
Information and Computation166, 1–34 (2001)
doi:10.1006/inco.2000.3014, available online at http://www.idealibrary.com on

On Fairness Notions in Distributed Systems

I. A Characterization of Implementability∗

Yuh-Jzer Joung†
Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: joung@ccms.ntu.edu.tw

Received January 28, 1998

This is the first part of a two-part paper in which we discuss the implementability offairness notions
in distributed systems where asynchronous processes interact via synchronous constructs—usually
calledmultiparty interactions. In this part we present a criterion for fairness notions and show that
if a fairness notion violates the criterion, then no deterministic algorithm for scheduling multiparty
interactions can satisfy the fairness notion. Conversely, the implementation is possible if the criterion
is obeyed. Thus, the criterion is sufficient and necessary to guarantee the implementability of all
possible fairness notions. To our knowledge, this is the first such criterion to appear in the literature.
The main benefit of the proposed criterion is that it reduces reasoning about a complex and concrete
implementation model to reasoning about a simpler and abstract model for process interaction. To
illustrate this, we use the criterion to examine several important fairness notions, includingstrong
interaction fairness, strong process fairness, weak process fairness, U-fairness, andhyperfairness. All,
except weak process fairness, fail to pass the criterion. Moreover, we also apply the criterion to analyze
the system structures rendering the impossibility phenomena. This analysis helps us separate, for each
fairness notion, the set of systems for which the fairness notion can be implemented from those for
which it cannot. C© 2001 Academic Press

INTRODUCTION

Since Hoare introduced CSP [22],interactionsandnondeterminismhave become two fundamental
features in many high-level programming languages for distributed computing and algebraic models
of concurrency, e.g., Ada [48], Occam [23], CCS [38], andπ -calculus [39]. Interactions serve as a
synchronization and communication mechanism: the participating processes of an interaction must
synchronize before embarking on any data transmission. Nondeterminism allows a process to choose
from a set of potential interactions it has specified one interaction to execute.

Note that interactions in CSP and Ada can involve only two processes. However, more recent language
developments (e.g., SCCS [37], CIRCAL [36], Script [19], Compact [15], Action Systems [7], SR [3,16],
LOTOS [11], Extended LOTOS [13], IP [17], and DisCo [24, 25]) have extended these biparty activities
to a more general case,multiparty interactions, allowing an arbitrary number of processes to interact.
More precisely, a multiparty interaction is a synchronous action involving a fixed set of participant
processes. An attempt to execute the action by a participant process delays the process until all other
participants are ready to execute the action. After the execution each participant process continues its
local computation. It is believed that multiparty interactions provide a higher level of abstraction and
encourage modular programming and design [17, 18, 32]. For example, the natural unit of process
interaction in the famous Dining Philosophers problem involves a philosopher and its two neighboring
chopsticks; that is, a three-party interaction.

The implementation of multiparty interactions is concerned with synchronizing asynchronous pro-
cesses to participate in interactions so that the following two requirements are satisfied:

(1) Synchronization.If a process starts to execute an interaction, then all other participants of the
interaction will also execute the interaction.
∗ A preliminary version of this paper appeared as Characterizing fairness implementability for multiparty interaction,in

“Proceedings of the 23rd International Colloquium on Automata, Languages and Programming, Paderborn, Germany, July 8–12,”
Lecture Notes in Computer Science, Vol. 1099, pp. 110–121, Springer, Berlin, 1996. This research was supported by the National
Science Council, Taipei, Taiwan, under Grants NSC 85-2213-E-002-059 and NSC 86-2213-E-002-053.
†The author is currently visiting Laboratory for Computer Science, Massachusetts Institute of Technology (1999–2000).

1

0890-5401/01 $35.00
Copyright C© 2001 by Academic Press

All rights of reproduction in any form reserved.

2 YUH-JZER JOUNG

FIG. 1. A system of four processesp1, p2, p3, andp4, and three interactionsx, y, andz.

(2) Mutual exclusion.Conflicting interactions are not executed simultaneously, where two interac-
tionsconflict if they involve a common member process.

Because nondeterminism allows a process to choose from a set of potential interactions an arbitrary
interaction to execute, with an improper interaction scheduling, an implementation of multiparty inter-
actions may render an undesirable program behavior, usually because it violates some liveness property.
So some fairness notion is typically imposed on the problem to exclude unwanted computations that
would otherwise be legal.

To illustrate, consider a system of four processesp1, p2, p3, andp4 and three interactionsx, y, andz,
wherex involves the set of processes{p1, p2}, y involves{p1, p3}, andz involves{p2, p4} (see Fig. 1).
Assume that each processpi , 1 ≤ i ≤ 4, transits between anidle state where it is busy in its local
actions and areadystate where it wishes to establish some interaction of which it is a member. Let

(p1 p3yp2 p4z)ω

denote a repeated scenario in whichp1 andp3 become ready and jointly executey, and thenp2 andp4

become ready and executez. The computation then satisfiesstrong interaction fairness(SIF), meaning
that an interaction that is infinitely oftenenabled(that is, with its participants all ready) is executed
infinitely often. The computation

(p1 p3 p2yp4z)ω

does not satisfy SIF becausex is enabled in every state immediately afterp2 is ready but it is never
executed.

A fairness notion is saidimplementablefor a system if there is an implementation of multiparty
interactions such that all computations of the system satisfy the fairness notion. We focus here on
the implementability of fairness notions in distributed systems where asynchronous processes interact
via multiparty interactions. In a companion paper [28] we compose several hierarchies of fairness
notions in terms of their expressiveness, and for each of the hierarchies we delineate the line between
implementable and unimplementable fairness notions.

1 APPRAISING FAIRNESS NOTIONS

Since a fairness notion excludes from all possible computations some that would otherwise be valid,
in general, any subset of computations could be considered as a semantic constraint for the system.
However, not many of them are useful, and so criteria have been proposed for determining their appro-
priateness, including the following [4]:

Feasibility: Every partial computation can be extended to a valid one.1

Equivalence-robustness: Equivalent computations are either all valid, or all invalid. Computations
areequivalentif they are identical up to the order of independent actions. Here we assume that the
underlying semantics induces adependencyrelation on actions of the system, which is usually a partial
order reflecting Lamport’s causality relation [34].

Feasibility is often demonstrated by an explicit scheduler, which proceeds in lock-step synchrony
with the system, and has complete knowledge of the global state of the system at all times. In each step

1 The notion of feasibility is also equivalent to Abadi and Lamport’smachine closure[1, 2].

CHARACTERIZATION OF IMPLEMENTABILITY 3

the scheduler determines for the system an action to execute and waits until the execution terminates
before it moves on to the next step. Note that all actions, local and non-local (i.e., interactions), are
scheduled by the scheduler. A fairness notion can then be proved to be feasible by exhibiting such
a scheduler so that every partial computation can be generated by the scheduler, and every complete
computation generated by the scheduler is valid.

