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This is the first part of a two-part paper in which we discuss the implementabili§jraess notions
in distributed systems where asynchronous processes interact via synchronous constructs—usually
called multiparty interactions|In this part we present a criterion for fairness notions and show that
if a fairness notion violates the criterion, then no deterministic algorithm for scheduling multiparty
interactions can satisfy the fairness notion. Conversely, the implementation is possible if the criterion
is obeyed. Thus, the criterion is sufficient and necessary to guarantee the implementability of all
possible fairness notions. To our knowledge, this is the first such criterion to appear in the literature.
The main benefit of the proposed criterion is that it reduces reasoning about a complex and concrete
implementation model to reasoning about a simpler and abstract model for process interaction. To
illustrate this, we use the criterion to examine several important fairness notions, inciding
interaction fairnessstrong process fairnesweak process fairnesd-fairness andhyperfairnessAll,
except weak process fairness, fail to pass the criterion. Moreover, we also apply the criterion to analyze
the system structures rendering the impossibility phenomena. This analysis helps us separate, for each
fairness notion, the set of systems for which the fairness notion can be implemented from those for
which it cannot. © 2001 Academic Press

INTRODUCTION

Since Hoare introduced CSP [2Rjteractionsandnondeterminisniiave become two fundamenta
features in many high-level programming languages for distributed computing and algebraic
of concurrency, e.g., Ada [48], Occam [23], CCS [38], andalculus [39]. Interactions serve as
synchronization and communication mechanism: the participating processes of an interactior
synchronize before embarking on any data transmission. Nondeterminism allows a process to
from a set of potential interactions it has specified one interaction to execute.

Note that interactions in CSP and Ada can involve only two processes. However, more recent lar
developments (e.g., SCCS[37], CIRCAL [36], Script[19], Compact [15], Action Systems[7], SR [3,
LOTOS [11], Extended LOTOS [13], IP [17], and DisCo [24, 25]) have extended these biparty acti\
to a more general casmultiparty interactionsallowing an arbitrary number of processes to intera
More precisely, a multiparty interaction is a synchronous action involving a fixed set of patrtici
processes. An attempt to execute the action by a participant process delays the process until e
participants are ready to execute the action. After the execution each participant process contir
local computation. It is believed that multiparty interactions provide a higher level of abstraction
encourage modular programming and design [17, 18, 32]. For example, the natural unit of pr
interaction in the famous Dining Philosophers problem involves a philosopher and its two neighb
chopsticks; that is, a three-party interaction.

The implementation of multiparty interactions is concerned with synchronizing asynchronous
cesses to participate in interactions so that the following two requirements are satisfied:

(1) Synchronizationlf a process starts to execute an interaction, then all other participants o
interaction will also execute the interaction.

* A preliminary version of this paper appeared as Characterizing fairness implementability for multiparty intefactic
“Proceedings of the 23rd International Colloquium on Automata, Languages and Programming, Paderborn, Germany, Jul,
Lecture Notes in Computer Science, Vol. 1099, pp. 110-121, Springer, Berlin, 1996. This research was supported by the |
Science Council, Taipei, Taiwan, under Grants NSC 85-2213-E-002-059 and NSC 86-2213-E-002-053.
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FIG. 1. A system of four processes, p2, ps, andps, and three interactions y, andz.

(2) Mutual exclusionConflicting interactions are not executed simultaneously, where two inte
tionsconflictif they involve a common member process.

Because nondeterminism allows a process to choose from a set of potential interactions an a
interaction to execute, with an improper interaction scheduling, an implementation of multiparty |
actions may render an undesirable program behavior, usually because it violates some liveness p
So some fairness notion is typically imposed on the problem to exclude unwanted computatior
would otherwise be legal.

To illustrate, consider a system of four procesges,, ps, andp, and three interactions y, andz,
wherex involves the set of processgs:, p.}, Y involves{p:, ps}, andzinvolves{p,, ps} (see Fig. 1).
Assume that each procesgs, 1 < i < 4, transits between adle state where it is busy in its local
actions and aeadystate where it wishes to establish some interaction of which it is a member. Le

(P1P3yP2Pa2)”

denote a repeated scenario in whighand ps become ready and jointly executeand thenp, and py
become ready and executelhe computation then satisfisgong interaction fairneséSIF), meaning
that an interaction that is infinitely ofteenabled(that is, with its participants all ready) is execute
infinitely often. The computation

(PLP3P2YPaz)”

does not satisfy SIF becaugds enabled in every state immediately affgris ready but it is never
executed.

A fairness notion is saiémplementabldor a system if there is an implementation of multipar
interactions such that all computations of the system satisfy the fairness notion. We focus he
the implementability of fairness notions in distributed systems where asynchronous processes i
via multiparty interactions. In a companion paper [28] we compose several hierarchies of fa
notions in terms of their expressiveness, and for each of the hierarchies we delineate the line b
implementable and unimplementable fairness notions.

1 APPRAISING FAIRNESS NOTIONS

Since a fairness notion excludes from all possible computations some that would otherwise be
in general, any subset of computations could be considered as a semantic constraint for the
However, not many of them are useful, and so criteria have been proposed for determining their
priateness, including the following [4]:

Feasibility. Every partial computation can be extended to a valid'one.

Equivalence-robustnesgquivalent computations are either all valid, or all invalid. Computatic
are equivalentif they are identical up to the order of independent actions. Here we assume the
underlying semantics induceslapendencgelation on actions of the system, which is usually a part
order reflecting Lamport’s causality relation [34].

Feasibility is often demonstrated by an explicit scheduler, which proceeds in lock-step sync
with the system, and has complete knowledge of the global state of the system at all times. In ea

1 The notion of feasibility is also equivalent to Abadi and Lamparischine closurgl, 2].
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the scheduler determines for the system an action to execute and waits until the execution terr
before it moves on to the next step. Note that all actions, local and non-local (i.e., interactions
scheduled by the scheduler. A fairness notion can then be proved to be feasible by exhibiting
a scheduler so that every partial computation can be generated by the scheduler, and every ct
computation generated by the scheduler is valid.

Note that because in a distributed environment no process can have a complete knowledge
global state of the system at all times, an explicit scheduler does not directly correspond to
implementation. However, using a technique of “superimposition” [4, 12] one can convert a sche
into a real scheduling program executed in parallel with the main program (i.e., the one that the s
is executing). In each step the scheduler communicates with every process in the system to ob
global state information. The scheduler then determines the next action for the system, informs
process that is responsible for the execution of the selected action to execute the action, and the
for the execution to terminate before it proceeds to the next step. All other processes’ executions
main program are suspended until further notice by the scheduler. (This can be done, for exam
augmenting each action with a Boolean variable to enable/disable the action.)

For the sake of efficiency, however, most practical implementations for biparty and multipart
teractions (e.g., [9, 10, 14, 21, 26, 29, 33, 43, 45, 47]) do not use the aforementioned superimp
technique. Rather, they allow processes to execute local actions on their own. The scheduling take
only when some process is ready for interaction, and only interactions are scheduled. More impot
unlike the superimposition technique, the implementations do not depend on whether local actio
interactions terminate or not (that is, whether a process will eventually become ready for interac
Note that superimposition may result in a deadlock if the action the scheduling program is waitir
does not terminate while some other interaction is enabled for execution. As a result, most impler
tions for multiparty interactions make use of the assumption that processes decide autonomousl
they will be ready for interaction.

It turns out that if processes can decide autonomously when they will be ready for interaction
feasibility alone does not necessarily guarantee implementability. To illustrate, the notion of S
feasible [4], but its implementation has been proven impossible by any deterministic algorithm [26

On the other hand, feasibility is not a necessary condition for implementation either, regardle
whether local actions and interactions terminate or not. To see this, consider a system of two pmce
andp,, and two interactiong andy, both involvingp; and p,. Assume again that each process trans
between an idle state and a ready state, where in the ready state every process is ready fomdynth
Let C be a fairness notion that prohibigsfrom being executed. Clearl, can be implemented for the
system by always letting the two processes executieenever they are ready for interaction. Howeger,
is not feasible becaugm p.y (which represents that; andp, become ready and then jointly execyje
is a partial computation of the system, but it cannot be extended to a complete computation s
ing C.

For the equivalence-robustness criterion, it is observed that most equivalence-robust fairness |
are implementable. (See [4] for a reference of such fairness notions.) This holds even if the time v
process will be ready for interaction cannot be determined in advance. As we shall see in Sectior
observation is not coincidental because under a notion of “strong feasibility” equivalence-robus
suffices to guarantee implementability. Equivalence-robustness, however, is not necessary fol
implementable fairness notion. For example, consider the notiveak process fairne$gVPF), which
requires a process continually ready for an enabled interaction (not necessarily the same one, 1
to execute some interaction eventually. WPF is not equivalence-robust [4], but it can be implemer
a system consisting of only biparty interactions [26, 47]. (In fact, WPF is also possible for multig
interaction. See Section 5.3)

In this paper we propose a new criterion for appraising fairness notions. The criterion require
a fairness notion be realized by ahstract scheduling functiosuch that all computations producet
by this function are valid (with respect to the fairness notion), and all other computatidistin-
guishablefrom the produced computations are also valid. Intuitively, the abstract function capture
scheduling policy adopted by a concrete scheduling program, while the indistinguishableness r¢
expresses properties of computations that cannot be distinguished by any asynchronous dist
environment.
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Assume the following in the underlying model of computation:

Al. One process’s readiness for multiparty interaction can be known by another only through
munication, and the time it takes two processes to communicate is nonnegligible.

A2. A process decides autonomously when it will attempt an interaction, and at a time that c
be predicted in advance.

We show that if a fairness notion violates the criterion, then no deterministic algorithm for multig
interaction scheduling can satisfy the fairness notion. For fairness notions that satisfy the crit
we also present a general algorithm to implement them in an asynchronous system where pre
communicate exclusively by biparty message passing. Thus, the criterion is sufficient and neces
determine the implementability of any given fairness notion. To our knowledge, this is the first
criterion to appear in the literature.

The main benefit of the proposed criterion is that it reduces reasoning about a complex and cc
implementation model to reasoning about a simpler and abstract model for process interacti
illustrate this, we use the criterion to examine several important fairness notions, includisty&ig,
process fairnes€SPF) [4],U-fairness5], andhyperfairnes$6]. We also apply the criterion to analyze
the system structures rendering the impossibility phenomena. This analysis helps us separate,
given fairness notion, the set of systems for which the fairness notion can be implemented from
for which it cannot.

The rest of the paper is organized as follows. Section 2 presents an abstract model for proces
action and an implementation model for interaction scheduling. The relation between the two
is also described. Section 3 presents our criterion and shows that it is necessary and sufficient ti
mine the implementability of any given fairness notion. Section 4 exploits properties of implemen
fairness notions derived from the criterion. In Section 5 we use the criterion to examine several fa
notions that are commonly associated with multiparty interactions. Section 6 discusses relatec
and then concludes.

2 PRELIMINARIES

21. An Abstract Model for Process Interaction

An interaction systeris a triplelS = (P, I, M), whereP is a finite set of processéss a finite set of
interactions, an is a program. Each interactiorinvolves a fixed sel’, C P of participant processes
and can be executed by the participants (and only the participants) only if they are all ready f
interaction. A process is either in alie state or in aeadystate. Initially, all processes are idle. An idls
processp may autonomously become ready, where it is ready for g .sét of potential interactions
of which it is a member. After executing one interactiorpiaim, p returns to an idle state; see Fig. ~
Setp.aimis determined byM based on the history of interactiopshas executed. On some occasiol
we may consider programs allowing a process to be ready for all interactions of which it is a me
every time when the process is ready for interaction. WelSse (P, |, M") to denote an interaction
system associated with this type of programs.

A states of IS consists of the history of interactions the system has executed so far, and for
p € P, the state (i.e., idle or ready) pfand the set of potential interactiopsre ready to execute wher
pis in a ready state. We uss}{jis; to denote the history o, [], the state ofp in s, and E] .aim the set
of potential interactiong is ready to execute. We assume trglpkim = @ if [s], = idle. Moreover,

ready for interaction

/f\
\’/

interaction

FIG. 2. The state transition diagram of a process.
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[S]histp denotes the sequence of interactionssiad; that involve p, i.e., the history of interactions
executed byp. An interactiorx is enabledn siff every proces® € Py is ready forx, i.e., [s] , = ready
andx e [s]pam. LetS be the set of all possible statesISf. State transitions are written as> s,
wheres, s’ € S, anda is the action whose execution results in the transition. State transitions are c
following forms:

Al . .
Ready: s ' iff [ S]nist = [S]hist, [S]p =idle, [$]p = ready M(p, [Slnistp) = [$]pam = |, and
vq e P— {p}, [S]q = [S,]q and b]q.aim = [S/]q.aim-
That is, the actiorp.| transits procesg from idle to a state ready for the sebf interactions.

Interaction: s > ¢ iff [SThist = [Slhist - X, VP € Py, [s]p = readyandx € [s]paim and g, =
idle and B] p.aim = V), anqu €eP— Px’ [S]q = [S/]q and E]q.aim = [S/]q.aim-

That is, the execution of interactiontransits all participants of from state ready to idle.
A run zr is a sequence of the form

a ap
=5 =S...,

Whereso is the initial state (that isSf]nist = € andVp € P, [so]p = idle and [so] p.aim = ), and each
S RES S.1 is a state transition of the system. (In the papetenotes the empty sequence such tf
for all finite sequencer, me = exr = x.) In particular,w is completeif it is infinite or it ends up in
a state in which all processes are ready but no interaction is enabled; othenigggartial. We use
run*(IS) to denote the set of all finite runs &9, and run [S) denotes the set of complete runs. Thu
run®(IS) N run (IS) is the set of finite complete runs.

