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Abstract—We propose a quorum system, which we referred to as the surficial quorum system, for group mutual exclusion.

The surficial quorum system is geometrically evident and is easy to construct. It also has a nice structure based on which a

truly distributed algorithm for group mutual exclusion can be obtained and processes’ loads can be minimized. When used with

Maekawa’s algorithm, the surficial quorum system allows up to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
processes to access a resource simultaneously, where

n is the total number of processes and m is the total number of groups. We also present two modifications of Maekawa’s

algorithm so that the number of processes that can access a resource at a time is not limited to the structure of the

underlying quorum system, but to the number that the problem definition allows.

Index Terms—Mutual exclusion, group mutual exclusion, resource allocation, quorum system, surficial quorum system, coteries.
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1 INTRODUCTION

MUTUAL exclusion is one of the most fundamental
problems in distributed systems. In this problem,

access to a shared resource (i.e., entering a critical section)
by concurrent processes must be synchronized so that only
one process can use the resource at a time. Following
Dijkstra’s seminal paper [15], an extensive amount of
research has been devoted to this subject in the past three
decades or so. Several extensions to this problem have also
been proposed: The l-exclusion problem [17] concerns
situations in which at most l processes can be in the critical
section simultaneously. The problems of Dining Philosophers
[16], Drinking Philosophers [10], and Committee Coordination
[11] concern situations in which a process needs to acquire
more than one resource at a time and resources cannot be
shared between processes.

Recently, there was another extension called group
mutual exclusion [28], which concerns situations in which a
resource can be shared by processes with a common
property, e.g., they belong to the same “group,” or they
will not invoke “conflicting” operations while using the
resource. Processes with different properties must use the
resource in a mutually exclusive style. As an application of
the problem, assume that data is stored in a CD jukebox
where only one disk can be loaded for access at a time.
Then, when a disk is loaded, users that need data on this
disk can concurrently access the disk, while users that need
a different disk have to wait until no one is using the
currently loaded disk. Although both group mutual
exclusion and l-exclusion allow more than one process to
be in the critical section simultaneously, the two problems
differ in that in l-exclusion the conflict in accessing a
resource is due to the number of processes that attempt to
access the resource, while in the group mutual exclusion the

conflict is due to the “type” of processes (i.e., the group they
belong to).

Group mutual exclusion also plays a role in emerging
wireless applications [26], [27], [6]. In these applications,
two devices that wish to communicate with each other must
be in the same frequency, and packets sent by a device in a
frequency channel can be received by all devices listen to
the same frequency within radio range of the sender. Thus,
given a particular frequency channel, a group of devices
that wish to communicate with one another must first
acquire the channel before communication, and other
groups of devices that wish to communicate must wait
until the channel is cleared. Another example that deals
with server cache can be found in [22].

Solutions for group mutual exclusion in shared memory
models have been proposed in [28], [32], [3], [22], [44]. Here,
we consider message passing networks. The solutions in
[45], [7], [8], all use a unique token circulating along a ring
to resolve mutual exclusion among different groups of
processes in accessing a shared resource (i.e., the critical
section). The use of ring topology greatly simplifies the
solutions, but it inevitably incurs long synchronization
delay. The two message-passing solutions proposed in [30]
are for general networks. Both are extensions of Ricart and
Agrawala’s algorithm for mutual exclusion [42]. Basically,
they work as follows: A process wishing to enter a critical
section broadcasts a request to all processes in the system,
and enters the critical section when all processes have
acknowledged its request. Thus, the minimum synchroni-
zation delay for a process to enter a critical section is only
two message transmission time. However, since all pro-
cesses are involved in determining whether a process can
enter a critical section, the algorithms cannot tolerate any
single process failure. (Clearly, none of the aforementioned
token-based algorithms can tolerate process failures either.)

In the literature, quorum systems have proven useful in
coping with site failures and network partitions for both
mutual exclusion (e.g., [20], [37], [4], [1], [33], [14], [41]) and
l-exclusion (e.g., [19], [31], [35], [39]). In general, a quorum
system (called a coterie [20]) consists of a set of quora, each
of which is a set of processes. Quora are used to guard
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critical sections. To enter a critical section, a process must
acquire a quorum; that is, to obtain permission from every
member of the quorum. Suppose that a quorum member
gives permission to only one process at a time. Then,
mutual exclusion can be guaranteed by requiring every two
quora in a coterie to intersect, and l-exclusion can be
guaranteed by requiring any collection of lþ 1 quora in a
coterie (called an l-coterie [19], [25]) to contain at least two
intersecting quora. A quorum usually involves only a
subset of the processes in the system. So, even if processes
may fail or become unreachable due to network partitions,
some process may still be able to enter a critical section so
long as not all quora are hit (a quorum is hit if some of its
members fails).

It is easy to see that coteries for l-exclusion cannot be used
for group mutual exclusion because two conflicting
processes may then both enter a critical section after
acquiring two disjoint quora, respectively. On the other
hand, coteries for mutual exclusion can be used for group
mutual exclusion, but it will result in a degenerate solution
in which only one process can be in a critical section at a
time.

In this paper, we present a quorum system, which we

refer to as the surficial quorum system, for group mutual

exclusion. To our knowledge, this is the first quorum

system for group mutual exclusion to appear in the

literature. The surficial quorum system is geometrically

evident and is easy to construct. It also has a nice structure

based on which a truly distributed algorithm for group

mutual exclusion can be obtained and processes’ loads can

be minimized. When used with Maekawa’s algorithm [37],

the surficial quorum system allows up to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
processes

to access a resource simultaneously, where n is the total

number of processes and m is the total number of groups.

In contrast, only one process is allowed to access a resource

at a time if ordinary quorum systems are used.
We also present a modification of Maekawa’s algorithm

so that the number of processes that can access a resource at
a time is not limited to the structure of the underlying
quorum system, but to the number that the problem
definition allows. Thus, the modified algorithm can also
use ordinary quorum systems to solve group mutual
exclusion. Nevertheless, when used with group quorum
systems, the message complexity of the modified algorithm
is still better than that used with an ordinary quorum
system. Another modification that trades off synchroniza-
tion delay for message complexity is also presented in the
paper.