Note that because in a distributed environment no process can have a complete knowledge of the
global state of the system at all times, an explicit scheduler does not directly correspond to a real
implementation. However, using a technique of “superimposition” [4, 12] one can convert a scheduler
into a real scheduling program executed in parallel with the main program (i.e., the one that the system
is executing). In each step the scheduler communicates with every process in the system to obtain the
global state information. The scheduler then determines the next action for the system, informs every
process that is responsible for the execution of the selected action to execute the action, and then waits
for the execution to terminate before it proceeds to the next step. All other processes’ executions of the
main program are suspended until further notice by the scheduler. (This can be done, for example, by
augmenting each action with a Boolean variable to enable/disable the action.)

For the sake of efficiency, however, most practical implementations for biparty and multiparty in-
teractions (e.g., [9, 10, 14, 21, 26, 29, 33, 43, 45, 47]) do not use the aforementioned superimposition
technique. Rather, they allow processes to execute local actions on their own. The scheduling takes place
only when some process is ready for interaction, and only interactions are scheduled. More importantly,
unlike the superimposition technique, the implementations do not depend on whether local actions and
interactions terminate or not (that is, whether a process will eventually become ready for interaction).
Note that superimposition may result in a deadlock if the action the scheduling program is waiting for
does not terminate while some other interaction is enabled for execution. As a result, most implementa-
tions for multiparty interactions make use of the assumption that processes decide autonomously when
they will be ready for interaction.

It turns out that if processes can decide autonomously when they will be ready for interaction, then
feasibility alone does not necessarily guarantee implementability. To illustrate, the notion of SIF is
feasible [4], but its implementation has been proven impossible by any deterministic algorithm [26, 46].

On the other hand, feasibility is not a necessary condition for implementation either, regardless of
whether local actions and interactions terminate or not. To see this, consider a system of two processesp1

andp2, and two interactionsx andy, both involvingp1 andp2. Assume again that each process transits
between an idle state and a ready state, where in the ready state every process is ready for bothx andy.
LetC be a fairness notion that prohibitsy from being executed. Clearly,C can be implemented for the
system by always letting the two processes executex whenever they are ready for interaction. However,C
is not feasible becausep1 p2y (which represents thatp1 andp2 become ready and then jointly executey)
is a partial computation of the system, but it cannot be extended to a complete computation satisfy-
ingC.

For the equivalence-robustness criterion, it is observed that most equivalence-robust fairness notions
are implementable. (See [4] for a reference of such fairness notions.) This holds even if the time when a
process will be ready for interaction cannot be determined in advance. As we shall see in Section 4, the
observation is not coincidental because under a notion of “strong feasibility” equivalence-robustness
suffices to guarantee implementability. Equivalence-robustness, however, is not necessary for every
implementable fairness notion. For example, consider the notion ofweak process fairness(WPF), which
requires a process continually ready for an enabled interaction (not necessarily the same one, though)
to execute some interaction eventually. WPF is not equivalence-robust [4], but it can be implemented in
a system consisting of only biparty interactions [26, 47]. (In fact, WPF is also possible for multiparty
interaction. See Section 5.3)

In this paper we propose a new criterion for appraising fairness notions. The criterion requires that
a fairness notion be realized by anabstract scheduling functionsuch that all computations produced
by this function are valid (with respect to the fairness notion), and all other computationsindistin-
guishablefrom the produced computations are also valid. Intuitively, the abstract function captures the
scheduling policy adopted by a concrete scheduling program, while the indistinguishableness relation
expresses properties of computations that cannot be distinguished by any asynchronous distributed
environment.

4 YUH-JZER JOUNG

Assume the following in the underlying model of computation:

A1. One process’s readiness for multiparty interaction can be known by another only through com-
munication, and the time it takes two processes to communicate is nonnegligible.

A2. A process decides autonomously when it will attempt an interaction, and at a time that cannot
be predicted in advance.

We show that if a fairness notion violates the criterion, then no deterministic algorithm for multiparty
interaction scheduling can satisfy the fairness notion. For fairness notions that satisfy the criterion,
we also present a general algorithm to implement them in an asynchronous system where processes
communicate exclusively by biparty message passing. Thus, the criterion is sufficient and necessary to
determine the implementability of any given fairness notion. To our knowledge, this is the first such
criterion to appear in the literature.

The main benefit of the proposed criterion is that it reduces reasoning about a complex and concrete
implementation model to reasoning about a simpler and abstract model for process interaction. To
illustrate this, we use the criterion to examine several important fairness notions, including SIF,strong
process fairness(SPF) [4],U-fairness[5], andhyperfairness[6]. We also apply the criterion to analyze
the system structures rendering the impossibility phenomena. This analysis helps us separate, for each
given fairness notion, the set of systems for which the fairness notion can be implemented from those
for which it cannot.

The rest of the paper is organized as follows. Section 2 presents an abstract model for process inter-
action and an implementation model for interaction scheduling. The relation between the two models
is also described. Section 3 presents our criterion and shows that it is necessary and sufficient to deter-
mine the implementability of any given fairness notion. Section 4 exploits properties of implementable
fairness notions derived from the criterion. In Section 5 we use the criterion to examine several fairness
notions that are commonly associated with multiparty interactions. Section 6 discusses related work
and then concludes.

2 PRELIMINARIES

21. An Abstract Model for Process Interaction

An interaction systemis a tripleIS = (P, I,M), whereP is a finite set of processes,I is a finite set of
interactions, andM is a program. Each interactionx involves a fixed setPx ⊆ P of participant processes,
and can be executed by the participants (and only the participants) only if they are all ready for the
interaction. A process is either in anidle state or in areadystate. Initially, all processes are idle. An idle
processp may autonomously become ready, where it is ready for a setp.aim of potential interactions
of which it is a member. After executing one interaction inp.aim, p returns to an idle state; see Fig. 2.
Set p.aim is determined byM based on the history of interactionsp has executed. On some occasions
we may consider programs allowing a process to be ready for all interactions of which it is a member
every time when the process is ready for interaction. We useIS = (P, I,M∀) to denote an interaction
system associated with this type of programs.

A states of IS consists of the history of interactions the system has executed so far, and for each
p ∈ P, the state (i.e., idle or ready) ofp and the set of potential interactionsp are ready to execute when
p is in a ready state. We use [s]hist to denote the history ofs, [s] p the state ofp in s, and [s] p.aim the set
of potential interactionsp is ready to execute. We assume that [s] p.aim = ∅ if [s] p = idle. Moreover,

FIG. 2. The state transition diagram of a process.

CHARACTERIZATION OF IMPLEMENTABILITY 5

[s]hist,p denotes the sequence of interactions in [s]hist that involve p, i.e., the history of interactions
executed byp. An interactionx is enabledin s iff every processp ∈ Px is ready forx, i.e., [s] p = ready
andx ∈ [s] p.aim. Let S be the set of all possible states ofIS. State transitions are written ass

a→ s′,
wheres, s′ ∈ S, anda is the action whose execution results in the transition. State transitions are of the
following forms:

Ready: s
p.I→ s′ iff [s]hist = [s′]hist, [s] p= idle, [s′] p = ready, M(p, [s]hist,p) = [s′] p.aim = I , and

∀q ∈ P− {p}, [s]q = [s′]q and [s]q.aim = [s′]q.aim.