Since each rusg el St el S, ... is uniquely determined by the sequence of actions executed in
run, we often write the run ama; . ... Conversely, we call a sequence of actieqa, ... a run if it
represents a legal run @F. It should be noted that when using actions to represent a run, action:
distinguished by their occurrences. For example, thepwé inrun p.I x p.l X . .. represent different
instances of actions. If necessary, we can use superscripts to distinguish them.

Some comments on our model are given in order. First, by stipulatingpthraturns to an idle
state after interaction, we have also assumaninstantaneous readineas in [4], which means that a
process cannot be immediately ready for interaction after executing some interaction. Thusaninte
cannot be “continuously” enabled throughout an interval if some process involved in the interactic
executed an interaction in the interval.

Second, many languages that use interactions in guards (e.g., CSP) allow a choice betwee
actions and interactions. That is, a proces®ady for interaction may in effect performs some loc
action and then returns to an idle state without establishing any interaction with other processe
can model this non-uniform choice by dedicating some local interactions involvingmtdyp. By
including these local interactions maim, p can have a choice between local actions and interacti
in a ready state.

Third, in our model process termination can be expressed by the ready pdficimat is, p is no
longer willing to engage in any interaction.

Finally, we do not distinguish finite runs which are complete because every process terminate:
those which are complete because the system is deadlocked—some processes are ready to e
interaction but no interaction is enabled. Also, unlike finite complete runs, the definition of inf
runs does not assume “bounded transition time.” So in an infinite run a process may stay idle fc
and similarly a set of processes may be ready for an interaction indefinitely. We leave the decision w
such scenarios are allowed or not to be determined explicitly by the underlying fairness notion.
systems, however, do impose a very weak fairness notion to exclude the above scenarios. Altern
such a fairness notion can be incorporated directly into the definition of complete runs so th:
bounded transition time assumption is made for both finite and infinite complete runs; for exa
see [7]. On the other hand, the bounded transition time can be removed from finite complete rt
introducing a null action. into the abstract model so that for every state X s (called a stuttering
step in [2]).
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Derinimion 2.1, A fairness notiorC is a function which, given an interaction systdf returns a
set of complete run€(IS) C run(lS). We say thatr is C-valid (C-fair, or simplyvalid or fair when
the context is clear) ifr € C(IS).

We assume that actions involving a common participant process in a run are totally order
the ordering the process executes them (which in turn is induced by the semantics of the und
program). These total orderings then induce a typical partial order dependency relation on the act
arun such thaa < b iff some process executaseforeb, or there exists such thab < candc < b;
see [34]. Two rung andp areequivalentdenoted byr = p, iff for every proces9, the sequence of
actions involvingp in rr is the same as that ip. As can be seen, it = p, then one of them can be
obtained from the other by transpositions of independent actions.

For example, consider the following run of the interaction system shown in Fig. 1, and assum
the system is associated with a progrisit

7w = (PLP3yP2P42)”.

For notational simplicity we overload the notatignto abbreviate the actiop;.l, wherel = {x €

Il p € Py}, i.e., the action that procegs readies all interactions of which it is a member. Th
abbreviation will be adopted throughout the paper. Observe that every instanitemofs independent
of the following actionp,. Sox is equivalent to the run

(P1P3P2yPaz)”.

Similarly, 7 is also equivalent to the run

(P2Pap1P3y2)”.

22. An Implementation Model for Interaction Scheduling

We now consider the implementation of multiparty interactions. By this we mean augmenting
process in an interaction system with variables and actions, and possibly introducing auxiliary pro
so that each ready process knows when and which interaction to execute.

Formally, ascheduling progranfior an interaction systeft = (P, I, M) is a sextuple

SPis = (P, I, M, Aux, {Vp : pe PUAux}, {Ap: p e PUAux}),

with three extra componentsux, {V, : p € PUAux}, and{A, : p € PUAux}. Aux is a set of
processes (possibly empty) that are added to assist the coordination of interactions. To dishngui
from P, we refer to the processes hasprimary and those inPAux asauxiliary. For eachp € PU
Aux, Vy, is the set of variables local tp, andA,, is the set of actions executed Ipy We assume that
processes communicate by reliable, FIFO, biparty asynchronous message passing, although ou
in this paper hold as well if communication is by accessing shared variables.

Like the abstract model presented in the previous section, we assume that for each primary y
p, Vp contains a variablp.statewhich designates whethgris idle or ready, a variable.aim which
designates the set of potential interactigris ready to execute, and a variafgdnistwhich designates
the history of interactions executed pyMoreover)\, contains a variabl@.commitwhich designates
the interactionp has committed to execution. Variabfecommitis set only once in each ready stat
and is undefined ip is idle. We assume thagtcan commit toc only when it is ready fox. Moreover, if
some process has committedktdhen all other participants afwill eventually commit tax, and these
commitments should not depend on the state of any other primary process not invotvétitien all
participants have committed $g an instance ox is executed and then the participants return to th
idle states. Alternativelyp.commit= x may be viewed as that procepsas starteck.

For every primary procesy, actions inA, can be divided into three types: (1) local actior
and/or communications, (2) transitions from idle to ready, and (3) interactions. Local actions a
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communications are of the form
b, (Vp); messagaeceptions— f,(V, — {p.state p.aim, p.hist}), messagesendings (1)

whereb, (V;) is a Boolean condition on the variablesvy, f, (V) represents the effect of the executio
to the variables irV, messageaeceptionsexpress the messages to be received,ra@ssagesendings
describe the messages to be sent when the action is executed. All four parts are optional. An act
be executed only ifitisnabledi.e.,b, (V) evaluates to true and the messages specified in the recey
list have arrived. Note that actions of this form respect Assumption Al (see Section 1) in the sen:
a process obtains state information of another only through message passing, and a message’s
and reception must occur in two separate actions; i.e., the communication time is nonnegligible
further that this type of actions are not allowed to ajtestate p.aim, andp.hist
Transitions from idle to ready are of the form

p.state= idle — p.state:= ready,

p.aim:= M(p, p.his?),
_ _ )
f-(Vp — {p.state p.aim, p.hist}),

messagesendings

This complies with Assumption A2 in that a process may enter a ready state any time whenitisidle
form (1), an action of this form may update local variables and send out messages to other prox
possibly to inform them of the process’s readiness.

To represent interactions (and state transitions from ready to idle), foneachof which p is a
participant, A, contains an action of the form

p.commit= x — p.state:= idle,
p.aim:= @,

p.hist:= p.hist- x,

. 3)
p.commit:= 1,
fo(Vp — {p.state p.aim, p.hist, p.commit),

messagesendings

Recall thatp.commit= x only whenp is ready forx (i.e.,x € p.aim), and that wherp.commit= x,
every other participant af will eventually set theitcommitto x. So when some process has set |
committo x, all participants ok will eventually execute their actions of this form to establish an int
action. To simplify the implementation model, we assume that the actions are executed simultan
by the participants ot.? For otherwise, extra variables are needed to prevent a partigipaint from
“out-running” other participants in executing instancescpf.e., to preventp from committing tox
(and then executing) several times before the other participantx dfave committed to (a particular
instance of)x.

Since auxiliary processes are added only to assist coordination, they have only actions of for
A typical centralized scheduling algorithm, for example, might employ an auxiliary process to cc
state information from primary processes, and to direct them to commit to an interaction it has ct

As usual, a state of SIPs consists of the values of all variables of the program and the set of mess
that have been sent but have not yet been receivednputation1 of SPjs is a sequence of the form

o1 (o)
op —> 01 —> 02...,

2 \We remark here that while simultaneous execution of the actions also implies that the participdimtsbi synchronously,
exit synchronization is not necessary for multiparty interaction; see [17, 32].
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whereaqy is an initial state, and eaeh_; = o; represents a state transition of the program. Like ru
IT is uniquely determined by the action sequesg®; . . . executed il (assuming some fixed initial
state). So we often writél asoio7.... A computation iscompletef it is infinite or it ends up in a
state in which no action is enabled for execution; otherwise, the computation is palgal. Since
an idle process can autonomously become ready, in the final state of a finite complete computa
primary processes must be ready. In particular, if there is an enabled interaction, then the comp
is deadlockedUnless stated otherwise, we shall consider only scheduling programs that produ
deadlocked computation.

Like the dependency relation we assumed for our abstract model, we also assume a depe
relation “<” respecting Lamport’s “happened-before” relation [34] over the set of actiofiBgf Two
computationdT andW areequivalentdenoted byl = W, iff they differ up to the order of independen
actions.

It should be noted that under ting@inimal progress assumptiqdl]—any process with an enablec
action will eventually execute some action—actions of form (2) do not fully respect Assumption
This is because a scheduling program may simply wait until all processes become ready, and ther
on an interaction for execution. To avoid this, we consider amigelayedcheduling programs where
the establishment of enabled interactions does not depend on idle processes to become ready.

Derinimion 2.2, A scheduling prograiPis is undelayedif for every partial computatioml, if there
is an interaction enabled in (the last stateldf)thenIl has a continuation such that some interactit
will be executed and no process makes a ready transition in the interim.

To abstract runs from computations, we introduce the following definitionsliLeto;o5 . .
be a computation dflP;s. Suppose that, denotes the execution of some instance.ofhen, prlor to
on all participants ox must have committed to (i.e., with their p.commitvariables set tx). Let ;
be the first commitment. Then we say that the execution; adstablisheshe instance ok. The run
corresponding t@l, denoted by[I]s, is [o1]is[o2]is - - - [on]is - - . , Where pi]is is defined as follows:

1. [oi]is = p.-aimif the execution ob; results inp’s transition into a state ready for the sén of
interactions,

2. [oi]is = x if the execution ob; establishes an instancexfand
3. [oi]is = € otherwise.

We say that computatioH is C-valid (or simplyvalid or fair when the context is clear) if ruil]s is
C-valid. The implementability of fairness notions is defined as follows.

Derinmion 2.3, A fairness notiof® isimplementabléor IS iff there exists an undelayed schedulin
programSPs such that for every complete computatidrof SPyg, [I1];s € C(IS). C is implementable
iff Cis implementable for everis.

Note that the synchronization and mutual exclusion requirements for multiparty interactions
been assumed by a scheduling program via the useramitvariables in the program.

3 THE CRITERION

The fairness implementability criterion depends on a notion of strong feasibility and an indisting
ableness relation between runs. We begin with strong feasibility.

Derinimion 3.1, Afairness notioff is strongly feasibldor IS = (P, I, M) iff there exists a nonempty
subse$ of C(IS) such that for every rup € S and every finite prefix of p, the following two conditions
are satisfied:

1. Letsbe the last state of. If pisidle ins, thens - p.M(p, [S]hist p) can be extended to a run§n

2. If some interaction is enabledsnthen there exists an interactimrsuch thatr - x can be extended
to aruninS.



CHARACTERIZATION OF IMPLEMENTABILITY 9

Intuitively, condition 1 together with the fat # ¢ means that an idle process may become ree
at any time it wishes. Condition 2 means that when some interaction is enabled, there shoul
continuation allowing some interaction to be executed regardless of whether idle processes will b
ready.

Note that we do not requii® = C(IS). This is because for a scheduling progréifiis to implement
C, it suffices that every computation 8Py is valid; there is no need f@Ps to generate all possible
valid computations. For example, if bothx andy are enabled at the end of a partial manand the
fairness notiorC permits either one to be continued, then an implementatidhazin decide to let one
of the two interactions, say, as the only continuation. Moreover, &t be a fairness notion such tha
C'(IS) contains only runsIfl];s, whereIl is a computation o§Pjs. ThenC’ can also be implemented
by SPPs. Observe thatr - x andx - y are partial runs oIS (whererx is the above partial computatior
which ends up with a state whexeandy are both enabled) but - y does not have a continuation to :
C'-valid run. Therefore, from the implementation’s concern we do not need every partial irbef
extended to a valid one. This is the main difference between our feasibility and the notion of feas
proposed by Apet al.[4].

From a more operational standpoint, strong feasibility can be exhibited by an explicit schedu
schedule the behavior of the processes. Unlike those used in [4, 40], however, the scheduler here
only determine for ready processes which interactions to execute; the transitions from idle to rea
given independently by an adversary to capture the processes’ autonomy in making these tran
Thus, a run is the result of a 2-player game between the explicit scheduler and a given adversa
following definition is used to realize this.

Derinimion 3.2. 1. Anadversary Afor IS is a function which given a run e run*(IS) returns
either an empty sequeneeor a sequence of actiong.l; ... pk.lk as the continuation of such that
- Ppr.li... pk.lk represents a legal run @5. Moreover,A(z) = € only if = is complete or some
interaction is enabled in (i.e., enabled in the last state oj.

2. A nonblocking schedulérS for IS is a function which given a run € run(IS) returns eithee
or an interactiorx enabled int as the continuation of . Moreover,S(ir) = ¢ only if no interaction is
enabled inr .5

3. The result of the game up to round defined by ' (S, A), where

€: i=0
(S A)={r%S A -Ar'-%SA) i=2n-1neN
r'=4Ss, A)- Sr'(S, A): i=2n,neN.