The rest of the paper is organized as follows: Section 2
gives the problem definition. Section 3 presents the surficial
quorum system. Section 4 presents quorum-based algo-
rithms for group mutual exclusion. Conclusions and future
work are offered in Section 5.

2 THE GROUP MUTUAL EXCLUSION PROBLEM

We consider a system of n asynchronous processes 1; . . . ; n,
each of which cycles through the following three states,
with NCS being the initial state:

. NCS: The process is outside CS (the Critical Section),
and does not wish to enter CS.

. trying: The process wishes to enter CS, but has not
yet entered CS.

. CS: The process is in CS.

The processes belong to m groups 1; . . . ;m. To make the
problem more general, we do not require groups to be
disjoint. When a process may belong to more than one
group, the process must identify a unique group to which it
belongs when it wishes to enter CS. Since group member-
ship is concerned only at the time a process wishes to enter
CS (and at the time the process is in CS), when we say
“process i belongs to group j,” we implicitly assume that
process i has specified j as its group for entering CS.1

The problem is to design an algorithm for the system
satisfying the following requirements:

mutual exclusion: At any given time, no two processes of
different groups are in CS simultaneously.

lockout freedom: A process wishing to enter CS will
eventually succeed.

Moreover, to avoid degenerate solutions and unneces-
sary synchronization, we are looking for algorithms that can
facilitate “concurrent entering,” meaning that if a group g
of processes wish to enter CS and no other group of
processes are interested in entering CS, then the processes
in group g can concurrently enter CS [28], [32], [22].

3 A QUORUM SYSTEM FOR GROUP MUTUAL

EXCLUSION

In this section, we present the surficial quorum system for
group mutual exclusion. We begin with the definition of
group quorum systems.

Definition 1. Let P ¼ f1; . . . ; ng be a set of nodes.2 An m-
group quorum system C ¼ ðC1; . . . ; CmÞ over P consists of
m sets, where each Ci � 2P is a set of subsets of P satisfying
the following properties:
intersection:

8 1 � i; j � m; i 6¼ j; 8Q1 2 Ci; 8Q2 2 Cj : Q1 \Q2 6¼ ;:

minimality:

8 1 � i � m; 8Q1; Q2 2 Ci;Q1 6¼ Q2 : Q1 6� Q2:

We call each Ci a cartel and each Q 2 Ci a quorum.

Intuitively, C can be used to solve group mutual
exclusion as follows: Each process i of group j, when
attempting to enter CS, must acquire a quorum Q 2 Cj it
has chosen by obtaining permission from every member of
the quorum. Upon exiting CS, process i returns the
permission to the members of the quorum. Suppose a
quorum member gives permission to only one process at a
time. Then, by the intersection property, no two processes
of different groups can be in CS simultaneously. The
minimality property is used rather to enhance efficiency. As
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1. The problem is described in a more anthropomorphous setting as
Congenial Talking Philosophers in [28].

2. The terms processes and nodes will be used interchangeably throughout
the paper. For a distinguishing purpose, however, we use “nodes”
specifically to denote quorum members, and “processes” to denote group
members.



is easy to see, if Q1 � Q2, then a process that can obtain
permission from every member of Q2 can also obtain
permission from every member of Q1. Note that the above
concept of acquiring quora to enter CS is essentially from
Maekawa’s well-known algorithm [37] for standard mutual
exclusion. We will discuss this algorithm in more detail in
Section 4.

Recall that a quorum system over P for mutual
exclusion is a set C � 2P of quora satisfying the following
requirements:

intersection: 8Q1; Q2 2 C : Q1 \Q2 6¼ ;.
minimality: 8Q1; Q2 2 C;Q1 6¼ Q2 : Q1 6� Q2.

To distinguish quorum systems for mutual exclusion from
group quorum systems, we refer to the former as ordinary
quorum systems.

An ordinary quorum system C can be used as an
m-group quorum system by a straightforward transforma-
tion T m: T mðCÞ ¼ ðC; . . . ; CÞ. By the intersection property
of C, all quora in a cartel of T mðCÞ are pairwise intersected.
Note that, in general, quora in the same cartel of a group
quorum system need not intersect.

Definition 2. The degree of a cartel C, denoted as degðCÞ, is the
maximum number of pairwise disjoint quora in C. The degree
of a group quorum system C ¼ ðC1; . . . ; CmÞ, denoted as
degðCÞ, is defined as degðCÞ ¼ minfdegðCiÞ j 1 � i � mg;
that is, the minimum degree of the cartels. C is of uniform
degree k if all its cartels have the same degree k.

Clearly, if a node gives out its permission to at most one
process at a time (as in Maekawa’s algorithm), then the
number of processes of the same group that can be in CS
simultaneously is limited to degðCÞ, where C is the cartel
associated with the group. Moreover, a group quorum
system of degree k immediately implies that every cartel
contains at least an unhit quorum even if kÿ 1 processes
have failed. So, high degree group quorum systems also
provide a better protection against faults. On the other
hand, an m-group quorum system of degree k also implies
that every quorum in the system has size at least k (unless
m ¼ 1). So, the higher the degree, the larger the quorum
size.

In the following we present an m-group quorum system

Sm ¼ ðC1; . . . ; CmÞ of uniform degree
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
. In addition,

the quora in the system satisfy the following four extra

conditions:

1. 8 1 � i; j � m :
��Ci�� ¼ ��Cj��.

2. 8 1 � i; j � m; 8Q1 2 Ci; 8Q2 2 Cj :
��Q1

�� ¼ ��Q2

��.
3. 8 p; q 2 P :

��np�� ¼ ��nq��, where np is the multiset
fQ j 9 1 � i � m : Q 2 Ci and p 2 Qg, and similar
for nq. In other words,

��np�� is the number of quora
involving p.

4.
8 1 � i; j � m; i 6¼ j; 8Q1 2 Ci; 8Q2 2 Cj :

��Q1 \Q2

�� ¼ 1.

Intuitively, the first condition ensures that each group has
an equal chance in competing for CS. The second condition
ensures that the number of messages needed per entry to
CS is independent of the quorum a process chooses. The
third condition means that each node shares the same
responsibility in the system. As argued by Maekawa [37],
these three conditions are desirable for an algorithm to be

truly distributed. The last condition simply minimizes the
number of nodes that must be common to any two quora of
different cartels, thereby reducing the size of a quorum.