That is, the actionp.I transits processp from idle to a state ready for the setI of interactions.

Interaction: s
x→ s′ iff [s′]hist = [s]hist · x, ∀p ∈ Px, [s] p = readyandx ∈ [s] p.aim and [s′] p =

idle and [s′] p.aim = ∅, and∀q ∈ P− Px, [s]q = [s′]q and [s]q.aim = [s′]q.aim.

That is, the execution of interactionx transits all participants ofx from state ready to idle.
A run π is a sequence of the form

s0
a1→ s1

a2→ s2 . . . ,

wheres0 is the initial state (that is, [s0]hist = ε and∀p ∈ P, [s0] p = idle and [s0] p.aim = ∅), and each
si

ai+1→ si+1 is a state transition of the system. (In the paperε denotes the empty sequence such that
for all finite sequenceπ , πε = επ = π .) In particular,π is completeif it is infinite or it ends up in
a state in which all processes are ready but no interaction is enabled; otherwise,π is partial. We use
run∗(IS) to denote the set of all finite runs ofIS, and run (IS) denotes the set of complete runs. Thus,
run∗(IS) ∩ run (IS) is the set of finite complete runs.

Since each runs0
a1→ s1

a2→ s2 . . . is uniquely determined by the sequence of actions executed in the
run, we often write the run asa1a2 Conversely, we call a sequence of actionsa1a2 . . . a run if it
represents a legal run ofIS. It should be noted that when using actions to represent a run, actions are
distinguished by their occurrences. For example, the twop.I ’s in run p.I x p.I x . . . represent different
instances of actions. If necessary, we can use superscripts to distinguish them.

Some comments on our model are given in order. First, by stipulating thatp returns to an idle
state after interaction, we have also assumednoninstantaneous readinessas in [4], which means that a
process cannot be immediately ready for interaction after executing some interaction. Thus an interaction
cannot be “continuously” enabled throughout an interval if some process involved in the interaction has
executed an interaction in the interval.

Second, many languages that use interactions in guards (e.g., CSP) allow a choice between local
actions and interactions. That is, a processp ready for interaction may in effect performs some local
action and then returns to an idle state without establishing any interaction with other processes. We
can model this non-uniform choice by dedicating some local interactions involving onlyp to p. By
including these local interactions inp.aim, p can have a choice between local actions and interactions
in a ready state.

Third, in our model process termination can be expressed by the ready actionp.∅; that is, p is no
longer willing to engage in any interaction.

Finally, we do not distinguish finite runs which are complete because every process terminates from
those which are complete because the system is deadlocked—some processes are ready to execute an
interaction but no interaction is enabled. Also, unlike finite complete runs, the definition of infinite
runs does not assume “bounded transition time.” So in an infinite run a process may stay idle forever,
and similarly a set of processes may be ready for an interaction indefinitely. We leave the decision whether
such scenarios are allowed or not to be determined explicitly by the underlying fairness notion. Most
systems, however, do impose a very weak fairness notion to exclude the above scenarios. Alternatively,
such a fairness notion can be incorporated directly into the definition of complete runs so that the
bounded transition time assumption is made for both finite and infinite complete runs; for example,
see [7]. On the other hand, the bounded transition time can be removed from finite complete runs by
introducing a null actionλ into the abstract model so that for every states, s

λ→ s (called a stuttering
step in [2]).

6 YUH-JZER JOUNG

DEFINITION 2.1. A fairness notionC is a function which, given an interaction systemIS, returns a
set of complete runsC(IS) ⊆ run(IS). We say thatπ is C-valid (C-fair, or simplyvalid or fair when
the context is clear) ifπ ∈ C(IS).

We assume that actions involving a common participant process in a run are totally ordered by
the ordering the process executes them (which in turn is induced by the semantics of the underlying
program). These total orderings then induce a typical partial order dependency relation on the actions of
a run such thata ≺ b iff some process executesa beforeb, or there existsc such thata ≺ c andc ≺ b;
see [34]. Two runsπ andρ areequivalent, denoted byπ ≡ ρ, iff for every processp, the sequence of
actions involvingp in π is the same as that inρ. As can be seen, ifπ ≡ ρ, then one of them can be
obtained from the other by transpositions of independent actions.

For example, consider the following run of the interaction system shown in Fig. 1, and assume that
the system is associated with a programM∀:

π = (p1 p3yp2 p4z)ω.

For notational simplicity we overload the notationpi to abbreviate the actionpi .I , whereI = {x ∈
I | pi ∈ Px}, i.e., the action that processpi readies all interactions of which it is a member. This
abbreviation will be adopted throughout the paper. Observe that every instance ofy in π is independent
of the following actionp2. Soπ is equivalent to the run

(p1 p3 p2yp4z)ω.

Similarly,π is also equivalent to the run

(p2 p4 p1 p3yz)ω.

22. An Implementation Model for Interaction Scheduling

We now consider the implementation of multiparty interactions. By this we mean augmenting each
process in an interaction system with variables and actions, and possibly introducing auxiliary processes
so that each ready process knows when and which interaction to execute.

Formally, ascheduling programfor an interaction systemIS = (P, I,M) is a sextuple

SPIS = (P, I,M,Aux, {Vp : p ∈ P ∪ Aux}, {Ap : p ∈ P ∪ Aux}),

with three extra componentsAux, {Vp : p ∈ P∪Aux}, and{Ap : p ∈ P∪Aux}. Aux is a set of
processes (possibly empty) that are added to assist the coordination of interactions. To distinguishAux
from P, we refer to the processes inP asprimary and those inAux asauxiliary. For eachp ∈ P∪
Aux, Vp is the set of variables local top, andAp is the set of actions executed byp. We assume that
processes communicate by reliable, FIFO, biparty asynchronous message passing, although our results
in this paper hold as well if communication is by accessing shared variables.

Like the abstract model presented in the previous section, we assume that for each primary process
p, Vp contains a variablep.statewhich designates whetherp is idle or ready, a variablep.aim which
designates the set of potential interactionsp is ready to execute, and a variablep.histwhich designates
the history of interactions executed byp. Moreover,Vp contains a variablep.commitwhich designates
the interactionp has committed to execution. Variablep.commitis set only once in each ready state
and is undefined ifp is idle. We assume thatp can commit tox only when it is ready forx. Moreover, if
some process has committed tox, then all other participants ofx will eventually commit tox, and these
commitments should not depend on the state of any other primary process not involved inx. When all
participants have committed tox, an instance ofx is executed and then the participants return to their
idle states. Alternatively,p.commit= x may be viewed as that processp has startedx.