The run generated b$versusA, denoted by (S, A), is the result of the game proceeding in maxim
rounds.

Note that (S, A) must be complete. We say that a nonblocking schedsatisfies a fairness notion
Cif r(S, A) e C(IS) for every adversanA. The following proposition follows directly from the above
definition.

ProposiTion3.1.  Afairness notioit is strongly feasible falS iff there exists a nonblocking schedule
S such that ¢S, A) € C(IS) for every adversary A.

Thus, to show that is strongly feasible fofS we need to construct a nonblocking sched@such
thatr (S, A) € C(IS) for every adversanA. Note that by Definition 3.2, a nonblocking scheduger
must always return an interaction if it is given a raiin which some interaction is enabled. Otherwis
SversusA would not be able to generate a complete rua ifi response refuses to schedule any mo

3 In the terminology of [4], we do not requiféP;s to befaithful to C.

41t was referred to as “nonpreemptive scheduler” in [27].

5 For simplicity, we allowSto schedule only one interaction at a time even if there is more than one nonconflicting intera
enabled. This does not lose any generality because the game allows the adversary in response to suspend idle proce
becoming ready until all enabled interactions have been disabled.
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process to enter a ready state. This is why the scheduler is termed “nonblocking.” Simdi{ajynust
not return an empty sequence whetis partial and contains no enabled interaction, for otherwise
scheduleiS versusA could possibly generate a complete run.

To introduce the indistinguishableness relation, we need an operation of interprocess perm
and an operation of retraction. Let

T = p1,1.|1.1 . pl,kl.|1,k1X1 p2,1.|2$1 . p2,k2.|2,k2X2 e

wherexy, Xo, ... are interactions executed in We say thap is obtained fromr by aninterprocess
permutationif

p = q]_.]_.Jj_’]_ A ql,kl.Jl,klxl Q2,1-32$1 . q2,k2~\]2.k2x2 A

suchthatforeach> 0,¢i.1.J 1, ..., ik -Jk iSapermutationopi 1. li 1, ..., Pik- li.k - Furthermore,
¥ is obtained fromr by aretractionif

Y= Pl Prk-lok P2a121 ... Pah,-l2n,X1
P2+ 12041 -+ - P2k 12k, P31-131 -+ - P3hs-13,0%2

P hg+1-13hs+1- - Paks- 13k Pa1-la1. .. Pan,-lanXs. ..

such that for each > 1, pi1,..., pin € Px_,. Thatis,y is obtained fromw by moving, for each
i > 0, some initial sequence (possibly empy).li 1, ..., Pin-lin Of Pia-lia... Pik-lik forward
justbeforex;_1, and the processg®, . . ., pi.n, Whose ready transitions are moved must not be involv
in Xi—1.

Derinimion 3.3, Arunp isindistinguishabldrom rr, denoted by ~ 7, iff p can be obtained from
7 by an interprocess permutation followed by a retraction. The set of runs that are indistinguis
from 7 is denoted byndistinci(r).

Note that since a rum can be obtained from itself by an interprocess permutation and by a retrac
both operations in the above definition can be considered as optional. As aresingistincir).
To illustrate, consider the four runs

71 = (P1P2X12P3 PaX34)”
72 = (P1P2P3P4X12X34)"
73 = (P3PaP1P2X12X34)”

74 = (P2 P1PaP3X12X34)”,

where Py, = {p1, p2} and Py,, = {ps, pa}. In this exampley, ~ w1 becauser, can be obtained
from 7r; by moving each occurrence @§p4 ahead ofk;,. Also, 3~ m, becausers differs from
only in the permutation op; p, ps ps. Note thatz, +> 7, andzz+ 1. So the indistinguishablenes:
relation is neither symmetric nor transitive. Moreoves,~ 71 becauser; can be transformed into
(P2 p1X12P4 P3X34)® by an interprocess permutation, which in turn can be transformedrintny a
retraction.

Observe that ip ~ 7 then the two runs must be equivalent. The converse may not necessarily
however. This can be illustrated by the above example wigendr; are equivalent but they are no
indistinguishable from each other. Thus, indistinguishableness is strictly stronger than the equiv
relation defined earlier by permuting independent actions.

The fairness implementability criterion is defined as follows.

Derinimion 3.4, A fairness notiorC on IS satisfies thdairness implementability criterioiif there
exists a nonblocking schedul8rsuch thaindistincir (S, A)) € C(IS) for every adversanA of IS.
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We first provide some intuition behind the criterion. Clearly, any implementation of a fairness nc
C for a systendS must implicitly assume some scheduling policy to decide which action to execute
to meet the requirement of the fairness notion. Given Assumption A2 that a process can autonor
make a transition into a ready state, the scheduling policy has no control at all on when a proce
make a ready transition. Furthermore, when some interaction has been enabled, the scheduling
must decide on an interaction for execution, regardless of whether idle processes will become
or not. This is exactly what is captured by the notion of strong feasibility: the nonblocking schet
abstracts the scheduling policy, while the adversary stands for the processes to decide when tf
make a ready transition. So strong feasibility is a necessary condition for the implementability crite

Moreover, any coordinator process that is to implement this scheduling policy must first obta
knowledge of the global state. Recall Assumption Al that a process’s state cannot be instantly ob
by another process. Soby Al and A2, itis clear that when the coordinator has locally observed a se
of actionsp;.l1p2.12. .. pk.lk, the coordinator may not be able to tell the real execution sequenc
them. Hence if the coordinator decides to schedule an interaction based on this observation, tl
fairness notion should be general enough to consider all other runs that differ from the coordin
observation only in the ordering of these ready actions as valid. Otherwise, the coordinator c
correctly implement the fairness notion. Furthermore, when a coordinator learns that some pro
idle, this knowledge must be based on some (direct or indirect) communication between the coorc
and the process. By A1 communication takes nonnegligible time. So the information about the pro
idleness may be obsolete when it arrives at the coordinator because, by A2, the process can
ready transition while the information is being delivered. As a result, when the coordinator decides
interaction, the fairness notion should also allow this decision even if the ready transition actually c
before the coordinator makes its decision. The type of runs for which a coordinator cannot distir
from its observation are formally captured by the indistinguishableness relation amongst runs.

The limitations of the coordinators mean that although a coordinator’s observation causes itto ge
arunr, the coordinator cannot tellwhetheor p is the run that actually occurs for apye indistinci().
Clearly,n is the result of the underlying scheduling policy (i.e., a nonblocking sche8utmulated”
by the coordinator) versus a specific behavior of the processes (i.e., a specific ad¥grssythe
scheduling policy must also work for all other possible behaviors of the processes, we therefor
that for every possible adversagyof IS, all runs inindistinci(r (S, A)) must satisfyC. This is how the
fairness implementability criterion is obtained.

We now formally prove that the criterion is sufficient and necessary to guar@rgemplemen-
tability.

THeorRem3.2. A fairness notiorC onIS = (P, I, M) is implementable iff there exists a nonblockin
scheduler S such that indistirfic{(S, A)) < C(IS) for every adversary A df.

Proof of the only-if direction. SupposeSPys is an undelayed scheduling program satisfylig
We present a nonblocking scheduliby defining, given any adversay, the partial runr'(S, A)
generated by versusA for eachi > 0. Concomitantly, we construct a partial computaiits, A) of
SIPis satisfying the following requirements:

R1.r'(S, A) =[c'(S, A)lis.
R2. For ally eindistinc(r' (S, A)) there exists a partial computatign, ¥ = c'(S, A), such that
v = [V]s.

R1 ensures that for every complete ruigenerated by there is a computatioll of SPis such that
[M]1s = . SinceSPyg satisfiesC, 7 € C(IS). Moreover, R2 ensures thiadistinci(z) < C(IS). Thus,
the only-if direction of the theorem is established.

The construction of (S, A) andc (S, A) is as follows:

Case0. i =0:r%S, A) =c%S, A) =e.

Casel. i=2n—1,n> 0:
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Casel.l. A(r'-1(S A) =e:
r'(S, A)=r""}S, A), and ¢ (S A) =cYS A).
Casel.2. A(r'1(S A) = pr.li...pe.l. k> 1:
'S, A =r""XS A-p.li...p.lx, and (S, A =c XS A prli...pel.

Note that for notational simplicity, here we also ysel; to denote the action &Pys corresponding to
processp;’s transition into a state ready for the debf interactions.

Case2. i =2n,n> 0:

Case2.1. No interaction is enabled (S, A):
r'(S,A)=r'"%S A), and c(S A =cYS A).

Case2.2. Some interaction is enabled ifr(S, A): Let o1...0j be a continuation of
¢ ~1(S, A) such that the execution of causes some process to commit to an interactionxsagd in
the interim no primary process makes a ready transition. Since some process has commyitigde
assumption o8Py, ¢ ~X(S, A) - 01... o} can be extended further &X(S, A) - 01...0j0j41. .. 04k
such that all other participants af will also commit tox, and no primary process other than th
participants ok is involved in the computatiom; ;1 . . . oj k. Moreover, since after; . all participants
of x have committed t®, an instance of can be executed. Let ;1 denote the action of this execution
Then,

r'(S,A=r"YS A)-x and ¢(S A =c XS A) 01...0/k0j1kt1-

To complete the proof of the only-if direction we shall show that for ail 0 the following conditions
hold:

(i) r'(S, A) represents a legal run.

(i) If some interaction is enabled in—%(S, A), wherei = 2n for somen > 0, thenr'(S, A) =
r'=(s, A) - x for somex < I.

(i) ¢'(S, A) represents a legal computationSH;s.
(iv) let x be the last interaction executeddi{S, A), and lets; denote the execution of Let oj be

the action that establishes this instancex.ofhen no primary process other than the participants o
is involved in the computation from; to o;.

(v) R1 holds; thatist’(S, A) = [¢' (S, A)]is.

~(vi) R2 holds; that is, for ally € indistinc(r' (S, A)), there exists a partial computatich, ¥ =
c'(S, A), such thaty = [V]s.

The first two conditions ensure th&is nonblocking; together with the third condition they ensure tt
the construction results in legal runs and legal computations. The last two conditions guarantee |
R2. Condition (iv) is used to help assert condition (vi).

We prove the above six conditions by inductioniott is easy to see that the six conditions hold ft
i = 0. Assume the induction hypothesis that they hold upstom — 1, m > 1. To show that they hold
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fori = m, we can divide the problem into four cases based on the constructibf8of) andc' (S, A):

A m=2n-1,n>0:
(L.1) ACr™YS A) =e,
(1.2) AC™XS A)=pili...pcl, k> 1.
(2) m=2n,n> 0:
(2.1) no interaction is enabled if"~1(S, A)
(2.2) some interaction is enabledrifi—1(S, A)

For case (1.1), since by the construction we W&, A) = r™ (S, A) andc™(S, A) = c™ (S, A),
the induction hypothesis, together with the fact that condition (ii) holds vacuously betatstn — 1,
implies that the six conditions hold for this case as well.

For case (1.2), by the construction we hatS, A) = r™ (S, A)- pr.11... pk.lx, andc™(S, A) =
c™ (S, A) - pr.l1... pk.lx. SinceAis an adversary fdfS, by definition,r (S, A) must be a legal run
of IS (given the induction hypothesis thaf—1(S, A) is a legal run ofIS). In particular,py, . .., p«
must be idle inc™1(S, A), and so they are eligible to make their ready transitions after the pa
computationc™ (S, A). So conditions (i) and (iii) are satisfied. Condition (i) is satisfied vacuou:
becausan = 2n — 1. Since only ready transitions are added to'(S, A), condition (iv) follows
directly from the induction hypothesis. It is also easy to see that the construction guarantees col
(v). So it remains to show that condition (vi) is satisfied for this case.

Let ¥ be a run inindistinc{r ™(S, A)). By definition,y is obtained from™ (S, A) - p1.11 ... px.lk
by an interprocess permutation followed by a retraction. There are three cases to consider:

e The operations of interprocess permutation and retraction do not involve any of the new |
transitionsp;.lq, ..., pk.lk.

e Only the operation of interprocess permutation involves the ready transfiohs. . ., p«.lk.
e Otherwise; i.e., the operation of retraction involves the ready transipens, . . ., pk.lk-

We shall consider here only the last case; the other two cases can be treated analogously (buts
Inthe last case™ (S, A) must contain some interaction, for otherwise the operation of retraction wc
be meaningless. Latbe the last interaction executedfi1(S, A). Then either (@)™ (S, A) = v’ x
or(b)rmYS A =y - x-p.l... Py-lg- Again, we shall consider only the latter case; the form
case can be treated analogously.