Before presenting the detailed construction of Sm, we
first provide some intuitions. It is easy to see that a 1-group
quorum system S1 satisfying the above conditions can be
obtained as follows: S1 ¼

ÿ�
fpg j p 2 P

	�
. The quorum

system can be viewed as a line consisting of n nodes, each
of which corresponds to a process in P , where n ¼ jP j. Each
quorum then consists of exactly one node on the line, and
the collection of the quora constitutes the only cartel in the
system. See Fig. 1, top. By extending this line to a two-
dimensional plane, we can obtain a 2-group quorum system
S2 ¼ ðC1; C2Þ, where each quorum in C1 corresponds to the
set of nodes in each row, while each quorum in C2

corresponds to the set of nodes in each column. By taking
one step further, we can construct a 3-group quorum
system S3 ¼ ðC1; C2; C3Þ by arranging nodes on the surface
of a cube. Notice that a cube can be “wrapped up” by lines
(strings) along three different dimensions. Lines along the
same dimension are parallel to each other, while any two
lines along different dimensions must intersect at two
points. If we arrange the nodes on only three sides of the
cube as shown in Fig. 1, then every two lines along different
dimensions intersect at exactly one point.

We can unfold the three sides of the cube on the plane as
shown in Fig. 2a. Each quorum in C1 then corresponds to a
vertical line across the first (right most) column of squares.
Each quorum in C2 corresponds to a horizontal line across
the top square, and a vertical line across the left square on
the bottom. Finally, each quorum in C3 corresponds to a
horizontal line across the two squares on the bottom.

By appending another three squares to the bottom of the
above pile of squares and extending the lines to these extra
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Fig. 1. The surficial quorum system for m ¼ 1; 2, and 3.

Fig. 2. The unfolded surficial quorum system S3 (a) and S4 (b).



squares, we can construct S4 as shown in Fig. 2b. Each
quorum in C1 corresponds to a vertical line across the first
column of squares. Each quorum in C2 corresponds to a
horizontal line across the square on the first level (starting
from the top), and then a vertical line across the second
column of squares. Each quorum in C3 corresponds to a
horizontal line across the squares on the second level, and
then a vertical line across the third column of squares.
Finally, each quorum in C4 corresponds to a horizontal line
across the squares on the third level. Notice that on the right
staircase of Fig. 2, the first level of squares constitutes S2,
and the first two levels of squares constitutes S3.

This procedure can be extended to Sm. In general, each
Ci in Sm needs mÿ 1 squares, each of which is to be
shared with one of the other mÿ 1 cartels so that the
corresponding lines of the two cartels intersect at exactly
one node on the square. Overall, there are mðmÿ 1Þ=2
squares. Let k be the width of each square (i.e., the
number of quora in each cartel). Then, each square
consists of k2 nodes. So, the total number of nodes on the
mðmÿ 1Þ=2 squares is k2mðmÿ 1Þ=2. A simple way to
map nodes on the squares to the processes in P is to let
each node correspond to a unique process. In this case,
k2mðmÿ 1Þ=2 ¼ n, where n ¼ jP j. So,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n

mðmÿ 1Þ

s
; m > 1:

So, the quorum size is ðmÿ 1Þ � k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ1Þ

m

q
and each cartel

consists of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
quora.

Figs. 3 and 4 present the “staircase” construction of the
surficial quorum system. We shall use F to denote the
construction. When given input P and integer m as
specified in Fig. 3, FðP;mÞ denotes the result Sm. The
following theorem summarizes some properties of the
surficial quorum system.

Theorem 1. LetP be ann-set andm be a nonnegative integer such

that m > 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
¼ k for some integer k. Furthermore,

let FðP;mÞ ¼ ðC1; . . . ; CmÞ. Then, FðP;mÞ is an m-group

quorum system over P , and is of uniform degree
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
.

Moreover, FðP;mÞ satisfies the following conditions:

. 8 1 � i; j � m :
��Ci�� ¼ ��Cj�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
:

.

8 1 � i; j � m; 8Q1 2 Ci; 8Q2 2 Cj :��Q1

�� ¼ ��Q2

�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ 1Þ

m

r
:

. 8 p; q 2 P :
��np�� ¼ ��nq�� ¼ 2, where np is the multiset

fQ j 9 1 � i � m : Q 2 Ci and p 2 Qg, and similar
for nq.

.

8 1 � i; j � m; i 6¼ j; 8Q1 2 Ci; 8Q2 2 Cj :��Q1 \Q2

�� ¼ 1:

Proof. Straightforward from the construction. tu

Below, we provide some comments on the construction.
First, we provide an upper bound on the degree of group
quorum systems.

Lemma 1. Let C be an m-group quorum system over an n-set. If
m > 1, then C has degree k �

ffiffiffi
n
p

.

Proof. This follows from the fact that if m > 1 and
degðCÞ ¼ k, then by the intersection property every
quorum in a cartel must have at least k nodes. Since
there are at least k pairwise disjoint sets in a cartel, the
total number of different nodes involved in a cartel is at
least k2, which must be less than n. So, k �

ffiffiffi
n
p

. tu
In fact, the above bound is also tight as we can construct

an m-group quorum system with (uniform) degree
ffiffiffi
n
p

[29].
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Fig. 3. The staircase construction of F .

Fig. 4. Arrangement of nodes in Sm. On the left side is the indices

(superscripts) of squares and on the right is the indices (subscripts) of

nodes in each square.



So, in terms of degree, the construction of the surficial
quorum system Sm (which has uniform degree

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

mðmÿ1Þ

q
) is

not optimal. However, to reach the optimal degree, n must
be equal to some p2c, where p is a prime and c is a positive
integer. Besides, the construction is difficult to visualize as it
works on an affine plane of order pc. In contrast, the
surficial quorum system is easy to visualize and so is easy to
construct.