For every primary processp, actions inAp can be divided into three types: (1) local actions
and/or communications, (2) transitions from idle to ready, and (3) interactions. Local actions and/or

CHARACTERIZATION OF IMPLEMENTABILITY 7

communications are of the form

bσ (Vp); messagereceptions→ fσ (Vp − {p.state, p.aim, p.hist}),messagesendings, (1)

wherebσ (Vp) is a Boolean condition on the variables inVp, fσ (V) represents the effect of the execution
to the variables inV , messagereceptionsexpress the messages to be received, andmessagesendings
describe the messages to be sent when the action is executed. All four parts are optional. An action can
be executed only if it isenabled, i.e.,bσ (Vp) evaluates to true and the messages specified in the reception
list have arrived. Note that actions of this form respect Assumption A1 (see Section 1) in the sense that
a process obtains state information of another only through message passing, and a message’s sending
and reception must occur in two separate actions; i.e., the communication time is nonnegligible. Note
further that this type of actions are not allowed to alterp.state, p.aim, andp.hist.

Transitions from idle to ready are of the form

p.state= idle→ p.state:= ready,

p.aim := M(p, p.hist),
(2)

fσ (Vp − {p.state, p.aim, p.hist}),
messagesendings.

This complies with Assumption A2 in that a process may enter a ready state any time when it is idle. Like
form (1), an action of this form may update local variables and send out messages to other processes,
possibly to inform them of the process’s readiness.

To represent interactions (and state transitions from ready to idle), for eachx ∈ I of which p is a
participant,Ap contains an action of the form

p.commit= x → p.state:= idle,

p.aim := ∅,
p.hist := p.hist · x,

(3)
p.commit:= ⊥,
fσ (Vp − {p.state, p.aim, p.hist, p.commit}),
messagesendings.

Recall thatp.commit= x only whenp is ready forx (i.e., x ∈ p.aim), and that whenp.commit= x,
every other participant ofx will eventually set theircommit to x. So when some process has set its
committo x, all participants ofx will eventually execute their actions of this form to establish an inter-
action. To simplify the implementation model, we assume that the actions are executed simultaneously
by the participants ofx.2 For otherwise, extra variables are needed to prevent a participantp of x from
“out-running” other participants in executing instances ofx; i.e., to preventp from committing tox
(and then executingx) several times before the other participants ofx have committed to (a particular
instance of)x.

Since auxiliary processes are added only to assist coordination, they have only actions of form (1).
A typical centralized scheduling algorithm, for example, might employ an auxiliary process to collect
state information from primary processes, and to direct them to commit to an interaction it has chosen.

As usual, a stateα of SPIS consists of the values of all variables of the program and the set of messages
that have been sent but have not yet been received. Acomputation5 of SPIS is a sequence of the form

α0
σ1→ α1

σ2→ α2 . . . ,

2 We remark here that while simultaneous execution of the actions also implies that the participants ofx finishx synchronously,
exit synchronization is not necessary for multiparty interaction; see [17, 32].

8 YUH-JZER JOUNG

whereα0 is an initial state, and eachαi−1
σi→ αi represents a state transition of the program. Like runs,

5 is uniquely determined by the action sequenceσ1σ2 . . . executed in5 (assuming some fixed initial
state). So we often write5 asσ1σ2 A computation iscompleteif it is infinite or it ends up in a
state in which no action is enabled for execution; otherwise, the computation is calledpartial. Since
an idle process can autonomously become ready, in the final state of a finite complete computation all
primary processes must be ready. In particular, if there is an enabled interaction, then the computation
is deadlocked. Unless stated otherwise, we shall consider only scheduling programs that produce no
deadlocked computation.

Like the dependency relation we assumed for our abstract model, we also assume a dependency
relation “≺” respecting Lamport’s “happened-before” relation [34] over the set of actions ofSPIS. Two
computations5 and9 areequivalent, denoted by5 ≡ 9, iff they differ up to the order of independent
actions.

It should be noted that under theminimal progress assumption[41]—any process with an enabled
action will eventually execute some action—actions of form (2) do not fully respect Assumption A2.
This is because a scheduling program may simply wait until all processes become ready, and then decide
on an interaction for execution. To avoid this, we consider onlyundelayedscheduling programs where
the establishment of enabled interactions does not depend on idle processes to become ready.

DEFINITION 2.2. A scheduling programSPIS isundelayediff for every partial computation5, if there
is an interaction enabled in (the last state of)5, then5 has a continuation such that some interaction
will be executed and no process makes a ready transition in the interim.

To abstract runs from computations, we introduce the following definitions. Let5 = σ1σ2 . . . σn . . .

be a computation ofSPIS. Suppose thatσn denotes the execution of some instance ofx. Then, prior to
σn all participants ofx must have committed tox (i.e., with theirp.commitvariables set tox). Let σ j

be the first commitment. Then we say that the execution ofσ j establishesthe instance ofx. The run
corresponding to5, denoted by [5]IS, is [σ1]IS[σ2]IS . . . [σn]IS . . . ,where [σi]IS is defined as follows:

1. [σi]IS = p.aim if the execution ofσi results inp’s transition into a state ready for the setaim of
interactions,

2. [σi]IS = x if the execution ofσi establishes an instance ofx, and

3. [σi]IS = ε otherwise.

We say that computation5 isC-valid (or simplyvalid or fair when the context is clear) if run [5]IS is
C-valid. The implementability of fairness notions is defined as follows.

DEFINITION 2.3. A fairness notionC is implementablefor IS iff there exists an undelayed scheduling
programSPIS such that for every complete computation5 of SPIS, [5]IS ∈ C(IS).C is implementable
iff C is implementable for everyIS.

Note that the synchronization and mutual exclusion requirements for multiparty interactions have
been assumed by a scheduling program via the use ofcommitvariables in the program.

3 THE CRITERION

The fairness implementability criterion depends on a notion of strong feasibility and an indistinguish-
ableness relation between runs. We begin with strong feasibility.

DEFINITION 3.1. A fairness notionC isstrongly feasiblefor IS = (P, I,M) iff there exists a nonempty
subsetSofC(IS) such that for every runρ ∈ Sand every finite prefixπ ofρ, the following two conditions
are satisfied:

1. Lets be the last state ofπ . If p is idle ins, thenπ · p.M(p, [s]hist,p) can be extended to a run inS.

2. If some interaction is enabled ins, then there exists an interactionx such thatπ ·x can be extended
to a run inS.

CHARACTERIZATION OF IMPLEMENTABILITY 9

Intuitively, condition 1 together with the factS 6= ∅ means that an idle process may become ready
at any time it wishes. Condition 2 means that when some interaction is enabled, there should be a
continuation allowing some interaction to be executed regardless of whether idle processes will become
ready.