We first note that the set of proces$es, . . ., Py} must be disjoint with{py, ..., pi}, andy’” - x =
r'(S, A) for somel < m. Sincey € indistinc{(r ™(S, A)), ¥ can be written ag/” - 91.J1...Gh.Jn - X -
Oh+1-dh+1 - - - Ogrk-Jg+k SUCh thatyy. Ju, . . ., dgik- Jg+k IS @ permutation opy.14, ..., pg.lg, pr.l1, .. -,
pk. Ik, andx does notinvolvey, . . ., g,. Clearly,y” - x € indistinci(y’ - x). Given thaty” - x =r'(S, A),
by conditions (iv) and (v) of the induction hypothesis, there exists some partial compuUtadidsiP;s
suchthat'(S, A) =" - 01 ... 010141, Whereoy establishes an instancexgthe execution of subsequen
actionsoy, ..., o¢ causes every participant fto commit tox, ando ;1 corresponds to the executior
of x. Note that no primary process other than thaPpfs involved in these actions, .. ., ot41. Also,
by the constructiong™(S,A) = T' - 01...0t0t11Py. 15 ... pé.lé, P1.l1..., pk.lk- By condition (vi)
of the induction hypothesis, there exigi$ such thatd’ = ¢'(S, A) andy” - x = [¥']is. Given that
(S, A =T -01...010¢,1, there exists somg’ such thatl’ = I', ¥ = I - 01...0¢0¢,1, and
Y X=[I"01...0¢0¢51]1s. SO 01...0¢0¢41-Qr.d1...... Oh-Jh - Oh41-Ihs1 - - - Ogsk- Jg+k Must
also be a legal computation and is equivalerd(S, A). Moreover, since the actioms, ..., o0, 041
involve only primary processes iR, and sincex does not involvey, . . ., g,, the computationt =
I'"-01.J1...0ndh - 01...0¢0¢41 - Ong1-Jns - - - Ogtk-Jg1k IS Still legal and equivalent t0™(S, A). It
is easy to see that = ¢” - 01.J1...0n.Jn - X - Ong1.Jnst - - - Ogtk. Jg+k = [W]is. So condition (vi) is
satisfied. This completes the proof of case 1.2.

For case (2.1), we hav&(S, A) = r™1(S, A)andc™(S, A) = c™ (S, A). Theinduction hypothesis
together with the fact that condition (i) holds vacuously because no interaction is enabled (8, A)
implies that the six conditions hold for this case.

For case (2.2), since by condition (v) of the induction hypothe®is(S, A) = [c™ XS, A)ls, if
some interaction is enablediff—1(S, A), then it must also be enableddf—1(S, A). Moreover, since
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SPys is undelayed, if some interaction is enablectfiri(S, A), thenc™ (S, A) has a continuation
o1...0j (possibly more than one) such that the executiomrjotauses some process to commit |
an interaction. So the construction of(S, A) from c™ (S, A) guarantees that™(S, A) is a legal
computation ofSPis. Likewise,r™(S, A) is also a legal run ofS. So conditions (i), (ii), and (iii) are
satisfied for this case. It is also easy to see that the constructidh(8f A) andc™(S, A) guarantees
conditions (iv) and (v). For condition (vi), observe thatlife indistinc{r ™(S, A)), then the operations
of interprocess permutation and retraction to transfiohgs, A) = r™1(S, A)-x toy must not involve
X. S0y can be written ag’ - x such thaty’ e indistinc(r ™~1(S, A)). The induction hypothesis ther
implies that condition (vi) holds for this case as well.
This completes the proof of the only-if directionm

Proof of the if-direction. Suppose there exists a nonblocking schedBkauch that for every adver-
sary A, indistinc{(r (S, A)) C C(IS). We present an undelayed scheduling prog&mulatéS) which
employs a coordinator to simulate the behavioSdee Fig. 3). LikeS, the coordinator proceeds ir
rounds. In each round, it first waits for idle processes to inform it of their readiness. Each ppases
required to send a messageadyp, |) to the coordinator when it makes a ready transitoh.

When the coordinator learns that some interaction has been enabled, it initjatymg procedure
attempting to confirm if the other processes which have not yet informed the coordinator of
readiness are indeed idle. To do so, the coordinator sends a query message to each of them a
for the response. The querying procedure terminates if every queried process replies a idksteag
the query indicating that the process was idle when it received the query. If some process respon
Readyp, |), then the coordinator has to reinitiate a querying procedure. Note that if a new que
procedure is necessary, then the number of processes that are idle (to the coordinator’s knowledg
be decreased by at least one. Since the total number of processes in the system is finite, event
more querying procedure will be needed.

When the coordinator has finished its querying procedures, it determines an interaction for exe
by simulating the scheduling @& LetReadypi 1, li 1), - .., Readypi k, li k) be the sequence of read
messages the coordinator receives in this round. Then, in the simulation the coordinator assun
the adversaryA provides the sequence of ready transitigns.li1... pix-lik 10 S Let x; be the
interaction chosen b. Then the coordinator finishes this round by sending a mesSagemi(x;)
to inform each process iRy, to executex;. The commit messages are acknowledged by the receiv
Note that if some interaction is enabled, tH&(and thus the coordinator) must schedule an interact
for execution becausgis nonblocking. S@&imulatéS) is undelayed.

Itis easy to see that the algorithm presented in Fig. 3 complies with the restrictions of the imple
tation model described in Section 2.2.

To show thaC is implemented bimulat€S), we need to showl]];s € C(IS) for every computation
IT of SimulatéS). Recall that for eacll, the coordinator oSimulat€S) has assumed an adversaky
with which Sis playing. Letr (S, A) be the complete run generated 8yersusA. We shall show that
[MT]is € indistinc{(r (S, A)). Sinceindistinci(r (S, A)) € C(IS), we have that[l];s € C(IS).

We begin by defining a mappirgfrom actions irr (S, A) to actions inf1. Recall that the coordinator
appends a ready transitignl to some prefixo of r (S, A) if, and only if, it has received a messag
Readyp, I) from p. Processp sends this message because it has made a ready transififfasin
We useo (p.l) to denote this ready transition. Moreover, the coordinator appends an interadtior
some prefixo of r (S, A) becauseS(p) = x. To actually schedulg, the coordinator sends a messa
Commifx) to each participant of. Each participant, upon receiving the commit message, will set
variablecommitto x. Leto (x) denote the first reception of the commit messages. By definitidrijgf |
only the actions i1 which can be mapped from the actiong {5, A) are relevant to the projection
from IT to [IT1];s. Note that the mapping preserves the dependency relation of the actiomg3nA)
in the sense that & < btheno(a) < o(b) in IT.

We claim thatSimulat¢S) guarantees the following conditions:

C1l. The sequence of interactions executedTifj;{ is the same as the sequence of interactic
executed i (S, A).

C2. Leta be aready transition in(S, A), and assume thatoccurs between two interactiorgsand
X2 inr(S, A). Furthermore, leb be the action just befong. Then the four actions (b), o (a), o(x1),
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The code of each process p :

{ state = idle — /* make a ready transition p.aim */
state:= ready; aim := M(p, hist);
send a message Ready(p, aim) to the coordinator
O receive a query message from the coordinator —
if state = idle, reply to the query with a message idle;
otherwise, ignore this query (because the process has already sent a ready
message to the coordinator when it entered its ready state.)
O receive Commit(x) from the coordinator —
commit := z; acknowledge the message;
O commit =x — [* participate in = */
execute x; state := idle; aim := §); hist := hist - x; commit := L;

The code of the coordinator :

variables :
new_ready: a queue of elements p.I indicating that the coordinator
has received message Ready(p,I) in current round;
yet_handled: a set of elements p.I indicating that the coordinator has received
message Ready(p, I) but has not yet scheduled any interaction for process p;
active: a flag indicating if the coordinator has learned that an interaction is enabled,;
i: the number of rounds that have proceeded so far;

{ not active, receive message Ready(p,I) —
add p.I to new_ready and yet_handled;
if some interaction has been enabled, then set active to true.
0  active —
while true do {
let @ =P — {p|p.I € yet_handled };
send query messages to each process in @ and wait for the responses;
if @ = @ or all the queries are answered idle, then exit this while-loop;
otherwise, for each response that is of type Ready(p, I)
add p.T to new_ready and yet_handled }
in simulating the game of S versus A, assume that the adversary
assigns new_ready as the ready transitions in round ¢;
let z; be the interaction chosen by S; then for each p € P,, do {
send Commit(z;) to p;
delete the entry p.I from yet_handled; }
wait for acknowledgments to the commit messages;
new.ready = 0; ¢ := 1+ 1;
if no other interaction is enabled, then active := false;

FIG. 3. The scheduling prograi@imulatés).

ando (x2) have the dependency relations
o(b) <o(a) and o(a) < o(x2).

Note that if there is na; (becausea belongs to the initial ready transitionsiqfS, A)), then, of course,
only the relatiorv (a) < o (x2) will be considered. Similarly, if there is ng (because(S, A) is a finite
complete run), then only (b) < o (a) will be considered.

It can be seen that C1, C2, and the fact that actiond iespect the dependency relationr {5, A)
ensure thatlll];s € indistinc{r (S, A)).
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To see C1, lek; andx, be any two interactions in(S, A), and assume that, occurs beforex,.
Consider the actions ifi. By the scheduling program, when the coordinator decides to scheguls
it will send commit messages to every participankpfaind wait for the acknowledgments. So evel
participant ofx; must have received the commit message before the coordinator wishes to sehed
So the actionr (x1) must occur causally beforg(x,).8

To see C2, let be a ready transition in(S, A) and assume tha = p.l. Consider first that some
interaction occurs beforg and letx; be the latest interaction. Lbte the action just beforg . Observe
that the coordinator addsto r (S, A) becausep has made a ready transition and has sent a mess
Readyp, 1) to the coordinator. (In the algorithm each ready transition is associated with a unique |
message.) Since; occurs befora, the ready message is received after the coordinator decide
schedulex;. That is, the coordinator considgpsas idle just before it decides to schedyjeHowever,
before the coordinator decides to scheduleit must have completed a querying procedure to ma
sure that every process to which it considers as idle has replied an idle message to its query. So t
the two actions (b) ando (x;) in I, the coordinator has sent a query message @od p has replied
idle to the query. This means that acti®(a) whose execution resulting in the ready transitomust
occur causally aftes (b); that is,o (b) < o(a).

Consider next that some interaction occurs adteand letx, be the first such interaction. Then, it i
clear that actiorm (a) must occur causally before the coordinator receives the corresponding me:
Readyp, 1), and the reception must occur causally before the coordinator issues a commit mess
any member ok,. Soo(a) < o(X2).

This completes the if-direction of the proofm

We note that the above proof does not rely on how long it takes to deliver a message. Tht
theorem holds as well if the transmission delay is finitely bounded.

4 PROPERTIES OF IMPLEMENTABLE FAIRNESS NOTIONS

In this section we provide some useful lemmas derived from the fairness implementability crite
Recall from Section 3 that i ~ 7, thenp andzr must be equivalent. If equivalent runs are either :
valid or all invalid, thenindistinci(zr) contains either all valid runs or all invalid runs. Therefore, if tf
fairness notion in consideration is also strongly feasible, then by Theorem 3.2 it must be implemer
We thus have the following lemma.

Lemva 4.1. If Cis strongly feasible and equivalence-robusti®rthenC is implementable foiS.

Clearly, the above lemma does not rule out the possibility of a non-equivalence-robust (but stt
feasible) fairness notion being implementable. Similarly, a fairness nGtroay still be implementable
even if C(IS) contains somer such thatindistinci{z) ¢ C(IS). The crux is to find a nonblocking
schedulerS that can avoid generating “odd” runs likewhoseindistinc{sr) contains an invalid run.
(Notice the existential quantifier in Theorem 3.2.) Section 5.3 presents an example for this.

However, there are runs that cannot be avoided by any nonblocking scheduler. So if these runs
to be “odd,” then the fairness notion in question is not posstilegularruns, as defined below, are al
example of runs that must be generated by every nonblocking scheduler.

Derinimion 4.1, A runz is singulariff in every state of the run at most one interaction is enable

If a nonblocking scheduler faces a situation in which only one interaction is enabled, then by defi
the scheduler must select it for execution. So every nonblocking schedulEs foust generate all
singular runs ofS.

Lemma 4.2. If w € run(IS) is singular, then for every nonblocking scheduler SI®fthere exists an
adversary A such that =r (S, A).

Proof. The singular runr itself expresses the behavior of the adversary:.be

ar1...an X1d1...A2n0,X2. ..,

6 It can be seen that the order of interactions(i, A) can still be preserved ifi even if only one participant of every schedule
interaction needs to acknowledge the coordinator’s commit messages.
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where eacts ; ... a8, denotes a sequence of ready transitionsargenotes interaction execution
In roundi the adversary schedules the sequemge. . & . Since onlyx; is enabled at this point, the
scheduler in turn must schedwefor execution. HenceS versusA generates exactly the runm

Therefore, ifC treats some run indistinguishable from a singular run as invalid, then by Theorern
C must not be implementable. This is stated in the following lemma and, as we shall see in the follc
section, is very useful in proving the unimplementability of fairness notions.

Lemma 4.3. If there exists a singular run € run(IS) such that indistingtr) ¢ C(IS), thenC is
not implementable fdfS.

Proof. By Lemma 4.2, every nonblocking scheduler fif must generater. However, since
indistinci() € C(IS), by Theorem 3.2, therefore, no undelayed scheduling prograrifoan sa-
tisfyC. m

5 APPLICATIONS OF THE CRITERION

In this section we use the proposed criterion to examine several fairness notions that are ty
associated with multiparty interactions. In particular, if a fairness notion is not implementable, we
to identify the system structure that renders the impossibility phenomenon. For this, we shall col
interaction systems whose programs are of fyffe The fairness notions to be examined inclstreng
interaction fairnes¢SIF), strong process fairnegSPF) ,weak process fairneg8VPF),U-fairness[5],
andhyperfairnesg6].