Moreover, observe that in the surficial quorum system

every node is involved in at most two quora. Clearly, a

node’s load can be minimized by letting it be included in at

most two quora. (If some node is included in only one

quorum, then the node is redundant as removing it from

the quorum does not affect the intersection and minimality

properties.) As shown in the following lemma, if every

node is included in at most two quora, then the maximum

degree an m-group quorum system can achieve is
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
,

which is exactly what Sm has achieved. So, the surficial

quorum system achieves maximal degree when processes’

loads are minimized.

Lemma 2. Let C ¼ ðC1; . . . ; CmÞ be an m-group quorum system

over an n-set P , m > 1. Define np, p 2 P , to be the multiset

fQ j 9 1 � i � m : Q 2 Ci and p 2 Qg. If 8 p 2 P : jnpj � 2,

then C has degree k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
.

Proof. Let Pi;j
r;s be the intersection of the rth quorum inCi and

the sth quorum in Cj, i 6¼ j. By definition, Pi;j
r;s 6¼ ;. Since

every node is included in at most two quora, Pi;j
r;s \ P

i0;j0
r0;s0 ¼

; if fi; jg 6¼ fi0; j0g (i.e., the two unordered pairs are not

equal) or ðr; sÞ 6¼ ðr0; s0Þ (i.e., the two ordered pairs are not

equal). Given that 1 � i 6¼ j � m and that each cartel

contains at least k quora, there are m
2

ÿ �
unordered pairs of

i; j, and for each of them, at least k2 ordered pairs of ðr; sÞ
that can constitute a Pi;j

r;s. So,
��S

i;j;r;s P
i;j
r;s

�� � m
2

ÿ �
k2. Since

m
2

ÿ �
k2 � n, we have k �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

mðmÿ1Þ

q
. tu

In the construction of the surficial quorum system, we
have assumed a one-to-one mapping from nodes to
processes. One can experiment different mappings as well
as adjust the dimension of the squares to tune the quorum
system to fit into different applications.

Garcia-Molina and Barbara [20] proposed the notion of
dominance to compare the failure resilience of ordinary
quorum systems. A quorum system C dominates D if
8Q 2 D; 9R 2 C : R � Q. Intuitively, this means that when-
ever a quorum in D can survive some failures, then some
quorum in C can certainly survive as well. Thus, in this
sense C is said to be superior to D because C provides more
protection against failures. Similarly, dominance of group
quorum systems can be defined as follows:

Definition 3. Let C ¼ ðC1; . . . ; CmÞ and D ¼ ðD1; . . . ; DmÞ be
two m-group quorum systems over P . Then, C dominates D if

1. C 6¼ D,
2. 8Q 2 Di; 1 � i � m; 9R 2 Ci : R � Q.

D is nondominated if there is no C such that C dominates D.

Theorem 2. Let FðP;mÞ ¼ ðC1; . . . ; CmÞ be the group quorum
system constructed in Fig. 3. Then, FðP;mÞ is dominated.

Proof. In Fig. 3, let T ¼ Q1;1 ÿ
�
p1;1

1;1

	
[
�
p1;1

2;1

	
. Then, T

intersects Qi;j for all 1 < i � m, 1 � j � k. Moreover,
T 6� Q1;j and Q1;j 6� T . So, ðC1 [ fTg; C2; . . . ; CmÞ is an
m-group quorum system and it dominates FðP;mÞ. tu

“Fully distributedness” and “nondominance” appear to
be two conflicting notions as, for example, the “fully
distributed” ordinary quorum system proposed by Maeka-
wa [37] is also dominated [18], [40]. However, the
construction of Sm ¼ ðC1; . . . ; CmÞ is such that every
quorum Q in the cartels is a minimal set that intersects
every other quorum in a different cartel. As proven in [29],
this property implies that Sm can be enlarged to a
nondominated group quorum system U ¼ ðD1; . . . ; DmÞ
such that Ci � Di for all 1 � i � m. In other words, we
can build upon Sm a nondominated group quorum system
U such that U “contains” Sm. An important meaning of this
“containing” relation is that: Sm can be used to realize a
truly distributed algorithm when failures do not occur,
while U can be used to “backup” Sm when failures do occur
to increase fault tolerance. Therefore, based on Sm, we can
easily construct a nondominated group quorum system to
support a fully distributed algorithm for group mutual
exclusion.

4 QUORUM-BASED ALGORITHMS FOR GROUP

MUTUAL EXCLUSION

In this section, we present algorithms that use quorum
systems to solve group mutual exclusion. The network is
assumed to be complete and reliable.

4.1 The Basic Framework: Maekawa’s Algorithm

Most quorum-based algorithms for mutual exclusion are
based on Maekawa’s algorithm [37], which works as
follows:

1. A process p wishing to enter CS chooses a quorum
Q, and it must “lock” all nodes of Q before it can
enter CS. It does so by sending a lock request
REQUEST to each node of Q.

When p has locked all nodes of Q, it enters CS.
Upon leaving CS, i sends an UNLOCK message to
all nodes of Q to release their locks.

2. A node can be locked by one process at a time. So
upon receipt of a request by p, a node i checks if it is
locked.

a. If i is locked by another process q, then some
arbitration mechanism is used to determine
whether to let p wait, or to let p preempt q’s
possession of i’s lock.

b. Otherwise, i sends a lock (a message LOCKED)
to p, and is now “locked by p.”

In general, lock requests by p to the nodes of Q are sent
simultaneously (i.e., multicast) so as to minimize the
synchronization delay, which is the delay from the time a
process invokes a mutual exclusion request to the time it
enters CS. The delay is measured in terms of message
transmission time. It is clear that the minimum synchroni-
zation delay is 2 if lock requests are multicast. However,
due to the asynchrony of the system, a process may hold a
lock while waiting for another process to release a lock. This
in turn may incur a deadlock.
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Maekawa’s algorithm handles deadlocks by requiring
low-priority processes to yield locks to high-priority
processes. Priorities are usually implemented by Lamport’s
logical timestamps [36]. The smaller the timestamp of a lock
request, the higher the priority of the request. Specifically, if
a node i receives a lock request by p after giving a lock to q
and p’s priority is higher than q’s priority, then i issues an
inquiry message to q. Process q then returns i’s lock (by
sending an UNLOCK message) if it cannot successfully lock
all members of the quorum it chooses. Node i then gives its
lock to p after receiving the lock from q. When p exits CS
and releases i’s lock, i returns the lock to q (presumably no
other process with priority higher than q is also waiting for
i’s lock). So, Maekawa’s algorithm needs 3c to 6c messages
per entry to CS, where c is the (maximum) size of a quorum.