Note that we do not requireS = C(IS). This is because for a scheduling programSPIS to implement
C, it suffices that every computation ofSPIS is valid; there is no need forSPIS to generate all possible
valid computations.3 For example, if bothx and y are enabled at the end of a partial runπ , and the
fairness notionC permits either one to be continued, then an implementation ofC can decide to let one
of the two interactions, sayx, as the only continuation. Moreover, letC′ be a fairness notion such that
C′(IS) contains only runs [5]IS, where5 is a computation ofSPIS. ThenC′ can also be implemented
by SPIS. Observe thatπ · x andπ · y are partial runs ofIS (whereπ is the above partial computation
which ends up with a state wherex andy are both enabled) butπ · y does not have a continuation to a
C′-valid run. Therefore, from the implementation’s concern we do not need every partial run ofIS be
extended to a valid one. This is the main difference between our feasibility and the notion of feasibility
proposed by Aptet al. [4].

From a more operational standpoint, strong feasibility can be exhibited by an explicit scheduler to
schedule the behavior of the processes. Unlike those used in [4, 40], however, the scheduler here should
only determine for ready processes which interactions to execute; the transitions from idle to ready are
given independently by an adversary to capture the processes’ autonomy in making these transitions.
Thus, a run is the result of a 2-player game between the explicit scheduler and a given adversary. The
following definition is used to realize this.

DEFINITION 3.2. 1. Anadversary Afor IS is a function which given a runπ ∈ run∗(IS) returns
either an empty sequenceε or a sequence of actionsp1.I1 . . . pk.Ik as the continuation ofπ such that
π · p1.I1 . . . pk.Ik represents a legal run ofIS. Moreover,A(π) = ε only if π is complete or some
interaction is enabled inπ (i.e., enabled in the last state ofπ).

2. A nonblocking scheduler4 S for IS is a function which given a runπ ∈ run∗(IS) returns eitherε
or an interactionx enabled inπ as the continuation ofπ . Moreover,S(π) = ε only if no interaction is
enabled inπ .5

3. The result of the game up to roundi is defined byr i (S, A), where

r i (S, A) =

ε: i = 0

r i−1(S, A) · A(r i−1(S, A)): i = 2n− 1, n ∈ N

r i−1(S, A) · S(r i−1(S, A)): i = 2n, n ∈ N.

The run generated bySversusA, denoted byr (S, A), is the result of the game proceeding in maximal
rounds.

Note thatr (S, A) must be complete. We say that a nonblocking schedulerSsatisfies a fairness notion
C if r (S, A) ∈ C(IS) for every adversaryA. The following proposition follows directly from the above
definition.

PROPOSITION3.1. A fairness notionC is strongly feasible forIS iff there exists a nonblocking scheduler
S such that r(S, A) ∈ C(IS) for every adversary A.

Thus, to show thatC is strongly feasible forIS we need to construct a nonblocking schedulerSsuch
that r (S, A) ∈ C(IS) for every adversaryA. Note that by Definition 3.2, a nonblocking schedulerS
must always return an interaction if it is given a runπ in which some interaction is enabled. Otherwise,
SversusA would not be able to generate a complete run ifA in response refuses to schedule any more

3 In the terminology of [4], we do not requireSPIS to befaithful toC.
4 It was referred to as “nonpreemptive scheduler” in [27].
5 For simplicity, we allowS to schedule only one interaction at a time even if there is more than one nonconflicting interaction

enabled. This does not lose any generality because the game allows the adversary in response to suspend idle processes from
becoming ready until all enabled interactions have been disabled.

10 YUH-JZER JOUNG

process to enter a ready state. This is why the scheduler is termed “nonblocking.” Similarly,A(π) must
not return an empty sequence whenπ is partial and contains no enabled interaction, for otherwise no
schedulerSversusA could possibly generate a complete run.

To introduce the indistinguishableness relation, we need an operation of interprocess permutation
and an operation of retraction. Let

π = p1,1.I1,1 . . . p1,k1.I1,k1x1 p2,1.I2,1 . . . p2,k2.I2,k2x2 . . . ,

wherex1, x2, . . . are interactions executed inπ . We say thatρ is obtained fromπ by aninterprocess
permutationif

ρ = q1,1.J1,1 . . .q1,k1.J1,k1x1 q2,1.J2,1 . . .q2,k2.J2,k2x2 . . .

such that for eachi > 0,qi,1.Ji,1, . . . ,qi,ki .Ji,ki is a permutation ofpi,1. Ii,1, . . . , pi,ki . Ii,ki . Furthermore,
ψ is obtained fromπ by aretraction if

ψ = p1,1.I1,1 . . . p1,k1.I1,k1 p2,1.I2,1 . . . p2,h2.I2,h2x1

p2,h2+1.I2,h2+1 . . . p2,k2.I2,k2 p3,1.I3,1 . . . p3,h3.I3,h3x2

p3,h3+1.I3,h3+1 . . . p3,k3.I3,k3 p4,1.I4,1 . . . p4,h4.I4,h4x3 . . .

such that for eachi > 1, pi,1, . . . , pi,hi 6∈ Pxi−1. That is,ψ is obtained fromπ by moving, for each
i > 0, some initial sequence (possibly empty)pi,1.Ii,1, . . . , pi,hi .Ii,hi of pi,1.Ii,1 . . . pi,ki .Ii,ki forward
just beforexi−1, and the processespi,1, . . . , pi,hi whose ready transitions are moved must not be involved
in xi−1.

DEFINITION 3.3. A runρ is indistinguishablefromπ , denoted byρ V π , iff ρ can be obtained from
π by an interprocess permutation followed by a retraction. The set of runs that are indistinguishable
from π is denoted byindistinct(π).

Note that since a runπ can be obtained from itself by an interprocess permutation and by a retraction,
both operations in the above definition can be considered as optional. As a result,π ∈ indistinct(π).

To illustrate, consider the four runs

π1 = (p1 p2x12p3 p4x34)
ω

π2 = (p1 p2 p3 p4x12x34)
ω

π3 = (p3 p4 p1 p2x12x34)
ω

π4 = (p2 p1 p4 p3x12x34)
ω,

where Px12 = {p1, p2} and Px34 = {p3, p4}. In this example,π2 Vπ1 becauseπ2 can be obtained
from π1 by moving each occurrence ofp3 p4 ahead ofx12. Also,π3 Vπ2 becauseπ3 differs fromπ2

only in the permutation ofp1 p2 p3 p4. Note thatπ1 V/ π2 andπ3 V/ π1. So the indistinguishableness
relation is neither symmetric nor transitive. Moreover,π4 Vπ1 becauseπ1 can be transformed into
(p2 p1x12p4 p3x34)ω by an interprocess permutation, which in turn can be transformed intoπ4 by a
retraction.

Observe that ifρVπ then the two runs must be equivalent. The converse may not necessarily hold,
however. This can be illustrated by the above example whereπ1 andπ3 are equivalent but they are not
indistinguishable from each other. Thus, indistinguishableness is strictly stronger than the equivalence
relation defined earlier by permuting independent actions.

The fairness implementability criterion is defined as follows.