51. Strong Interaction Fairness

Recall that SIF requires an interaction that is enabled infinitely often to be executed infinitely c
Using Lemma 4.3, we can establish an impossibility result for SIF. For intuition, dedimeutér) to
be the set of runs that can be obtained froitmy an interprocess permutation. Clearlyrifatisfies SIF,
then all runs irpermutérr) satisfy SIF. Therefore, it satisfies SIF but some run indistinguishable frol
7 does not, then there must exist somie permutér) such thatr” contains infinitely many sequence:
of the form

Y&Qz. .. Ok,

wherek > 1, 01,02, ... 0k € Py, such that movinguo.. .. o« forward ahead o (i.e., deferringy
until g¢) causes some interaction which has been enabled only a finite number of times’jrto be
enabled immediately beforeis executed. S® N Py # ¥ and{qy, 0z, ..., O} N Px # ¥. Given that
01, O, ... Ok € Py, we haveP, — Py # 0.

When two sequences of the foymy s . . . gk . . . are placed next to each other, the resulting seque
Yh2... k... YOz ... 0k - .. NOW contains a subsequengg), . .. Gk . . . Y. Hencex is immediately
enabled beforg is executed, unless a third interactipois placed in betweeq,0; . . . gk andy. Given
thatx is enabled only a finite number of times, such an interaction exists,/nd Py) N P, # ¥; that
is, Py N P, £ Py (which subsumes the previous condition tRt— Py # ¢). Let z be the first such
interaction that is executed after the sequeyq); . . . Ok.

Takingzinto accountyz’ contains infinitely many sequences of the foympg, ... gk ... Z. ... Since
prior to the execution ot all processes irP, — Py are ready,P, N Py cannot be all ready before
Z is executed. Otherwise; would be enabled immediately beforeis executed, and so would be
enabled infinitely often throughomt'. So P, N Py € P, (which subsumes the previous condition th:
P« N Py # 7).

Hence, if the interaction structure of the underlying system can satisfy the above conditions anc
like  is inevitable (e.g.xr is singular) to every nonblocking scheduler, then SIF will be impossible
the system. Indeed, such a setting is possible, as can be illustrated by theE&ystéf |, MY), where
I has the structure as depicted in Fig. 4c. ket (p1p3ypP2P42)” andp = (p1pPspP2ypPs2)®. Then,x

71t should be noted that the conditiéy N Py & P, is obtained only because the definitior\¥ lets all processes iRy N Py
be ready to execute whenever they are ready.
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FIG. 4. Interaction structures for which SIF is not possible.

satisfies SIF and is singular, apd- 7. However,p does not satisfy SIF becausés enabled each time
p2 is ready bui is never executed. So by Lemma 4.3 SIF is not possible for the system. The follo
theorem characterizes the interaction structure for which SIF is not possible.

THeOREM5.1. LetIS=(P, |, M"). Assuméx,y, z €|, PN Py & P,and BNP;, & Py. Then SIF
cannot be implemented f&$.

Proof. Let S be a nonblocking schedul& for IS that satisfies SIF. We present an adversary
such that some run iimdistinc{r (S, A)) does not satisfy SIF. By Theorem 3.2, therefore, there is
scheduling program fdiS satisfying SIF.A behaves as follows.

1. Initially, A schedules all processes iR (— P,) U P, to enter a ready state. (The order of the ste
transitions is rather arbitrary.) By the definition f’, y is enabled (and possibly some others, to
but x is not due to the lack of some processRnN P, — Py. (Note thatP, N P, — Py # ¥ because
PcNP, Z Py.)

2. A’s subsequent behavior then dependsSSareaction.

2.1. If Sselectsy for execution, them in turn schedules the processesAnto enter a ready
state. S@ becomes enabled, but stdlis disabled due to the lack of some proces®im Py — P,.

2.1.1. IfSnext selectg for execution, therA schedules the processesipto become ready
and waits forS's response. Note that at this poinis enabled again, but sti¥ is disabled due to the
lack of some process iR, N P, — Py. The following behavior ofA is the same as the beginning ¢
Step 2.

2.1.2. If, howeverS selects some interactianinstead ofz, then A in response schedules th
processes i, to be ready again so thais enabled irS's next turn. If subsequentlyis chosen bys,
thenA schedules the processesHpto enter a ready state as described in 2.1.1. OthenAisentinues
to schedule the set of processes for wHgdas just selected for interaction to enter a ready state. N
that in this tournamerzwill eventually be chosen becauSsatisfies SIF. Moreovex,remains disabled
due to the lack of some processfan Py — P,.

2.2. If Sselects some other interactiomnstead ofy, thenA in response schedules the process
in P, to become ready so thatis enabled again ii8's next turn. Ify is finally chosen byS, then
A behaves as that described in step 2.1. OthervAseontinues to schedule the set of processes
which Shas just selected for interaction to become ready. As discussed above, in this tourparitien
eventually be selected becalseatisfies SIF. Alsox remains disabled due to the lack of some proce
in PxN P, — Py.

Therefore SversusA must generate a run in whighis executed infinitely often becaugés enabled
infinitely often. Howeverx is never executed because it is never enabled. Furthermore, right b
each instance of is executed the processes i (— P,) U Py, are ready, and wheyis executed the
processes irP, immediately become ready. Consider the pobtained fromr (S, A) by deferring
each execution of until the processes iR, — Py become ready. Clearly,~>r (S, A). Moreover, each
deferment causesto be enabled right befongis executed. Sa is enabled infinitely often ip. Since
X is never executegy does not satisfy SIF. =

According to the above theorem, if interactions can involve only a single process, then the sn
system for which SIF is not possible consists of only two procepsesid p, and three interactions,
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FIG. 5. Interaction structures for which SIF is possible.

y, andz such thatPy = {p1}, P, = {p2}, andPx = {p1, p2} (see Fig. 4a). Otherwise, the one show
in Fig. 4b would be the smallest. In either case, SIF is not possible for both biparty and multi
interactions.

Conversely, SIF can be implemented for systems where either no two interagtioms conflict
with a third interactiorx, or if they do then it must be the case thigtN P, € P, or P,N P, € Py (see
Fig. 5 for some examples).

THEOREM 5.2. LetIS= (P, 1, MY). Assumgl) |I| < 2 0r (2) ¥X,y.z € |, if P, N Py # # and
P« N P, # @; then either RN Py € P, or P, N P, € Py. Then SIF can be implemented fisr.

Proof. We present a nonblocking schedufsatisfying SIF in Fig. 6. (Note that this implies tha
SIF is strongly feasible.) The scheduler is based on the schedulers presented in [4, 40], except
do not need the function of random assignments that renders the scheduler’s behavior nondetern

For each interactior, the scheduleB associates witlk a unique id and maintains a varialeount
(initialized to zero) recording the number of rounds in whiéggenabled but is not selected for executio
Then, in each roun® increments the count variable of each enabled interaction by one. The en:
interaction with the largest count is selected for execution, armbiigtis reset to zero. Tie is broken
by, say, selecting the one with the largest interaction id.

We claim that for any given adversa#y the scheduler guarantees the following assertion at the:
of every round:

INV =V0<k=<]|l,|{xel|x.count> k}| < [lI| — k.

The assertion implies that for evexye |, x.count< [l|, which then implies that(S, A) satisfies SIF.
It is easy to see that INV holds initially ascountis initialized to 0. Assume that INV holds at the en
of roundi. By contradiction, if INV does not hold at the end of roung 1, then there must exist some
k,k > 1, such that{x € | | x.count> k}| > |l| —k+ 1. LetZ = {X € | | x.count> k} be the set of
interactions whose counts are at Idaat the end of round+ 1. By the definition ofS, for eachx € Z,
x.count> k — 1 at the end of round Therefore, there are at lea&t interactions having counts at leas
k — 1 at the end of round By the induction hypothesis, however, at mpst- k + 1 interactions can
have their counts greater than or equdtte 1; thatis,|Z| < |l — k+ 1. So|Z| = |l| — k+ 1, and the
set of interactions whose counts are at léast1 at the end of roundis equal toZ. Since INV holds
at the end of round but not at the end of rounid+ 1, there must exist some interactigne Z such
thaty.counthas been changed in round- 1. This means that is enabled prior to rounid+ 1. By the
definition of S, some interaction will be chosen for execution, and the interactiony(3awgust be in
Z. Oncey’ is executed its count is reset to 0. However, this contradicts the facy'tbatint> k > 0
at the end of round + 1.

in each round do
for each enabled interaction z increment its count variable by 1;
select for execution an enabled interaction with the maximal value
for its count variable; tie is broken by interaction id;
reset the count variable of the selected interaction to 0

FIG. 6. A nonblocking scheduler for SIF.
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We now show that if the interaction structure ISf satisfies the conditions stated in the theorel
then for every adversan all runs inindistinc{r (S, A)) must satisfy SIF. By Theorem 3.2, there is
scheduling program fdiS satisfying SIF. Suppose otherwise some rumilistinc{(r (S, A)) does not
satisfy SIF. Then, by the discussion presented in the beginning of this section, there must exis
interactionsx, y, andz such thatP, N P, £ Py andP, N Py € P,. This then contradicts the assumptio
imposed on the structure of =

In the above we assumed that the programs of interaction systems are t'ty@me would also
be interested to know, given ari = (P, |, M) whereM is not limited to typeM”, whether SIF is
implementable fofiS. In this case, the implementability is determined not only by the structute
but also by the condition whether the semanticMddllows the interactions to be enabled as requir
S0 as to intrigue against SIF. So the structurémisented in Theorem 5.1 becomes only a necess
condition for the unimplementability. It should be noted again that when a process does not nee
ready for all interactions of which it is a member at a time, then the condijon P, £ P, may be
lifted from Theorem 5.1. That is, we only requiréo contain three interactions y, andz such that
P« N Py # ¥ andP, N P, € Py. This can be seen from the discussion in the beginning of this sec
and from the following example: LS = ({ p1, p2}, {X, ¥, Z}, M) be an interaction system such thz
P« = P, = {p1, p2}, Py = {p1}, andM behaves as follows:

p1 i *[x — skip p2 i *[x — skip

Oy — 7] Oz — skip ]

Here we use the CSP notiaij- - -] to represent a repetitive command. Then fSj(contains a run
7 = (pyp-{z} p22)® satisfying SIF. Sincer is singular andndistinc{rr) contains a non-SIF run
(pLp2ypr-{z}2)*, by Lemma 4.3 SIF is not implementable for the system.

In addition to the above structure requirement, from Theorems 3.2 and 5.1, it can also be se
if the semantics oM allows that from some stateonward all continuations of drive IS either into a
terminating state or into a state in whiglandy can be enabled simultaneously, and afterexecuted
can subsequently be executed without ever requixitgbe enabled; then SIF is still unimplementab
if s has an infinite continuation and all nonblocking schedulers inevitably @i$iweto states.

To illustrate, consider the program

py i x[x — skip p2 i x[x — skip ps:: x[y — 7]

Oz — skip Oy — skip ]

wherex, y, andz are interactions as depicted in Fig. 4b. Clearly, the program does not belong t
category oM", asps is ready fory andz alternately. However, the program still allows a conspiracy
be constructed so that from the time wheis executed onward, the rest of the run is such traidy
alternately become enabled and executed (i.e., the runislike thig: ps.{z}zp ps.{Y}Y)*), precluding
x from ever being enabled. Such a run then has an indistinguishable run inxvsienabled infinitely
often but is executed only a finite number of times. Since every nonblocking scheduler satisfyin
for such a system must eventually schedyléo be executed, SIF cannot be implemented for t
system. Note that the adversary takes an advantage of the fact that althangly can be enabled
simultaneously, it delays the readiness of the process@s-inPy until y is executed, and then lebe
the only choice of the processesin — Py.

On the other hand, by a proof similar to Theorem 5.2, we can show that if the semariiadosfs
not allow the three interactions y, andz to be enabled in a desirable way as described above, t
SIF can be implemented. For example, consider a variation of the above program:

p1 i *[x — skip P2 x[X — Y] p3  x[y — 7]
Oz — skip ]
In this programx andy can never be enabled simultaneously, and so no conspiracy like the abov

be constructed to prevertfrom being enabled but not executed. Note that by switching the role:
y andz, we see thak andz can be enabled simultaneously. But still, no conspiracy agaioah be
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constructed because a continuation from a state in whichsbatidz are enabled but is chosen for
execution always leads to a state in whicks the only choice for execution. (It can also be seen tt
there is no conspiracy againsaindz, either.)

We are now left with the case where some states can lead to a conspiracy against SIF, but some
By Theorem 3.2, the implementability then depends on whether there exists a nonblocking sch
that not only satisfies SIF but can also prevent itself from “painting into a corner” by driving the sy:
into a state from which a conspiracy against SIF cannot be avoided.

As an example, consider a systé&fn= ({ p1, p2, ps}, {X, ¥, z, u}, M), wherex, y, z are structured as
in Fig. 4b, P, = {p.}, andM behaves as follows:

py i« [x — skip p2::i:=0;j:=0; ps [y — Z]
Oz — skip ] x[i+]<10x—>i:=i+1
Oi4+j<10y—>j=j+1
Oi+ ) <10;u— j:=j+1]
if i>jthen
*[X — skip
Oy — skip ]
else *[x — V]

The program first letg, execute 10 interactions and then execute either the repetitive comn
x[Xx — skip Oy — skip ]or the commandi[x — y], depending on how may times y, and
u have been executed in the first 10 interactions. By the previous two examples, the implement
of SIF then depends on which repetitive command is executed, i.e., depends on which of the twc
i > jandi < j(wheni + j = 10)is reached. We can easily design a nonblocking scheduler to en
that no matter which adversary is given, only the state j can be reached. The scheduler behav
like the one presented in Fig. 6, except that for the first 10 states wheseeady for interactionp,
always executes.