Maekawa’s algorithm has been well-studied in [37], [43],
[12], [13], [9]. It is easy to see that the algorithm can be
directly adapted to group mutual exclusion as follows: Let
C ¼ ðC1; . . . , CmÞ be an m-group quorum system over P . A
process p 2 P that wishes to enter CS as a member of group
g chooses a quorum from the cartel Cg, and enters CS only
when it has locked all members of the quorum. By the
mutual exclusion property of C and by the conflict
resolution scheme used in the algorithm, mutual exclusion
and lockout freedom are easily guaranteed.

4.2 A Trade Off between Concurrency and Message
Complexity

In Maekawa’s algorithm, since a node can be locked by only
one process at a time, the maximum number of processes of
a group that can be in CS simultaneously is limited to the
degree of the cartel associated with the group. So, no
concurrency is offered using group quorum systems T mðCÞ
derived from ordinary quorum systems C (because T mðCÞ
has degree one).

For group quorum systems with degree greater than one,
they may still not be able to offer a satisfactory degree of
concurrency. This is because the size of a group can be
greater than

ffiffiffiffiffiffiffi
jP j

p
. However, as discussed in Section 3, no

m-group quorum system over P can have degree more thanffiffiffiffiffiffiffi
jP j

p
, unless m ¼ 1.

To overcome this, we modify Maekawa’s algorithm to
allow a node to be locked by more than one process. So,
even if quora in the same cartel may intersect, two or more
processes may still enter CS simultaneously. The new rule
for a node i to determine whether to grant p’s lock request is
as follows:

Node i grants p’s request so long as there is no conflict—i.e.,
no other process of a different group has also requested i’s
lock. Otherwise, conflicts are resolved as follows: Group g
yields i’s locks to group h if there is a process in group h that
has priority higher than all processes of group g that have
requested i’s locks.

Because of the conflict resolution scheme, after a node i is
locked by l processes, i may have to retrieve all its locks if it
receives a higher priority request from a different group.
Retrieving a lock from a process results in three messages:
an inquiry message, an unlock message, and eventually the
return of the lock to the process. So, 3l messages may be
generated to resolve a conflict. On the other hand, l also
relates to the number of processes that may be in CS

simultaneously. So, in our algorithm we shall limit the
number of locks a node may give away at a time, and use it
as a parameter to control the message complexity while
allowing maximum concurrency. Later in Section 4.2.1, we
discuss how to set this parameter for a given quorum
system.

For ease of understanding, the detailed code of the
algorithm is presented as two CSP-like repetitive com-
mands consisting of guarded commands [24]: Fig. 5
describes the behavior of a process that acts as a group
member, and Fig. 6 describes the behavior of a node that
acts as a quorum member. If one wishes, the two repetitive
commands can be combined into a single one. We refer to
the algorithm as Maekawa M.

A repetitive command in CSP is of the form

� ½gc1utgc2 ut . . .utgck�:

Each gci is called a guarded command, which is of the form

b; receive msg ÿ! S;

where b is a Boolean condition called the Boolean guard, and
“receive msg” is called the message guard. Both guards are
optional. A guarded command can be executed only if it is
enabled, i.e., its Boolean guard evaluates to true and the
specified message in the message guard has arrived. The
execution receives the message and then the command S

(which may consist of a sequence of statements) is executed
atomically. If there is more than one enabled command,
then one of them is chosen for execution, and the choice is
nondeterministic. We do, however, require that a guarded
command that is continuously enabled be executed even-
tually.

In the algorithm, priorities are represented by pairs hp; ti,
where p is a process/node id and t is a timestamp. Priorities
are compared as follows:

hp; t1i > hq; t2i iff t1 > t2 or t1 ¼ t2 ^ p > q:

The larger the value, the lower the priority.
Furthermore, we assume that the communication chan-

nel between each pair of processes is FIFO. The FIFO
assumption simplifies the design of the algorithm; other-
wise, care must be taken to deal with out-of-order message
transmission.

4.2.1 Analysis of Maekawa M

In this section we prove the correctness of Maekawa M and
analyze its complexity. Invariant, unless, and leads-to

assertions [11] are used in reasoning about the algorithm.
We use p:v to represent p’s local variable v. Also,
p:requestsðqÞ denotes q’s request in p:requests (if it exists);
p:requestsðq; priorityÞ denotes the priority of the request;
and p:requestsðq; groupÞ denotes the group id specified in
the request. When reading the proof, keep in mind that each
guarded command in the algorithm is executed as an
atomic unit. This greatly simplifies the reasoning. The
reasoning uses the following predicates:

. in CSðpÞ ¼4 p:state ¼ CS

. requestðp; iÞ ¼4 9 t; g : ðp; t; gÞ 2 i:requests
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The following assertions can be easily proven from the

algorithm, and so we omit the details. Note that unless stated

otherwise, variables p; q are universally quantified over

processes, and i; j are universally quantified over nodes.

(I1) invariant

in CSðpÞ ) p:Q 2 cartelðp:groupÞ ^ 8 i 2 p:Q :

i 2 p:locked nodes:

(I2) invariant

i 2 p:locked nodes ^ i 2 q:locked nodes)
p:group ¼ q:group:

(I3) invariant requestðp; iÞ ) i:lock ps 6¼ ;.
(I4) invariant requestðp; iÞ ^ p 62 i:lock ps)

ÿ
i:lock group ¼ i:requestsðp; groupÞ ^ ji:lock psj ¼
max½i:lock group�
^ 8 q 2 i:lock ps : i:requestsðq; priorityÞ <
i:requestsðp; priorityÞ

�
_
ÿ
i:lock group ¼ i:requestsðp; groupÞ ^ ji:lock psj ¼
max½i:lock group�

^ 9 q 2 i:lock ps : i:requestsðq; priorityÞ >
i:requestsðp; priorityÞ ^ q 2 i:inquired ps

�
_
ÿ
i:lock group 6¼ i:requestsðp; groupÞ^
9 q 2 P : requestðq; iÞ ^ i:requestsðq; priorityÞ <
i:requestsðp; priorityÞ

�
_
ÿ
8 q 2 i:lock ps : q 2 i:inquired ps

�
:
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Theorem 3. Maekawa M guarantees mutual exclusion.