DEFINITION 3.4. A fairness notionC on IS satisfies thefairness implementability criterioniff there
exists a nonblocking schedulerSsuch thatindistinct(r (S, A)) ⊆ C(IS) for every adversaryA of IS.

CHARACTERIZATION OF IMPLEMENTABILITY 11

We first provide some intuition behind the criterion. Clearly, any implementation of a fairness notion
C for a systemISmust implicitly assume some scheduling policy to decide which action to execute so as
to meet the requirement of the fairness notion. Given Assumption A2 that a process can autonomously
make a transition into a ready state, the scheduling policy has no control at all on when a process will
make a ready transition. Furthermore, when some interaction has been enabled, the scheduling policy
must decide on an interaction for execution, regardless of whether idle processes will become ready
or not. This is exactly what is captured by the notion of strong feasibility: the nonblocking scheduler
abstracts the scheduling policy, while the adversary stands for the processes to decide when they will
make a ready transition. So strong feasibility is a necessary condition for the implementability criterion.

Moreover, any coordinator process that is to implement this scheduling policy must first obtain its
knowledge of the global state. Recall Assumption A1 that a process’s state cannot be instantly observed
by another process. So by A1 and A2, it is clear that when the coordinator has locally observed a sequence
of actionsp1.I1 p2.I2 . . . pk.Ik, the coordinator may not be able to tell the real execution sequence of
them. Hence if the coordinator decides to schedule an interaction based on this observation, then the
fairness notion should be general enough to consider all other runs that differ from the coordinator’s
observation only in the ordering of these ready actions as valid. Otherwise, the coordinator cannot
correctly implement the fairness notion. Furthermore, when a coordinator learns that some process is
idle, this knowledge must be based on some (direct or indirect) communication between the coordinator
and the process. By A1 communication takes nonnegligible time. So the information about the process’s
idleness may be obsolete when it arrives at the coordinator because, by A2, the process can make a
ready transition while the information is being delivered. As a result, when the coordinator decides on an
interaction, the fairness notion should also allow this decision even if the ready transition actually occurs
before the coordinator makes its decision. The type of runs for which a coordinator cannot distinguish
from its observation are formally captured by the indistinguishableness relation amongst runs.

The limitations of the coordinators mean that although a coordinator’s observation causes it to generate
a runπ , the coordinator cannot tell whetherπ orρ is the run that actually occurs for anyρ ∈ indistinct(π).
Clearly,π is the result of the underlying scheduling policy (i.e., a nonblocking schedulerS“simulated”
by the coordinator) versus a specific behavior of the processes (i.e., a specific adversaryA). As the
scheduling policy must also work for all other possible behaviors of the processes, we therefore have
that for every possible adversaryA of IS, all runs inindistinct(r (S, A)) must satisfyC. This is how the
fairness implementability criterion is obtained.

We now formally prove that the criterion is sufficient and necessary to guaranteeC’s implemen-
tability.

THEOREM3.2. A fairness notionC onIS = (P, I,M) is implementable iff there exists a nonblocking
scheduler S such that indistinct(r (S, A)) ⊆ C(IS) for every adversary A ofIS.

Proof of the only-if direction. SupposeSPIS is an undelayed scheduling program satisfyingC.
We present a nonblocking schedulerS by defining, given any adversaryA, the partial runr i (S, A)
generated bySversusA for eachi ≥ 0. Concomitantly, we construct a partial computationci (S, A) of
SPIS satisfying the following requirements:

R1. r i (S, A) = [ci (S, A)]IS.

R2. For allψ ∈ indistinct(r i (S, A)) there exists a partial computation9, 9 ≡ ci (S, A), such that
ψ = [9]IS.

R1 ensures that for every complete runπ generated byS there is a computation5 of SPIS such that
[5]IS = π . SinceSPIS satisfiesC, π ∈ C(IS). Moreover, R2 ensures thatindistinct(π) ⊆ C(IS). Thus,
the only-if direction of the theorem is established.

The construction ofr i (S, A) andci (S, A) is as follows:

Case0. i = 0: r 0(S, A) = c0(S, A) = ε.

Case1. i = 2n− 1, n > 0:

12 YUH-JZER JOUNG

Case1.1. A(r i−1(S, A)) = ε:

r i (S, A) = r i−1(S, A), and ci (S, A) = ci−1(S, A).

Case1.2. A(r i−1(S, A)) = p1.I1 . . . pk.Ik, k ≥ 1:

r i (S, A) = r i−1(S, A) · p1.I1 . . . pk.Ik, and ci (S, A) = ci−1(S, A) · p1.I1 . . . pk.Ik.

Note that for notational simplicity, here we also usepi .Ii to denote the action ofSPIS corresponding to
processpi ’s transition into a state ready for the setIi of interactions.

Case2. i = 2n, n > 0:

Case2.1. No interaction is enabled inr i−1(S, A):

r i (S, A) = r i−1(S, A), and ci (S, A) = ci−1(S, A).

Case2.2. Some interaction is enabled inr i−1(S, A): Let σ1 . . . σ j be a continuation of
ci−1(S, A) such that the execution ofσ j causes some process to commit to an interaction, sayx, and in
the interim no primary process makes a ready transition. Since some process has committed tox, by the
assumption onSPIS, ci−1(S, A) · σ1 . . . σ j can be extended further toci−1(S, A) · σ1 . . . σ jσ j+1 . . . σ j+k

such that all other participants ofx will also commit tox, and no primary process other than the
participants ofx is involved in the computationσ j+1 . . . σ j+k. Moreover, since afterσ j+k all participants
of x have committed tox, an instance ofx can be executed. Letσ j+k+1 denote the action of this execution.
Then,

r i (S, A) = r i−1(S, A) · x and ci (S, A) = ci−1(S, A) · σ1 . . . σ j+kσ j+k+1.

To complete the proof of the only-if direction we shall show that for alli ≥ 0 the following conditions
hold:

(i) r i (S, A) represents a legal run.

(ii) If some interaction is enabled inr i−1(S, A), wherei = 2n for somen > 0, thenr i (S, A) =
r i−1(S, A) · x for somex ∈ I.

(iii) ci (S, A) represents a legal computation ofSPIS.
(iv) let x be the last interaction executed inci (S, A), and letσl denote the execution ofx. Let σ j be

the action that establishes this instance ofx. Then no primary process other than the participants ofx
is involved in the computation fromσ j to σl .

(v) R1 holds; that is,r i (S, A) = [ci (S, A)]IS.

(vi) R2 holds; that is, for allψ ∈ indistinct(r i (S, A)), there exists a partial computation9, 9 ≡
ci (S, A), such thatψ = [9]IS.

The first two conditions ensure thatS is nonblocking; together with the third condition they ensure that
the construction results in legal runs and legal computations. The last two conditions guarantee R1 and
R2. Condition (iv) is used to help assert condition (vi).