On the other hand, if we remove the guarded command ‘< 10;u — j = j 4+ 1" from py’'s
program, then some adversary would be able to drive the system into the stajeregardless of
which nonblocking scheduler is employed. To do so, the adversary simplybetthe only interaction
enabled at a time until 10 instancesxwére executed. (From then on, the adversary can then contri
conspiracy against SIF.) So SIF becomes unimplementable for the new system.

In the above examples, determining SIF’s implementability reduces to the problem of deternr
whether some state of the system is reachable. Unfortunately, state reachability,hikitigeproblem
is in general undecidable. Therefore, in the worst case determining whether SIF is implemente
not for a given system is also undecidable!

52. Strong Process Fairness

The notion of strong process fairness requires a process that is infinitely often ready for an el
interaction to participate in an interaction infinitely often. Unfortunately, like SIF, SPF is, in gene
impossible to implement. To see this, observe first that #atisfies SPF, then all runs rermutér)
satisfy SPF. So ifr satisfies SPF but some run indistinguishable fronioes not, then there must exis
somern’ € permutér) such thatr’ contains infinitely many sequences of the form

Y2 - . . Ok

such thatkk > 1, qi, 0, ...qx ¢ Py, and deferringy until g« causes some interaction(which has
been enabled only a finite number of timesnif) to be enabled immediately befoyeis executed.
So P, N Py # ¥ and P, — Py # §. Moreover, there must exist some proces®in— Py (say p1)
which at some point irr’ is ready for interaction and remains ready thereafter because no intera
involving p; will be enabled. There must also exist a second processggay Px — Py such that
p2 will execute some interactionafter the sequenceqiqz . . . gk (for otherwise when two sequence
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of the formyqiQz ... 0k ... are placed next to each otha@rwould be immediately enabled befoye
is executed). S&x N P, Z Py. Let z be the first such interaction that is executed after the seque
YhQ2 . . . Ok. Clearly,p; & Py; thatis, Py — Py — P, # 0.

Takingz into accounty’ contains infinitely many sequences of the foympg, ... gk ... Z.. .. Since
prior to the execution ot all processes irP, — Py are ready,P, N Py cannot be all ready before
z is executed. Otherwises would be enabled immediately beforeis executed, and so would be
enabled infinitely often throughomt. So there must exist a third procesHnn P, which is not ready
immediately before is executed; that i N Py p,8

Finally, since no interaction involvingy; can be enabled infinitely often, the structurel ghust
guarantee that at any point of the sequeggey, ... 0k .. Z... no interaction involvingp; can be
enabled while some of the proces$gsu Py U P, are ready.

Hence, if the interaction structure of the underlying system satisfies the above conditions anc
like 7 is inevitable to every nonblocking scheduler, then SPF will be impossible for the systen
illustrate such a setting, consider an interaction sysi&ea (P, |, M"), wherel has the structure as
depicted in Fig. 7c. Then the following are two runs of the system:

7w = p1(P3PsypP2P42)”
p = P1(P3Ps P2y psz)”.

Observe thatr satisfies SPF and~> 7. However,p does not satisfy SPF becauggis ready forx
each time when both, and p; are ready bup; never takes part in any interaction execution. Simce
is singular, by Lemma 4.3 SPF is not possible for the system.

THeorem5.3. LetIS= (P, I, M"). Assume there are, ¥, z € | satisfying the following conditions

1LP—-P—P#0,PkNP,ZP,and BNP, Z Py.
2.3ppe Pk—Py—P,Vuel, pme Ph= [P € (Pk—P)UPand R € (Px— P;) U Py].

Then SPF cannot be implemented fis.

Proof. LetSbe any given nonblocking scheduler satisfying SPF. We present an advasanly that
some run irindistinc{(r (S, A)) does not satisfy SPF. By Theorem 3.2, therefore, there is no schedl
program forlS satisfying SPF. The technique in constructing the adversary is similar to Theoren
However, finding appropriate interactions and processes for which the adversary can be cons
is somewhat tedious. To illustrate the main idea of the construction, we shall first make an add
assumption offiS:

3.3peP,—P,Ipse Py—P,Yuel [[p; euandu € (P, — Py)UP, = P, C R]] and
[[pseuanduc (Pk—P)UR]= P, C RJ

Later we sketch the proof without this extra condition.
LetX, Yy, z, p1, p2, andps be as given in Conditions 1-3. The adversary is given as follows.

1. Initially, the adversaryA schedules all processes iRy(— P,) U Py, to enter a ready state (ir
arbitrary order). By the definition dfl¥, ps is ready for an enabled interaction (becaysed possibly
some other interactions are enabled), puts idle (becausg, € P, — Py). Also, p; is ready but no
interaction involving it is enabled due to the second part of Condition 2 imposed on the strudture

2. A's subsequent behavior then dependsSrreaction.

2.1. If Sselects an interactioy (not necessary) involving ps, then A in turn schedules the
processes irP;, to enter a ready state. By Condition B, € Py. So at this point the processes i
(Px — Py) U P, are ready for interaction. Sp, is ready for an enabled interaction énd possibly

8 Like SIF, the conditionPy N Py ¢ P, is needed only because the definition\Y lets all processes iR N Py be ready
to executex whenever they are ready. Irrespective\bfandM”, however,P, must contain at least three processes in order
contrive a conspiracy against SPF. This can be seen from the above conditidPgtifat # ¥, p1 # p2, andpy, p2 € Px— Py.

9 Note again that the condition that restrairisom containing any interaction that may caus@; to be ready for an enabled
interaction infinitely often is needed only because the program in consideration is dflfy@therwise, the program can take
the role to prevenp; from being ready for any enabled interaction that may avoid the conspiracy.
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some others), bups is idle. Also, p; remains ready and, by Condition 2, no interaction involviids
enabled at this point.

2.1.1. If Snext selects an interactian involving p,, then A schedules the idle processes i
Py to be ready and waits fd8's response. By Condition &, € P,. So at this point the processes i
(Px — Py) U Py are ready for interaction. Sp; is again ready for an enabled interaction (ey,,p.
is idle, andp; remains ready. By Condition 2 no interaction involvipgcan be enabled at this point
The following behavior ofA is same as the beginning of step 2 (except that &tesis selected some
y’ involving ps, Ain turn schedules the idle processe$’into be ready).

2.1.2. If, howeverS selects some interactiarwhich does not involvey,, thenA in response
schedules the processesHnto enter a ready state so thatis again ready for an enabled interactio
in Ss next turn. If subsequentlg chooses some interactiahinvolving p,, thenA schedules the idle
processes Py to enter a ready state as described in step 2.1.1. Otherisentinues to schedule
the set of processes for whi@has just selected for interaction to enter a ready state. Note that in
tournament some interaction involvimpg will eventually be chosen becauSeatisfies SPF. Meanwhile,
p: remains ready but still no interaction involving it has been enabled.

2.2. If Sselects some interactianwhich does not involveds, thenA in response schedules th
processes i, to enter a ready state so thatis again ready for an enabled interaction (eyQin S's
turn. If Sfinally chooses some interactigninvolving ps, thenA behaves as that described in step 2.
Otherwise A continues to schedule the set of processes for whilshs just selected for interaction tc
become ready. As discussed above, in this tournament some interaction iny@wiilgeventually be
selected becausgsatisfies SPF, whilp; remains ready but no interaction involving it has been enabl

ThenSversusA must generate a run in whighy executes some interaction (sgy infinitely often
because it is ready for an enabled interaction infinitely often. Howgyes ready forever but it never
executes an interaction because it is never involved in an enabled interaction. Furthermore, imme
beforeps executes each instanceyfthe processes irf — P,) U Py are ready, and aftgy; executes
y’ the processes iR, are ready before any interaction is to be executed. Consider the abtained
fromr (S, A) by deferring each execution gf until the processes iR, — Py are all ready. Clearly,
p~r (S, A). Moreover, each deferment causet be enabled right beforg is executed. Thenp;
is ready for an enabled interaction (i.),infinitely often in p. Sincex is never executedy does not
satisfy SPF.

We now consider the theorem without Condition 3. The main idea behind the construction c
adversary is the same: it chooses three procgssg®, and ps in an interactiorx and letsp, and ps3
execute interactions alternately, but prevegmtérom being involved in any enabled interaction durin
the game versuS. Without Condition 3, however, not every setafy, andz (wherey andz are used
to determineps and p,) satisfying Conditions 1 and 2 can be used to contrive a conspiracy, as <
may causep; to be exposed to an enabled interaction during the game. In the following we show
to obtain p, and ps3 for the adversary. Once they are obtained, the proof of the theorem is essen
the same as above, and so we shall omit the details. (Note that arguing that no interaction irnwplv
can be enabled at any point during the game is quite tedious, but is not hard.)

Letx, y, z, andp; be as given in the theorem statement. Without loss of generality, assurxe yhat
andz satisfy the following condition:

l. |Px U Py U P,| is minimal; that is, there are no othef, y’ andz’ satisfying Conditions 1 and 2
such thatPy U Py U Py| < [Py U Py U P,

Definelpyy . ={uel| Py € (Px— P)UPy}, andrank(p; x, y, 2) = min{|P,N(PxN Py — P,)| |ue
Ipx,y.z}- Assume that in the latest two roundschedulesz’ in Step 2.1.1 and schedulgs in
Step 2.1. (Initially,Z =z andy’ =y). Then in the new roundf,” and “ps” are dynamically deter-
mined as follows: p3” in Step 2.1 is chosen to be the procesinN Py, — P, with the maximum
rank(p; x, y', '), and “p." in Step 2.1.1 is chosen to be the procesBjm P, — Py, with the maximum
rank(p; X, Z, y').

Figure 7 illustrates some interaction structures for which SPF is not possible. All of them consist
interaction involving more than two processes. Itis proven in [4] that SPF for purely biparty interac
is equivalence robust. SPF is also strongly feasible because SIF is strongly feasible and SPF is
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FIG. 7. Interaction structures for which SPF cannot be implemented.

than SIF. By Lemma 4.1, therefore, SPF is implementable for systems consisting of strictly bi
interactions (even if the associated programs are not off§f)e

THeorRemM 5.4. LetIS= (P, I, M"). Assume that for all xy, z € | the following conditions do not
hold:

. k=P, —P,#0%, P NP, ZP,and RN P, Z P,, and
Il. 3peP—P —P.Vuel peP, =[P, Z (P —P)UP, and R € (P — P)UP,].

Then SPF is implementable fds.

Proof. Since every run that satisfies SIF must satisfy SPF, the nonblocking sch&dulkesented
in Fig. 6 also satisfies SPF. So to show that SPF is implementable for the system, by Theoren
suffices to show that for every adversakyall runs inindistinct(r (S, A)) satisfy SPF. Letr =r(S, A).
Suppose by contradiction thatsatisfies SPF but some runimdistinc(sr) does not. By the argument
presented in the beginning of this section, there must exist admeermutér) and three interactions
X, Y,z wherePy — Py — P, £ ¢, PkN Py £ P,, andP, N P, € Py, such thatz’ contains infinitely
many sequences of the form

Yooz ...0k...2Z

but movingg:q; . . . gk ahead ofy causesx to be enabled immediately befoyeis executed. Here
is the first interaction executed aftgithat involves a process iR, — Py. Moreover, there must exist
somep; € Py — Py — P, such that from some point onwarg; remains ready forever in’ because
no interaction involvingp; is enabled.

Since beforez is executed the set of process&  Py) U P, are ready, and since no interactio
involving p; is enabled at this point,contains nau such thatp; € P, andPy € (Px — Py) U P,. If
there is also na such thatp; € P, andP, < (Px — P,) U Py, then we have obtained three interactior
X, Y, zand a procesp; € Py that contradict the theorem assumption imposed on the structir8of
in the following we assume that there is somsuch thatp; € P, andP, € (P, — P;) U Py. We shall
show that this assumption leads to a contradiction, and so therenissnoh thatr satisfies SPF but
some run inndistinci(;r) does not. Without loss of generality assume {gtJ Py| is the “smallest” in
the sense that there is no other interactiosuch thatp; € Py, Py € (P« — P) U Py, and|Py U Py| <
|Py U Pyl.

When two sequences of the forgtuq,...0« ...z are placed next to each other, we have a ¢
guence

YohO2 ... Ok...Z...YQuO2.. . Ok.--Z. ...

So the set of processeB(— P,) U P, are ready immediately before the second instangeoéxecuted
(and sou is enabled immediately before thgtis executed), unless an interactigrwhich does not
involve p, but does involve some process B (— P, — Py) N P, is placed in betweenandy. Sinceu
cannot be enabled at any point in the above sequence, sieliats; and, in additior?, N P, Z Py.
Let Z be the first such interaction executed in betweandy.

On the other hand, it can also be seen ®an Py # ¢ andP, N Py € P,, for otherwiseu would be
enabled immediately befo® is executed. Recall that; € P, — Py — P,. So up to this point we have
obtained three interactions z, y such that?y, — Py — P, # 9, P,N Py € Py, andP, N Py £ Py.
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FIG. 8. Interaction structures for which SPF can be implemented.