Proof. If two processes p and q from different groups are
both in CS, then by the mutual exclusion property of
group quorum systems, the quora they choose must
involve a common node, say i. By (I1), both p and q must
lock i, and by (I2), p and q must belong to the same
group; contradiction. tu
The following lemmas are needed for proving lockout

freedom.

Lemma 3.

requestðp; iÞ ^ 8 q 2 P ÿ fpg : requestðq; iÞ )
i:requestsðp; priorityÞ < i:requestsðq; priorityÞ

leads-to

ðp 2 i:lock ps ^ p 62 i:inquired psÞ _
ð9 r 2 P : requestðr; iÞ ^ i:requestsðr; priorityÞ <
i:requestsðp; priorityÞÞ:

Proof. Suppose p has requested a lock from node i. Suppose
further that p’s request has priority higher than all
requests to i, and remains to be the highest priority
among all the requests that may arrive at i (or, otherwise,
the lemma is vacuously proven). By (I3) and (I4), either
1) i will grant p a lock, 2) p:group ¼ i:lock group and i has
inquired one process in i:lock ps, or 3) i has inquired all
the processes in i:lock ps. In Case 2), i will eventually
retrieve a lock and then give it to p (see guarded
command F of Maekawa M). In Case 3), i will eventually
retrieve all its locks and then give it to p (and the
processes of the same group that have requested lock of
i). So, in any of the three cases, i eventually gives p a lock.
Certainly, when i gives p the lock, it will not inquire p to
return the lock at the same time. The lemma therefore
follows. tu

Lemma 4. p 62 i:inquired ps unless

9 q 2 P : requestðq; iÞ ^ i:requestsðq; priorityÞ <
i:requestsðp; priorityÞ:

Proof. This follows directly from the fact that i will not
inquire p to retrieve its lock unless a higher priority
process is wishing to acquire i’s lock. tu

Theorem 4. Maekawa M guarantees lockout freedom.

Proof. By Lemmas 3 and 4, when a process wishes to enter CS
and chooses a quorum to acquire, if its request has priority
higher than all existing requests, then it will eventually
acquire the quorum and enter CS. Priorities are imple-
mented by logical timestamps that are nondecreasing, and
a process increases its logical clock each time it initiates a
request for CS. So, after p multicasts a request
REQUESTðhp; sni; gÞ to the members of a quorum, the
number of requests with priorities higher than hp; sni that
could occur in the system is bounded.3 Because a process
spends only finite time in CS, the requests with priorities

higher than hp; sni will eventually cease to exist. So, p
eventually acquires its quorum and enters CS. tu
For message complexity of Maekawa M, recall that after a

node i has given locks to l processes, a new lock request
may cause i to withdraw all its locks. Withdrawing a lock
from a process results in three messages: an inquiry
message, an unlock message, and eventually the return of
the lock to the process. So, in the worst case, a lock request
by p to i may generate 3l messages, in addition to i’s
LOCKED message to p and p’s UNLOCK message to i. So,
the message complexity of Maekawa M is as follows:

Theorem 5. Let c be the maximum quorum size in the group
quorum system associated with Maekawa M, and g be the
group such that 8 1 � h � m : max½g� � max½h�. Then, in
Maekawa M the worst case number of messages a process may
generate in order to enter CS is 3cþ 3c �max½g�.

Theorem 6. In Maekawa M, the minimum synchronization
delay for a process to enter CS is 2 message transmission time.

Proof. This is because lock requests are multicast. So, in the
best case, two message transmission time (one for a lock
request and the other for the grant of the request) is
enough for a process to enter CS. tu
To facilitate a maximum concurrency while minimizing

message complexity, for each group g with cartel C, we can
partition g into degðCÞ subgroups, and assign degðCÞ
pairwise disjoint quora in C to them, one quorum per
subgroup. In a regular use of the quorum system (where
failures do not occur), each process selects the quorum
assigned to its subgroup when the process wishes to enter
CS. In this case, each subgroup consists of s=degðCÞ
members, where s is the size of g. So each node needs only
to give away at most s=degðCÞ locks at a time, and the
algorithm still allows all s members of the group to be in CS
simultaneously. So, an entry to CS requires at most
3cþ 3c � s=degðCÞ.

For example, suppose the surficial quorum system
FðP;mÞ presented in Section 3 is used in Maekawa M,
and suppose each group size s equals to n, i.e., every
process may potentially enter CS as a member of any group.
Then, the message complexity is

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ 1Þ

m

r
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ 1Þ

m

r
� nffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q ¼ Oðn �mÞ: ð1Þ

In contrast, if we do not bound the number of locks a
node may give away at a time, then a node may give away
nÿ 1 locks before it encounters a conflict. So, the message
complexity becomes

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ 1Þ

m

r
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ 1Þ

m

r
� n ¼ Oð

ffiffiffi
n
p
� nÞ: ð2Þ

Note that in the construction of FðP;mÞ, m is at most
Oð ffiffiffinp Þ. So, (1) is Oðn �minfm; ffiffiffi

n
p gÞ. For applications in

which m <<
ffiffiffi
n
p

(e.g., m is some constant that is indepen-
dent of n), (1) shows some advantage in bounding the
number of locks a node may give away at a time. Bounding
the number of locks is also useful in applications in which
the number of processes that can be concurrently in CS
should be restricted, (e.g., to guarantee quality of service).
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4.3 A Trade Off between Concurrency and
Synchronization Delay

If message complexity needs to be bounded in OðcÞ,
deadlocks must be resolved in a different way. A well-

known technique in resource allocation is to let each process

lock quorum members in some fixed order [23], say, with

increasing node IDs. So, if a process p is waiting for

locking i, then every lock p holds must be from some j such

that j < i. Moreover, every process q that currently locks i

has either locked all members of its quorum, or is waiting

for locking some k such that k > i. So, deadlocks are not
possible because there is no circular waiting.