We prove the above six conditions by induction oni . It is easy to see that the six conditions hold for
i = 0. Assume the induction hypothesis that they hold up toi = m− 1, m≥ 1. To show that they hold

CHARACTERIZATION OF IMPLEMENTABILITY 13

for i = m, we can divide the problem into four cases based on the construction ofr i (S, A) andci (S, A):

(1) m= 2n− 1, n > 0:

(1.1) A(r m−1(S, A)) = ε,
(1.2) A(r m−1(S, A)) = p1.I1 . . . pk.Ik, k ≥ 1.

(2) m= 2n, n > 0:

(2.1) no interaction is enabled inr m−1(S, A)

(2.2) some interaction is enabled inr m−1(S, A)

For case (1.1), since by the construction we haver m(S, A) = r m−1(S, A) andcm(S, A) = cm−1(S, A),
the induction hypothesis, together with the fact that condition (ii) holds vacuously becausem= 2n−1,
implies that the six conditions hold for this case as well.

For case (1.2), by the construction we haver m(S, A) = r m−1(S, A) · p1.I1 . . . pk.Ik, andcm(S, A) =
cm−1(S, A) · p1.I1 . . . pk.Ik. SinceA is an adversary forIS, by definition,r m(S, A) must be a legal run
of IS (given the induction hypothesis thatr m−1(S, A) is a legal run ofIS). In particular,p1, . . . , pk

must be idle incm−1(S, A), and so they are eligible to make their ready transitions after the partial
computationcm−1(S, A). So conditions (i) and (iii) are satisfied. Condition (ii) is satisfied vacuously
becausem = 2n − 1. Since only ready transitions are added tor m−1(S, A), condition (iv) follows
directly from the induction hypothesis. It is also easy to see that the construction guarantees condition
(v). So it remains to show that condition (vi) is satisfied for this case.

Letψ be a run inindistinct(r m(S, A)). By definition,ψ is obtained fromr m−1(S, A) · p1.I1 . . . pk.Ik

by an interprocess permutation followed by a retraction. There are three cases to consider:

• The operations of interprocess permutation and retraction do not involve any of the new ready
transitionsp1.I1, . . . , pk.Ik.

• Only the operation of interprocess permutation involves the ready transitionsp1.I1, . . . , pk.Ik.

• Otherwise; i.e., the operation of retraction involves the ready transitionsp1.I1, . . . , pk.Ik.

We shall consider here only the last case; the other two cases can be treated analogously (but simpler).
In the last caser m−1(S, A) must contain some interaction, for otherwise the operation of retraction would
be meaningless. Letx be the last interaction executed inr m−1(S, A). Then either (a)r m−1(S, A) = ψ ′ ·x
or (b) r m−1(S, A) = ψ ′ · x · p′1.I

′
1 . . . p′g.I

′
g. Again, we shall consider only the latter case; the former

case can be treated analogously.
We first note that the set of processes{p′1, . . . , p′g} must be disjoint with{p1, . . . , pk}, andψ ′ · x =

r l (S, A) for somel < m. Sinceψ ∈ indistinct(r m(S, A)), ψ can be written asψ ′′ · q1.J1 . . .qh.Jh · x ·
qh+1.Jh+1 . . .qg+k.Jg+k such thatq1.J1, . . . ,qg+k.Jg+k is a permutation ofp′1.I

′
1, . . . , p′g.I

′
g, p1.I1, . . . ,

pk.Ik, andx does not involveq1, . . . ,qh. Clearly,ψ ′′ ·x ∈ indistinct(ψ ′ ·x). Given thatψ ′ ·x = r l (S, A),
by conditions (iv) and (v) of the induction hypothesis, there exists some partial computation0 of SPIS
such thatcl (S, A) = 0 · σ1 . . . σ f σ f+1, whereσ1 establishes an instance ofx, the execution of subsequent
actionsσ2, . . . , σ f causes every participant ofx to commit tox, andσ f+1 corresponds to the execution
of x. Note that no primary process other than that ofPx is involved in these actionsσ1, . . . , σ f+1. Also,
by the construction,cm(S, A) = 0 · σ1 . . . σ f σ f+1 p′1.I

′
1 . . . p′g.I

′
g, p1.I1 . . . , pk.Ik. By condition (vi)

of the induction hypothesis, there exists9 ′ such that9 ′ ≡ cl (S, A) andψ ′′ · x = [9 ′]IS. Given that
cl (S, A) = 0 · σ1 . . . σ f σ f+1, there exists some0′ such that0′ ≡ 0, 9 ′ = 0′ · σ1 . . . σ f σ f+1, and
ψ ′′ · x = [0′ · σ1 . . . σ f σ f+1]IS. So0′ · σ1 . . . σ f σ f+1 ·q1.J1qh.Jh ·qh+1.Jh+1 . . .qg+k.Jg+k must
also be a legal computation and is equivalent tocm(S, A). Moreover, since the actionsσ1, . . . , σ f , σ f+1

involve only primary processes inPx, and sincex does not involveq1, . . . ,qh, the computation9 =
0′ · q1.J1 . . .qh.Jh · σ1 . . . σ f σ f+1 · qh+1.Jh+1 . . .qg+k.Jg+k is still legal and equivalent tocm(S, A). It
is easy to see thatψ = ψ ′′ · q1.J1 . . .qh.Jh · x · qh+1.Jh+1 . . .qg+k.Jg+k = [9]IS. So condition (vi) is
satisfied. This completes the proof of case 1.2.

For case (2.1), we haver m(S, A) = r m−1(S, A) andcm(S, A) = cm−1(S, A). The induction hypothesis
together with the fact that condition (ii) holds vacuously because no interaction is enabled inr m−1(S, A)
implies that the six conditions hold for this case.

For case (2.2), since by condition (v) of the induction hypothesisr m−1(S, A) = [cm−1(S, A)]IS, if
some interaction is enabled inr m−1(S, A), then it must also be enabled incm−1(S, A). Moreover, since

14 YUH-JZER JOUNG

SPIS is undelayed, if some interaction is enabled incm−1(S, A), thencm−1(S, A) has a continuation
σ1 . . . σ j (possibly more than one) such that the execution ofσ j causes some process to commit to
an interaction. So the construction ofcm(S, A) from cm−1(S, A) guarantees thatcm(S, A) is a legal
computation ofSPIS. Likewise,r m(S, A) is also a legal run ofIS. So conditions (i), (ii), and (iii) are
satisfied for this case. It is also easy to see that the construction ofr m(S, A) andcm(S, A) guarantees
conditions (iv) and (v). For condition (vi), observe that ifψ ∈ indistinct(r m(S, A)), then the operations
of interprocess permutation and retraction to transformr m(S, A) = r m−1(S, A) ·x toψ must not involve
x. Soψ can be written asψ ′ · x such thatψ ′ ∈ indistinct(r m−1(S, A)). The induction hypothesis then
implies that condition (vi) holds for this case as well.

This completes the proof of the only-if direction.