We now argue that there is noe | such thatp; € P, andP, € (P, — P,) U P,. This is because if
suchw exists, then sinceR, N P,;) — Py # @, we must havg¢P, U Py| < |P, U Py|; this then contradicts
the assumption we made earlier that no suelxists. Moreover, sincg is the first interaction executed
in betweenz andy satisfying the conditiorP, N P, # @ andP, N Py € Py, the set of processes
(Pu — Py) U P, are all ready immediately befo® is executed. So there cannot exist any interacti
v such thatp; € P, andP, < (P, — Py) U P,. Then the existence af, Z, andy contradicts the
assumption imposed on the structurd.ddo there cannot exist an interactiosuch thatp; € P, and
Py € (Px — P;) U Py. The theorem then is establisheds

Note that since a run satisfying SIF must also satisfies SPF, interaction systems for which .
possible can also be implemented for SPF. Therefore, SPF can be implemented for systems v
interaction structures shown in Fig. 5. Figure 8 illustrates some more examples for which SIF
possible but for which SPF is possible.

By areasoning similar to the one presented for SIF in Section 5.1, one can also determine the st
of  and the semantics & rendering the possibility and impossibility phenomena of SPF for any gi
IS= (P, I, M), whereM is not limited to typeM”. Note that because some system causes SPF t
unimplementable and some does not, like SIF, we can also construct a system such that detel
SPF’s implementability reduces to the problem of determining whether some state of the sys
reachable. Therefore, in the worst case determining whether SPF is implementable or not for &
system is also undecidable.

53. Weak Process Fairness

The notion of weak process fairness requires a process that is continuously ready for an e
interaction (not necessary the same interaction) to execute an interaction eventually. Like SIF an
for some interaction system WPF may include asxwsuch that some run indistinguishable frandoes
not satisfy WPF. This can be illustrated by the interaction sy$&em({ p1, p2, Ps, Ps, Ps}, {U, v, X, Y},
MY), whereP, = {p1. ps}, P, = {P2. Ps}, P« = {p1. ps}, andPy = {p,. pa} (see Fig. 9). Then the
following are two runs of the system:

7 = PsP1P3(XP2Payprps)”
© = PspP1P3(P2PaXpLp3y)”.

Observe thap ~ 7 andr satisfies WPF because no process is continuously ready for an eng
interaction. Howeverp does not satisfy WPF because from the second state orwasadontinuously
ready for an enabled interactiom éndv alternately), but it never executes any interaction.

)
(o) Loy

FIG. 9. Aninteraction structure.
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Note thatr is not singular. Soitis not necessary that every nonblocking scheduler for the system
generater. So if we can devise a nonblocking scheduler which can avoid generating runsiikese
indistinci(r) contains a non-WPF run, then we can obtain an implementation for WPF. In fact, we
show that ifindistinci(z) contains a non-WPF run, thenmust not satisfy SIF. Therefore, if we cal
construct a nonblocking scheduler which generates only SIF runs, then we will have an implemer
for WPF. Since such a scheduler is indeed possible (because SIF is strongly feasible; see Secti
WPF is implementable.

Lemva 5.5. For any runz € run(IS), if = satisfies SIFthen all runs in indistingtr) satisfy WPF.

Proof. Letw erun(lS) be a run satisfying SIF. Clearly, must also satisfy WPF. Moreover sifis
finite or no process i has stayed in a ready state forever, then every rimdistinc{sr) must satisfy
WPF. So suppose that is infinite, and at some point in some procesp has entered a ready stat
and remained ready thereafter, but from that point onward no interaction invgiviag been enabled.
Consider any subsequencenofvhich is of the form

Yy pl.|1 p2.|2... pk.lkz

and assume that in the subsequepcis ready but no interaction involving is enabled. Lefo be
any arbitrary run inindistinc{). Clearly, if p differs from = only in the ordering of the actions
p1.11, p2.12, ..., pk. Ik in betweery andz, thenp must also satisfy WPF. This is because the reorder
of these actions cannot cause any new interaction to be enabled.

On the other hand, suppose thds obtained fronxr by moving some of they .1;’s forward beforey
(via an operation of retraction), and the movement causes some interadatimiving p to be enabled
immediately beforey is executed. TherR, N Py # @. Sox must be disabled immediately aftgris
executed. Furthermore, since in the process of retraction any state transition occurrizgafiaot
be moved forward across the duration ofp’s readiness for an enabled interaction cannot be exten
acrossy. Sop cannot be continuously ready for an enabled interactign lence o must also satisfy
WPF. =

THeorem5.6. WPF is implementable for every interaction sysii&ea- (P, I, M).

Proof. For any given interaction systelfi, every runt generated by the the nonblocking schedul
presented in Fig. 6 satisfies SIF, and thus also satisfies WPF. Moreover, by Lemma 5.5 for e\
generated by the scheduler, all rungridistinci(r) satisfy WPF. Hence, by Theorem 3.2 there exis
an undelayed scheduling program i8rsatisfying WPF. m

54. U-Fairness

The notion of U-fairness is first proposed by Back and Kurki-Suonio [8] (called by there a diffe
name,action justic@ to consider situations where each participgndf an interactionx is willing
to executex every time when it is ready for interaction. Subsequently, Adtial. [5] show that U-
fairness provides an abstraction for stable property detection which most well-known fairness n
do not.

Derinimion 5.1 (U-fairness [5]). A runt € run([S) satisfiesU-fairnessiff for every interactionx,
x will eventually be executed if the following condition is satisfied: if from some point onward ev
participantp of x is ready for interaction infinitely often, and whenever it is ready for interaction, i
willing to executex.

Note that in the above definition may never be enabled because the participants need not be
ready state simultaneously.

To see how U-fairness detects stable properties, assume that we are to compute adnctioh
The result is acceptable only ff(v1) < 6; and f,(v,) < 8, for some constantg’s and functionsf;’s,
i = 1, 2. Moreover, the smallef; (v;) is, the closeg(vy, v2) approaches to the optimal. To do so, w
can use two process@s and p, to prepare the appropriate andv, respectively, and then let, saw
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computeg(vy, v2), as shown in the following program:

p1 :: vy :=0; & := 0;d; := o0; continug := true ;
x[continug & X[if fi(a1) < dithen di:= fi(ay);v1:=a; endif | > a;:=a; + 1,
Ocontinug A fi(v1) < 81 & Z[output g(vy, v2); continug = false ;] — skip ;]

P2 i vy = 0;a := 0;d; := oo; continue := true ;
x[continue & y[if fy(ay) < dathen dy = fy(ay); vz :=ay; endif | — ax = ax + 1;

dcontinue A fa(vy) < 82 & Z[continug := false ;] — skip ;]

The program is written in the style of IP [18], whexE . .] represents an interaction with namend
body. .., & denotes the guard operator, afd. .] represents a repetitive command.

Note that since smallefi (v;) implies better results, instead of idliywhen the threshold, (v;) < §;
is met, we allowp; to continue to find a better value of while its partner is still preparing the othel
v-value.

We observe that for eadhthe boolean guardi(vi) < §; of interactionz is a stable property: once
it holds, it continues to hold during the computation. So when both processes have found appre
values forv; andv,, each process is willing to execut@very time when it is ready for interaction. St
under U-fairnesg is guaranteed to be executed and the ragwlt, v,) is then obtained.

On the other hand; may not necessarily be executed under, say, SIF. For example, assume th
thresholdf; (v;) < § for bothi = 1, 2 have already been met. Consider the run

(P1Xp2y)”,

which represents thai; becomes ready for interaction, then it executes an instancecofompute a
new value ofvy, and beforep; finishesx and becomes ready again for interactipp becomes ready
and then executegto preparev,, and so on. The overall computation satisfies SIF becaisaever
enabled throughout the computation. Note that the run does not satisfy U-fairness.

Although with respect to the above specific example U-fairness is stronger than SIF, as showr
8], U-fairness is actually incomparable with SIF; that is, a run satisfying SIF does not necessarily <
U-fairness, and vice versa. To see an example of a run that satisfies U-fairness but not SIF, cons
interaction system with a structure depicted in Fig. 4c. Assume the associated program allows tl

o = ((PLP3P2Y P42)(P1-{Y} P3Y P2P42))”.

Thenp satisfies U-fairness becaupg is not always willing to executg every time when it is ready
for interaction. The run does not satisfy SIF becaugeinfinitely often enabled but is never execute
From this example, itis not difficult to see that for any giiSa= (P, I, M), if U(IS) — SIF(S) # ¢, then
the prograniM must let some process ready some interaction intermittently, whé@f) akid SIF[S)
denote the set of complete runsl8fsatisfying U-fairness and SIF, respectively.

Conversely, if nointeraction is readied by a process in an intermittent fashion, te-KIF(S) =
#; that is, U-fairness is either stronger than SIF or equal to SIF. This is proved in the following ler

Lemma 5.7. For everyIS= (P, |, M"), U(IS) < SIF(S). Moreover U(IS) # SIFQS) iff 3x,y,
z,el,PkNPy g P,and RN P, Z Py.

Proof. We first show that UIS) C SIF(IS); that is, if a rurwr € run (IS) is not in SIF{S) then it is
not in U(IS), either. To see this, observe thatifz SIF(S), there must exist an interactionn = such
that from some point onwardx is infinitely often enabled but is never executed. Recall that progr
M allows a process, whenever it is ready, to be ready for all interactions of which it is a membe
fromt onward, every process € Py is ready for interaction infinitely often, and whenever it is reac
it is willing to executex. However, since is never executed in, = does not satisfy U-fairness.

We now show that if US) C SIF(S), thendx,y,z e I, kN Py £ P,andPy N P, € Py. Let
7 € SIF(S) — U(IS). Then, there exists an interacti@rin 7 such that from some point onward ever
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p € Py is ready for interaction infinitely often, and whenever it is ready for interaction it is willing
executex. However, the processes Bf are never ready fox simultaneously (s« is never enabled
and thus is never executed). Hence there must exist two progesgese Py such that the following
scenario occurs infinitely often: whepy, is ready, p; is idle. Then, afterp; participates in some
interactiony, p, becomes ready. Moreoveay; remains idle untilp, participates in another interactior
z.Clearly, the condition®,NP, ¢ P,andP,NP, ¢ P, are satisfied by the three interactions, andz.

Finally, we show that iix,y,z e I, P,N Py £ P, andPx N P, € Py, then U(S) C SIF(S). For
this, we need to construct a computatieisuch thatr € SIF(S) — U(IS). Consider first the run

7 =(Px—Py— P)(Pyy P, 2)”.

Here we liberally use se® in a run to represent an arbitrary permutation of the elemen®s Bince
eachp e P, is ready for interaction infinitely often, and since the progidrallows p to be ready for
all interactions of which it is a member wheneyeis ready, each process i is ready for interaction
infinitely often, and whenever it is ready for interaction it is willing to executélowever, since is
never executed in, = ¢ U(LS). So if = € SIF(S), then we are done. Otherwise, there must exist so
interactionw such thatw is enabled infinitely often imr but w is never executed. Obvioushy, # y
andw # z. Furthermore, due to the restriction imposedxry, andz, w # X, either. Then there are
only two possibilities: eitheP,, € (Px — Py — P,)UPyor P, € (Px — Py — P,)UP,.

Consider the first case, and fetbe as follows:

7' = (Px— Py — P)(PwP,yP,2)".

Note thatz’ is still not in U(IS) because for every processHy, it is still ready for interaction infinitely
often, and whenever itis ready for interaction it is willing to exeocutdoweverw is executed infinitely
often inn’. So if 7’ is in SIF(S), then we are done. Otherwise, there must be another interagtio
u # X, Y, z, w, such thati is enabled infinitely often itr’ but it is never executed. Then we can use t
same method to convert' to another runt” such thatu, w, y, andz are executed infinitely often in
x”, and stillz” ¢ U(IS). Since there are at most a finite number of interactionsenentually we can
construct a run in SIES) — U(IS).

The other case wheie, < (P, — P, — P,) U P, can be handled similarly. The lemma is therefo
established. m

From Lemma 5.7 and Theorems 5.1 and 5.2, we can obtain the interaction structures that ren
unimplementability and implementability of U-fairness, respectively.

CoroLLArY 5.8. LetIS=(P, I, MV). Assumélx,y,zel,PkN Py & P,and BN P, £ Py. Then
U-fairness cannot be implemented figr.

Proof. Suppose otherwise that U-fairness is implementabldi$orThen by Theorem 3.2 there
is a nonblocking schedule® such that for every adversad of IS indistincy(r (S, A)) € U(IS). By
Lemma 5.7 indistinc{(r (S, A)) € SIF(S). That is, there is a nonblocking schedug&such that for
every adversanA of IS indistincy(r (S, A)) C SIF(S). Then by Theorem 3.2 SIF is implementable fc
IS. This contradicts Theorem 5.1 that SIF is not implementabléSor m

CoRroLLARY 5.9. LetIS=(P, |, M"). Assumgl) |I| < 20r (2) Vx,y,z € |, if Py N Py, # ©# and
P« N P, # @, then either RN Py € P, or P, N P, € Py. Then U-fairness can be implementedfSr

Proof. By Lemma 5.7 and the restriction imposed Ishwe have U[S) = SIF(S). Theorem 5.2
therefore implies that U-fairness is implementablelfor m

Note that like SIF, U-fairness is in general impossible to implement even if interactions are st
bipartied.

