidth starvation’ situation. For TCP
connections, the average throughput is reduced a bit less
than is the case without the R*CP™" connection. The effect
on the throughput reduction for TCP connections is mainly
due to the competition among them with or without the
R’CP™ connection. In Fig. 9(b), we again show results of
the same experiments using TFCC. One can see that the
connection using TFCC obtains more bandwidth than do
the connection using R*CP ™. Hence, the average throughput
of TCP connections with the R*CP™ connection is greater
than that with the TFCC connection.

4.5. Internet experiment results

Here, we present some of the performance results of the
experiments that were conducted over the Internet. Three
different Internet path environments are tested, each repre-
senting a different transmission characteristic. A video
server is located at each of the three sites (bigzoo.gl.ntu.
edu.tw, fanga.iim.nctu.edu.tw and deepblue2.standord.edu).
The client station is located at the computer center of the
National Taiwan University (140.112.3.120). Table 2 gives
a snapshot of the RTT and loss probability statistics of the
three sets of the experiments. In Table 3, we compare the
frame playback performance of the runs under R’CPY,
R’CP and transmission without any control. Detailed results
are reported in Ref. [24].

5. Conclusions

In this paper, we have presented a prediction-based flow/
congestion control scheme called R*CP* for real-time
stored packet video transfer over the best-effort based
Internet. In this protocol, several control mechanisms are
used. First, an adaptive filter is used to predict the network
state based on the current measurement as well as the
history. The objective is to capture both the ‘trend’ and
the ‘transiency’ of the network load behavior. With the
forecast, the receiver calculates its desired sending rate by
taking into account the occupancy of the receiving buffer. In

1242 Y.S. Sun et al. / Computer Communications 25 (2002) 1230—-1242

this way, we ensure that the receiver is self-controlled, and
that it does not ask the sender to send more data than it needs
to assure its continuous playback of frames. Finally,
depending upon the different assessments of the network
condition, the receiver determines the requested sending
rate differently.

We have studied and compared the performance of the
proposed R*CP™ protocol with other schemes via simulation
and through actual implementation. The simulation results
show that R*CP" outperforms schemes like the popular
linear-increase/multiplicative-decrease algorithm in all
ranges. It is due to the use of adaptive filter in network
state forecast and assessment as well as finer control of
rate adjustment. Thus, it cannot only better adapt the packet
sending rate to the actual condition, but also avoid unneces-
sary response to transient load changes. This indeed helps to
maintain system stability. The combined use of a buffer-
occupancy based desired sending rate with in-time packet
retransmission and selective transmission also significantly
improves the playback performance.

We have also studied the issue of resource sharing
between R’CP™ flows as well as with TCP connections.
The results show that because each R*CP* flow is conges-
tion-conscious when it performs rate adaptation, it can
achieve fair bandwidth sharing at a bottleneck link. More-
over, a R°CP"* flow can also share bandwidth with TCP
connections in a reasonably friendly fashion. By reasonably
friendly, we mean that the real-time connection only takes a
slightly larger amount of bandwidth than does TCP through-
put during congestion. The reason for the throughput
reduction for TCP connections is mainly the competition
among them with or without connection. Therefore, there
is no TCP bandwidth starvation situation when real-time
connections using the flow/congestion control mechanisms
of R’CP™.

References

[1] R.Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, Resource ReSer-
Vation Protocol (RSVP)—Version 1 functional specification, RFC
2205, September 1997.

[2] J. Wroclawski, The use of RSVP with IETF integrated services, RFC
2210, September 1997.

[3] J. Wroclawski, Specification of the controlled-load network element
service, RFC 2211, September 1997.

[4] S. Shenker, C. Partridge, R. Guerin, Specification of guaranteed qual-
ity of service, RFC 2212, September 1997.

[5] S.Chong, S-Q. Li, J. Ghosh, Predictive dynamic bandwidth allocation
for efficient transport of real-time VBR video over ATM, IEEE JSAC
January (1995).

[6] J.M. McManus, K.W. Ross, Video-on-demand over ATM: constant-
rate transmission and transport, IEEE JSAC August (1996).

[7]1 M. Grossglauser, S. Keshav, D.N.C. Tse, RCBR: a simple and effi-
cient service for multiple time-scale traffic, IEEE/ACM Transactions
on Networking December (1997).

[8] A.M. Adas, Using adaptive linear prediction to support real-time
VBR video under RCBR network service model, IEEE/ACM Trans-
actions Networking October (1998).

[9] Z. Chen, S. Tan, R. Campbell, Y. Li, Real time video and audio in the
World Wide Web, Fourth International World Wide Web Conference,
1995.

[10] C. Papadopoulos, G.M. Parulkar, Retransmission-based error control
for continuous media applications, Proceedings of NOSSDAV’96,
1996.

[11] Y. Sun, F.M. Tsou, M.C. Chen, A buffer-occupancy based adaptive
flow control scheme with packet retransmission for stored video trans-
port over Internet, IEICE Transactions on Communications Novem-
ber (1998).

[12] D. Sisalem, H. Schulzrinne, The loss-delay based adjustment algo-
rithm: a TCP-friendly adaptation scheme, Proceedings of NOSS-
DAV’98, July 1998.

[13] R. Rejaie, M. Handley, D. Estrin, RAP: an end-to-end rate-based
congestion control mechanism for realtime streams in the Internet,
INFOCOM’99, 1999.

[14] J. Padhye, J. Kurose, D. Towsley, R. Koodli, A TCP-friendly rate
adjustment protocol for continuous media flows over best effort
networks, ACM Sigmetrics’99, May 1999.

[15] S. Floyd, K. Fall, Router mechanisms to support end-to-end conges-
tion control, Technical Report, February 1997.

[16] D. Sisalem, Fairness of adaptive multimedia applications, ICC’98, 1998.

[17] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs,
1986.

[18] D.D. Clark, D. Tennenhouse, Architectural considerations for a new
generation of protocols, ACM SIGCOMM’90, September 1990.

[19] ISO/IEC International Standard 11172, Coding of Moving Pictures
and Associated Audio for Digital Storage Media up to about
1.5 Mbits/s, November 1993.

[20] ISO/IEC International Standard 13818, Generic Coding of Moving
Pictures and Associated Audio Information, November 1994.

[21] UCB/LBNL/VINT, Network Simulator-ns (version 2), http://www-
mash.cs.berkeley.edu/ns/.

[22] M.W. Garrett, A. Fernandez, MPEG-1 Video Trace, Bellcore, ftp:/
thumper.bellcore.com/pub/vbr.video.trace/MPEG.data, 1992.

[23] F. Kelly, Charging and rate control for elastic traffic, European Trans-
actions on Telecommunications 8 (1997).

[24] I-K. Tsay, An implementation and performance evaluation of end-to-
end joint flow/congestion control scheme for real-time stored packet
video over Internet, Master Thesis, June 1999.