Note that the above deadlock free argument does not
depend on how many locks a node may give out at a time.
That is, a node can still be locked by multiple processes. The
number of messages required per entry to CS is 3c, and the
minimum synchronization delay is 2c. The message com-
plexity and the minimum synchronization delay can be
reduced further to 2cþ 1 and cþ 1, respectively, by letting
quorum members circulate request messages. The complete
code of the algorithm is given in Figs. 7 and 8. We refer to
the algorithm as Maekawa S. Note that auxiliary variables in

JOUNG: QUORUM-BASED ALGORITHMS FOR GROUP MUTUAL EXCLUSION 471

Fig. 6. Algorithm Maekawa M executed by node i.



the code are used only to assist the analysis (see
Section 4.3.1).

In the algorithm, a node i may receive a lock request by p
before it receives p’s unlock message for p’s previous
request (lines D.10-11), regardless of whether communica-
tion channels are FIFO or not. This is because request
messages hop through quorum members. So, when p issues
an unlock message msg1 to i and then issues a new request
msg2, msg2 may arrive at i (indirectly through members of a
different quorum) before msg1 does. To simplify the
algorithm, i defers the process of msg2 (which is called
“early request” in the algorithm) until it has received msg1

(lines E.17-19).
Like Maekawa M, requests are not processed strictly in

FCFS order. Instead, when a node i receives a lock request
from a process p of group g, if i has no outstanding lock,
then i grants p’s request and chooses p as a reference (line
D.5). A reference process is used such that subsequent lock
requests from the same group are also granted until the
reference process exits CS and unlocks the node. When a
reference process unlocks i, if no other process of a different
group is waiting for i’s lock, then a new reference is chosen
from those processes that currently lock i (lines E.4-7).
Otherwise, the reference is reset to ?, meaning that the
“door” to CS (guarded by node i) for the group is closed to
yield the opportunity to another group.

An obvious reason for choosing this “entry policy” is to
increase resource utilization. Clearly, by the mutual exclu-
sion property, while some reference process p is in CS, no
other group of processes can be in CS. So, maximal resource
utilization can be achieved by allowing more processes of
the same group to share CS with p, regardless of whether
some other group of processes are waiting for CS or not.
Furthermore, because while p is in CS, some fast process
may enter and exit CS any number of times, the algorithm
facilitates an unbounded degree of concurrency [28]. Note
that lockout freedom can still be guaranteed because a

reference process will eventually exit CS and close the
“door” to CS for its group.

Another reason for choosing this “entry policy” is to
minimize the number of “context switches,” and to reduce
the overall average delay in waiting for CS. (A context switch
occurs when the next entry to CS is by a process of a
different group [28].) As analyzed in [30], in group mutual
exclusion requests to CS cannot be processed in a strictly
FCFS order, or else the system could degenerate to the case
in which nearly only one process can be in CS at a time
when m is large. This would then result in a large number
of context switches and long waiting time. Several entry
policies have been studied in [30]. In general, a good entry
policy must allow late processes to “jump over” processes
that have been waiting for CS so that the late processes can
share CS concurrently with other processes of the same
group that are already in CS. So, in both Maekawa M and
Maekawa S, we allow some late requests to overtake
existing requests to acquire a node’s lock.

4.3.1 Analysis of Maekawa S

In this section, we prove the correctness of Maekawa S
and analyze its complexity. Like for Maekawa M, we first
establish some assertions for Maekawa S. The predicates
in CSðpÞ and requestðp; iÞ are defined as in Section 4.2.1.
Also, i:requestsðp; snÞ denotes the sequence number of p’s
lock request in i:requests. In the algorithm, p:sn is an
auxiliary variable used to number p’s lock requests, and
p:snÿ 1 denotes the number of entries to CS p has made.
So, p:sn � i:requestsðp; snÞ all the time. When p:sn >
i:requestsðp; snÞ, p’s request at i must be obsolete; that is,
p has returned i’s lock (after exiting CS), but the return
message has not yet arrived at i.

(I5) invariant

in CSðpÞ ) p:Q 2 cartelðp:groupÞ ^ 8 i 2 p:Q :

i 2 p:locked nodes:
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(I6) invariant

i 2 p:locked nodes ^ i 2 q:locked nodes) p:group ¼ q:group:

(I7) invariant requestðp; iÞ ) i:lock ps 6¼ ;.
(I8) invariant p 2 i:lock ps) requestðp; iÞ.

The following invariant follows from the fact that a

process acquires nodes’ locks in the order of increasing

node IDs.

(I9) invariant

p 2 i:lock ps ^ i:requestsðp; snÞ ¼ p:sn) 8 j 2 p:Q :

j > i _ p 2 j:lock ps:

Theorem 7. Maekawa S guarantees mutual exclusion.

Proof. Proof similar to Theorem 1. tu
Lemma 5. requestðp; iÞ leads-to p 2 i:lock ps.
Proof. Without loss of generality, assume that P =

f1; 2; . . . ; ng. We prove the lemma by induction on i in

decreasing order.

For the induction basis (i.e, i ¼ n), assume that
requestðp; nÞ holds, but p 62 n:lock ps. By (I7), n must
have given its lock to some process q. By (I8) and (I9),
either q has already entered CS and has sent an
UNLOCK message to return i’s lock, or all nodes in
q:Q has granted q’s lock requests. In the former case, n
will eventually receive the UNLOCK message and delete
q from n:lock ps. In the latter case, q will eventually make
an entry to CS and return n’s lock. So, if p 62 n:lock ps,
then every process in n:lock ps will eventually return n’s
lock and be removed from n:lock ps. Recall that a process
q whose request arrives at n later than p’s request can
overtake p to acquire n’s lock only if there is a granted
request in n:requests such that the request arrives at n
earlier than p’s request does. So, eventually no request
can overtake p’s request. So, eventually n will grant p’s
request.