For interaction systeni§ = (P, |, M) whose programs are not of tyM, we can use the method pre
sented in Section 5.1 to analyze how the structut@ntl the semantics & affect the implementability
of U-fairness. Itisimportant to note, however, that U-fairness is equivalence-robust; see [18]. This
that for every nonblocking schedul&rsatisfying U-fairness, every run generated bys must satisfy



CHARACTERIZATION OF IMPLEMENTABILITY 29

the conditionindistinci(r) € U(IS). So the unimplementability must be due to the fact that we can
even construct a nonblocking scheduler satisfying U-fairness for the system. Recall that we can
a nonblocking scheduler satisfying SIF (see Fig. 6). So for an advefsarpreventS from generating
a U-fair run,l andM must be such that from some point onward some interagtiomever enabled, but
every participant ok is ready for interaction infinitely often, and whenever it is ready for interacti
it is willing to executex. Sincex is never enabled, there must exist two other interactipasd z,
PyN P« € P,andP, N P, Z Py, such thaty andz alternately engage some %6 participants, pre-
venting the participants of from being ready fox simultaneously (a phenomenon caltahspiracy
see Section 5.5). As the proof techniques for establishing the impossibility and possibility resul
similar to those for Theorems 5.1 and 5.2, we omit the details.

55. Hyperfairness

Hyperfairness is proposed by Atté¢al.[6] as a fairness notion to prevertdnspiraciesA conspiracy
against an interactior occurs if from some point onward is never enabled because conflictin
interactions intermittently engage somex participants. For example, consider an interaction syst
IS = ({p1, P2, P3}. {X, Y, 2}, M), where{x, y, z} has the structure as depicted in Fig. 4b.Bo=
(p1p3z:p3Y)? is a run of the system. Observe tixas never enabled in because andy alternately
engagep; and p,, respectively. Note that the conspiracy is due solely to the “race conditions” of
independent actiongis execution andp,’s readiness. lfp, becomes ready beforeis executed, then
the resulting computation’ = (p1pszpP2zp3y)® would have no conspiracy againstHyperfairness is
therefore used to excludeas valid by requiring 2 be enabled infinitely often as irf. Note further that
if some other fairness notion, say SIF, is additionally assumed sthesuld not be fair either. Hence,
hyperfairness on top of SIF ensures that no computation satisfies SIF simply because some cor
prevents an interaction from being enabled (and thus from being potentially scheduled for exect

Note that some conspiracy may be inherent from the program semantics. For example, assul
the program of the above system is changed to the following:

p1 i *[X — skip p2 i «[y; [X — skip ps i ¥[z— VY]
Oz — skip ] Oy — skip ]]

Then the program prevents from establishing with p,, unlessp; first establisheg with ps.

To distinguish programs for which conspiracies can be prevented by an appropriate schedu
the execution events from those whose semantics inherently incurs some conspiracies, a6}
propose a notion afonspiracy resistancas follows: A progranM is conspiracy resistariff for every
fair run 7 (fair with respect to some underlying fairness notion) the following holds:

Let =’ be any finite prefix ofr with final states, and letQx be the set of processes that are readyxfan s.
Furthermore, letr” be the same as’ except that in the final state every procesQn is ready for onlyx. Then
for every fair continuation ofr”, there exists a procegse Px — Qyx such thatp will eventually readyx along this
continuation.

Hyperfairness excludes conspired runs for conspiracy resistant programs, but does not impc
constraint (other than thatimposed by the underlying fairness notion) on programs that are not con:
resistant to avoid any possibility of deadlock in the implementation. Formally, hyperfairness is de
as follows.

Derinimion 5.2 (Hyperfairness [6]). A complete run of IS = (P, I, M) is hyperfairiff one of the
following conditions is satisfied:

I. M is not conspiracy resistant andsatisfies SIF.

Il. 7 is finite.

lll. 7 isinfinite, satisfies SIF, and every interaction for which every participant readies it infini
often is enabled infinitely often.

Note that like [6], we have assumed SIF beneath hyperfairness. A different hyperfairness r
would be required if SIF is replaced by another. Its implementability can then be studied analogc
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Since hyperfairness imposes additional constraint on runs that satisfy SIF and since SIF, in g
is impossible to implement, hyperfairness is also unimplementable. What interests us, then, is w
hyperfairness is possible for those cases where SIF is possible. For this problem, we again ass
interaction systenfiS associated with a program”’. Clearly, M" is conspiracy resistant. Moreovet
run(IS) contains only infinite runs. Thus a run € run (IS) is hyperfair iff it satisfies SIF and every
interaction that is infinitely often readied by every participant is enabled infinitely often.

To study the structure of interaction systems that renders the implementability and unimplement
phenomena of hyperfairness, we first observe that U-fairness and hyperfairness are indeed tf
semantic constraint for those systems associatedWitiThis is shown in the following lemma, where
Hyper((S) denotes the the set of runs in rif§) satisfying hyperfairness.

Lemma 5.10. For everyIS= (P, |, M"), Hyper(S) = U(IS).

Proof. We first show that Hypelf) < U(IS). Letr € run(IS) — U(TS). Sincer is not U-fair, there
exists some interactionsuch that from some point onward every procesB;is ready for interaction
infinitely often, and whenever it is ready for interaction it is willing to execytieutx is never executed.
Then,x is infinitely often readied by all of its participants but is never executed: &blyper(S). This
implies that HypefS) < U(IS).

Next, suppose that is U-fair. Then, for every interactior, x will eventually be executed if from
some point onward every processRnis ready for interaction infinitely often, and whenever it is rea
for interaction it is willing to execute. Due to the semantics &fl¥, no interaction that is infinitely
often readied by all of its participants is executed only a finite number of times. That is, every intere
that is infinitely often readied by all of its participants is executed infinitely often. This also img
that every interaction that is enabled infinitely often is executed infinitely oftep.iSalso hyperfair.
Hence, ULS) C Hyper(S). =

The above lemma together with Corollaries 5.8 and 5.9 immediately implies the following
corollaries, respectively.

CoroLLARY 5.11. LetIS=(P, |, M"). Assuméix,y,ze |, P N Py & P,and BN P, £ Py. Then
hyperfairness cannot be implementedfsr

CoroLLARY 5.12. LetIS=(P, 1, M"). Assumgl) |I| < 20r (2) ¥x,y,z € |, if P, N P, # @ and
P«N P, # @, then either RN P, € P, or PcN P, € Py. Then hyperfairness can be implemented$or

So like SIF and U-fairness, for systems consisting of only biparty interactions hyperfairness
general, not implementable.

Using the fairness implementability criterion, we can also analyze the implementability of hype
ness for any given systefi = (P, |, M) whose program is not limited to typd" (but is conspiracy
resistant). We note here that, like U-fairness, hyperfairness is also equivalence-robust [6]. So
fairness can pass the criterion if, and only if, we can construct a nonblocking scheduler for the s
satisfying hyperfairness.

Finally, it is interesting to note that for evel§ = (P, I, M) whoseM is conspiracy resistant, hyper
fairness is, in general, stronger than U-fairnéss.

TrHeoremb5.13. For everylS = (P, I, M) such thatM is conspiracy resistantyper(lS) € U(IS).

Proof. Letw € run([S) — U(IS). Sincer is not U-fair, there exists an interactionsuch that from
some point onward every processRpis ready for interaction infinitely often, and whenever it is rea
for interaction it is willing to execute, butx is never executed. Ther,is infinitely often readied by
all of its participants but is never executed. Sittés conspiracy resistant, should also be excluded
from Hyper(S). So Hyper[S) C U(IS). =

Note that for some interaction systems hyperfairness may be strictly stronger than U-fairnes
example, lefl[S= (P, I, M) be an interaction system with the structure shown in Fig. 4c, andNhel

10 For thosels = (P, I, M) whoseM is not conspiracy resistant, hyperfairness on top of SIF imposes no additional const
other than thatimposed by SIF. So hyperfairness is identical to SIF. Itis not difficult to see that U-fairness then is still incomg
with SIF (and thus incomparable with hyperfairness).
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behaves as follows:

priik[X >y P x[X — skip ps i #[y — skip ] ps i %[z — skip ]

gy — ] Oz — skip ]
It is not difficult to see that the program is conspiracy resistant. Consider the run

p = ((PLPsP2Y Pa2)(P1-{Y}P3Y P2P42))”.

As shown in Section 5.4 satisfies U-fairness but does not satisfy SIFcSe not hyperfair.

6 CONCLUSIONS

We have presented a necessary and sufficient criterion for determining the implementability of fa
notions in distributed systems where processes interact by engaging in synchronous constru
we have seen, the criterion allows us to establish several impossibility results for various fal
notions, including strong interaction fairness, strong process fairness, U-fairness, and hyperfa
and a possibility result for weak process fairness.

The impossibility results do not depend on the type of communication primitives (e.g., mes:
passing or shared-memory) provided by the underlying execution model. It holds as long as (:
process’s readiness for multiparty interaction can be known by another only through communic
and the time it takes two processes to communicate is nonnegligible (but can be finitely bour
and (2) the time when a process will make its transition to this ready state (from a state not w
to engage in any interaction) cannot be determined a priori. Algorithms which claim any of t
“impossible” fairness notions, therefore, must make use of some assumption which contradicts
the two conditions, or assume a system topology which complies with the structure we have an
in the paper that can render the possibility phenomena (see Theorems 5.2 and 5.4 and Corolla
and 5.12).

Forexample, Attiet al.[5] propose a distributed multiparty interaction scheduling algorithm fulfillir
U-fairness. Their algorithm does not assume any system topology, and so is general for all inter
systems. However, they do implicitly assume that the time a process can stay in an idle state &
time it takes to execute an interaction are both finitely bounded. From time to time, a coordin
process has to pause its coordination activity, waiting for some process to be ready for an inter
even if there is another interaction enabled for execution. The delay imposed by the coordinator ir
that the time it takes to schedule one interaction may depend on the other processes not involve:
interaction. From the efficiency’s concern, this violates one of the four criteria proposed by Buckle
Silberschatz [14] for evaluating distributed interaction scheduling algorithms. Note that if the “bou
transition time” assumption is removed, the above algorithm would be deadlocked if the target pr
waited for by the coordinator is no longer interested in interaction.

Many algorithms for scheduling multiparty interactions that conform to the above two assump
have also been proposed, e.g., [9, 21, 26, 29, 33, 42, 43, 45, 47]. From our results, it is not surpri
see that only few of them have claimed a fairness notion stronger than weak interaction failieass.
interaction fairnesgequires an interaction that is continuously enabled to be established event
and so is much weaker than all fairness notions discussed in Section 5.) In particular, the algo
of [26, 45, 47] also satisfy SPF with the proviso that interactions must be strictly bipartied, whicl
our results in Section 5.2, is indeed possible to implement.

For other fairness notions that satisfy the criterion, we have also presented a general algori
implement them. The algorithm employs a centralized coordinator to simulate the behavior
nonblocking scheduler characterized by the criterion. Our future work will focus on a distrib
implementation for our criterion. That is, nonconflicting interactions can be established concuri
by different coordinators.

The impossibility results for SIF and SPF have also been established independently by Tse
Bagrodia [46] and by Joung [26]. Our impossibility results for SIF and SPF improve upon thei
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three ways: First, our results do not depend on any system topology underlying the implementati
contrast, each process in [46] is paired with a coordinating process to schedule interactions, whi
assumes a centralized coordinator for the scheduling. Second, they establish the impossibility
by identifying a particular system for which SIF and SPF are not possible. We are able to dete
the structure of systems that renders the impossibility phenomena, and using the criterion we c:
determine if SIF and SPF are implementable for any given specific system. Finally, and mostimpor
they observe the impossibility phenomena in a specific implementation model. We, however,
generalized the model and lifted its properties to the semantic level. In effect, this reduces rea
about a complex and concrete implementation model to reasoning about a simpler and abstrac
for process interaction, and allows the criterion to applguerypossible fairness notion for multiparty
interaction.

It should be noted that when we say that a fairness ndfios not implementable, we mean tha
there exists an interaction system for whicltannot be implemented by any deterministic algorithi
An unimplementable fairness notion may be implementable for some specific interaction syster
criterion we have proposed allows us to determine whether a fairness notion is implementable f
given interaction system. However, as we have also analyzed in the paper, the problem of deter
whether an unimplementable fairness notion is implementable for some specific interaction syste
turn out to be undecidable!

Furthermore, the multiparty interactions we have addressed in the paper assumed that the part
of an interaction are fixed in advance. This form of interactions has been widely used in distri
languages that support multiparty interactions. The participants of an interaction may also be p:
terized, or even dynamically configured. In the latter case, determining the participants of an inter
could become very complex, and even intractable. A taxonomy of programming languages offerir
guistic support for multiparty interaction along with a comprehensive complexity analysis of intera
membership decision problem is given by Joung and Smolka [30]. It is easy to see that the impos:
results we established in the paper also apply to other forms of multiparty interactions in whic
participants of an interaction may vary dynamically.

Since deterministic algorithms are not possible for most fairness notamdpmizationmight be
appealing. Randomization has proven to be an effective technique for coping with some imposs
phenomena occurring in the Dining Philosophers problem and CSP-like biparty interaction [20, 3¢
In fact, randomization is also effective for the more general problem, viz., the multiparty intera
scheduling. Joung and Smolka [31] present a symmetric, distributed, and randomized algorithr
with probability 1, satisfies SIF. It thus offers an appealing tonic to other fairness notions la
deterministic realizations.
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