For the induction step, assume that requestðp; iÞ holds,
but p 62 i:lock ps for some i < n. Again, by (I7), i must
have given its lock to some process q. So, either 1) all
nodes in q:Q has granted q their locks, or 2) some node
j 2 q:Q has not yet granted q’s lock request. In the latter
case, by (I8) and (I9), j > i. By the induction hypothesis, j
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eventually grants q’s request. So, all nodes in q:Q will

eventually grant q’s lock request. So in either case, q

eventually acquires the locks of q:Q and enters CS. After

exiting CS, q will return i’s lock. So while p 62 i:lock ps,
every process in i:lock ps will eventually return i’s lock

and be removed from i:lock ps. Although a process after

returning i’s lock may issue a new request and overtake

p to acquire i’s lock, by an argument similar to the

induction basis, we can show that eventually no process
can overtake p to acquire i’s lock. The lemma is therefore
established. tu

Theorem 8. Maekawa S guarantees lockout freedom.

Proof. When a process p wishes to enter CS, it issues a lock
request to firstðp:QÞ. When the request arrives, if
firstðp:QÞ still keeps p’s old request, then the new
request will be placed in early requests until p’s
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UNLOCK message to the old request has arrived at
firstðp:QÞ. Because message transmission time is finite,
p’s (new) request eventually leads to requestðp; iÞ. Then,
by Lemma 5, i eventually grants p’s request and
forwards the request to the next node in p:Q. Similarly,
the next node eventually grants p’s request and forwards
it to the next node, and so on until every node in p:Q has
granted p’s request. Then, p can enter CS, thereby
guaranteeing lockout freedom. tu
The following complexity follows directly from the

algorithm.

Theorem 9. In Maekawa S, it takes 2cþ 1 messages for a
process to enter CS, where c is the size of the quorum the
process chooses. Moreover, the minimum synchronization
delay for the process to enter CS is cþ 1 message transmission
time.

4.4 Remarks: Group Quorum Systems versus
Ordinary Quorum Systems

One may have observed that ordinary quorum systems can
also be used in Maekawa M and Maekawa S to solve group
mutual exclusion. A natural question then is whether group
quorum systems are beneficial over ordinary quorum
systems. To address this, let k be the group size (which is
the number of members that may simultaneously access the
CS). There are two cases to consider:

1. k is small enough (i.e., k �
ffiffiffi
n
p

) that k-degree group
quorum systems exist.

2. k is larger than
ffiffiffi
n
p

and, hence, multiple locks must
be accommodated.

When Maekawa M is used, in Case 1, the worst case
message complexity of an ordinary quorum system Q is
OðcðQÞ � kÞ, where cðQÞ is the largest size of a quorum in Q.
A k-degree group quorum system Q0 has message complex-
ity OðcðQ0ÞÞ, but we also have the constraint cðQ0Þ � k.

In Case 2, the worst case message complexity of a regular
quorum system Q is again OðcðQÞ � kÞ. For example, the
FPP quorum system in [37] (which also supports a truly
distributed solution) has Oð ffiffiffinp � kÞ complexity. On the other
hand, a

ffiffiffi
n
p

-degree group quorum system Q0 has message
complexity OðcðQ0Þ � k= ffiffiffi

n
p Þ. For example, the affine plane

group quorum system in [29] has OðkÞ complexity.
If applications can tolerate long synchronization delay,

then Maekawa S can be used. In this case, there is not much
difference in choosing between group quorum systems and
ordinary quorum systems. However, ordinary quorum
systems have been extensively studied in the literature,
and they have been optimized in many possible ways. For
example, the majority quorum systems have the highest
availability [40] when failure probability p < 1=2, while the
triangle lattices presented in [5] have optimal load and
optimal cost of failures. So, ordinary quorum systems offer
a wide variety of choices in the design. Group quorum
systems, on the other hand, are new and so many of their
properties remain to be explored. Note also that group
quorum systems with degree higher than 1, in general,
come with a cost in availability [40].

5 CONCLUSIONS AND FUTURE WORK

We have presented a quorum system, the surficial quorum
system, for group mutual exclusion. The surficial quorum
system generalizes existing quorum systems for mutual

exclusion in that quora for processes of the same group
need not intersect with one another. This generalization
allows processes to acquire quora simultaneously, and so
allows them to enter critical section concurrently. The
surficial quorum system has a very simple geometrical
structure, based on which a truly distributed algorithm for
group mutual exclusion can be obtained, and based on
which processes’ loads can be minimized.

The surficial quorum system has degree
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
, where n

is the total number of processes and m is the total number of

groups. So, when used with Maekawa’s algorithm, it allows a

maximum of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
processes to be in the critical section

simultaneously. The message complexity per entry to the

critical section isOð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðmÿ1Þ

m

q
Þ. Furthermore, it can tolerate up

to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðmÿ1Þ

q
ÿ 1 process failures. For comparison, the two

message-passing algorithms RA1 and RA2 presented in [30]

have message complexity 2n and 3n, respectively, and both

allow all group members to be in the critical section

simultaneously. However, they cannot tolerate any single

process failure. In terms of minimum synchronization delay,

all three algorithms have the same measure—2.
As we have noted earlier, the degree of group quorum

systems is theoretically bounded by
ffiffiffi
n
p

. So, Maekawa’s
algorithm must be generalized if group size is greater thanffiffiffi
n
p

and we wish to allow all group members to be in the
critical section simultaneously. Two generalizations
Maekawa M and Maekawa S were presented in the paper.
Both allow all group members to be in the critical section
simultaneously, regardless of the degree of the underlying
quorum systems. Maekawa M preserves Maekawa’s mini-
mum synchronization delay, but needs Oðc � s=dÞ messages
per entry to the critical section, where c is the quorum size, s
is the group size, and d is the degree of the underlying
group quorum system. The other algorithm Maekawa S
reduces the message complexity to 2cþ 1, but needs a
minimum synchronization delay of cþ 1.

There is a considerable literature on ordinary quorum
systems. Many structures have been explored, including
finite projective planes [37], weighted voting [21], [20], [2], grids
[14], [34], trees [1], wheels [38], walls [41], and planar graphs
[5]. The surficial quorum system can be viewed as the
counterpart of grids in the group mutual exclusion version,
while the affine planes proposed in [29] are the counterpart
of finite projective planes. For future work, it is interesting
to investigate how the other structures can be used for
group quorum systems.
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