Proof of the if-direction. Suppose there exists a nonblocking schedulerSsuch that for every adver-
sary A, indistinct(r (S, A)) ⊆ C(IS). We present an undelayed scheduling programSimulate(S) which
employs a coordinator to simulate the behavior ofS (see Fig. 3). LikeS, the coordinator proceeds in
rounds. In each round, it first waits for idle processes to inform it of their readiness. Each processp is
required to send a messageReady(p, I) to the coordinator when it makes a ready transitionp.I .

When the coordinator learns that some interaction has been enabled, it initiates aquerying procedure,
attempting to confirm if the other processes which have not yet informed the coordinator of their
readiness are indeed idle. To do so, the coordinator sends a query message to each of them and waits
for the response. The querying procedure terminates if every queried process replies a messageidle to
the query indicating that the process was idle when it received the query. If some process responds with
Ready(p, I), then the coordinator has to reinitiate a querying procedure. Note that if a new querying
procedure is necessary, then the number of processes that are idle (to the coordinator’s knowledge) must
be decreased by at least one. Since the total number of processes in the system is finite, eventually no
more querying procedure will be needed.

When the coordinator has finished its querying procedures, it determines an interaction for execution
by simulating the scheduling ofS. Let Ready(pi,1, Ii,1), . . . , Ready(pi,k, Ii,ki) be the sequence of ready
messages the coordinator receives in this round. Then, in the simulation the coordinator assumes that
the adversaryA provides the sequence of ready transitionspi,1.Ii,1 . . . pi,ki .Ii,ki to S. Let xi be the
interaction chosen byS. Then the coordinator finishes this round by sending a messageCommit(xi)
to inform each process inPxi to executexi . The commit messages are acknowledged by the receivers.
Note that if some interaction is enabled, thenS (and thus the coordinator) must schedule an interaction
for execution becauseS is nonblocking. SoSimulate(S) is undelayed.

It is easy to see that the algorithm presented in Fig. 3 complies with the restrictions of the implemen-
tation model described in Section 2.2.

To show thatC is implemented bySimulate(S), we need to show [5]IS ∈ C(IS) for every computation
5 of Simulate(S). Recall that for each5, the coordinator ofSimulate(S) has assumed an adversaryA
with which S is playing. Letr (S, A) be the complete run generated bySversusA. We shall show that
[5]IS ∈ indistinct(r (S, A)). Sinceindistinct(r (S, A)) ⊆ C(IS), we have that [5]IS ∈ C(IS).

We begin by defining a mappingσ from actions inr (S, A) to actions in5. Recall that the coordinator
appends a ready transitionp.I to some prefixρ of r (S, A) if, and only if, it has received a message
Ready(p, I) from p. Processp sends this message because it has made a ready transition inSPIS.
We useσ (p.I) to denote this ready transition. Moreover, the coordinator appends an interactionx to
some prefixρ of r (S, A) becauseS(ρ) = x. To actually schedulex, the coordinator sends a message
Commit(x) to each participant ofx. Each participant, upon receiving the commit message, will set its
variablecommitto x. Letσ (x) denote the first reception of the commit messages. By definition of [5]IS,
only the actions in5 which can be mapped from the actions inr (S, A) are relevant to the projection
from5 to [5]IS. Note that the mappingσ preserves the dependency relation of the actions inr (S, A)
in the sense that ifa ≺ b thenσ (a) ≺ σ (b) in 5.

We claim thatSimulate(S) guarantees the following conditions:

C1. The sequence of interactions executed in [5]IS is the same as the sequence of interactions
executed inr (S, A).

C2. Leta be a ready transition inr (S, A), and assume thata occurs between two interactionsx1 and
x2 in r (S, A). Furthermore, letb be the action just beforex1. Then the four actionsσ (b), σ (a), σ (x1),

CHARACTERIZATION OF IMPLEMENTABILITY 15

FIG. 3. The scheduling programSimulate(S).

andσ (x2) have the dependency relations

σ (b) ≺ σ (a) and σ (a) ≺ σ (x2).

Note that if there is nox1 (becausea belongs to the initial ready transitions ofr (S, A)), then, of course,
only the relationσ (a) ≺ σ (x2) will be considered. Similarly, if there is nox2 (becauser (S, A) is a finite
complete run), then onlyσ (b) ≺ σ (a) will be considered.

It can be seen that C1, C2, and the fact that actions in5 respect the dependency relation inr (S, A)
ensure that [5]IS ∈ indistinct(r (S, A)).

16 YUH-JZER JOUNG

To see C1, letx1 andx2 be any two interactions inr (S, A), and assume thatx1 occurs beforex2.
Consider the actions in5. By the scheduling program, when the coordinator decides to schedulex1,
it will send commit messages to every participant ofx1 and wait for the acknowledgments. So every
participant ofx1 must have received the commit message before the coordinator wishes to schedulex2.
So the actionσ (x1) must occur causally beforeσ (x2).6

To see C2, leta be a ready transition inr (S, A) and assume thata = p.I . Consider first that some
interaction occurs beforea, and letx1 be the latest interaction. Letb be the action just beforex1. Observe
that the coordinator addsa to r (S, A) becausep has made a ready transition and has sent a message
Ready(p, I) to the coordinator. (In the algorithm each ready transition is associated with a unique ready
message.) Sincex1 occurs beforea, the ready message is received after the coordinator decides to
schedulex1. That is, the coordinator considersp as idle just before it decides to schedulex1. However,
before the coordinator decides to schedulex1, it must have completed a querying procedure to make
sure that every process to which it considers as idle has replied an idle message to its query. So between
the two actionsσ (b) andσ (x1) in 5, the coordinator has sent a query message top and p has replied
idle to the query. This means that actionσ (a) whose execution resulting in the ready transitiona must
occur causally afterσ (b); that is,σ (b) ≺ σ (a).

Consider next that some interaction occurs aftera, and letx2 be the first such interaction. Then, it is
clear that actionσ (a) must occur causally before the coordinator receives the corresponding message
Ready(p, I), and the reception must occur causally before the coordinator issues a commit message to
any member ofx2. Soσ (a) ≺ σ (x2).

This completes the if-direction of the proof.

We note that the above proof does not rely on how long it takes to deliver a message. Thus, the
theorem holds as well if the transmission delay is finitely bounded.

4 PROPERTIES OF IMPLEMENTABLE FAIRNESS NOTIONS

In this section we provide some useful lemmas derived from the fairness implementability criterion.
Recall from Section 3 that ifρVπ , thenρ andπ must be equivalent. If equivalent runs are either all
valid or all invalid, thenindistinct(π) contains either all valid runs or all invalid runs. Therefore, if the
fairness notion in consideration is also strongly feasible, then by Theorem 3.2 it must be implementable.
We thus have the following lemma.

LEMMA 4.1. If C is strongly feasible and equivalence-robust forIS, thenC is implementable forIS.

Clearly, the above lemma does not rule out the possibility of a non-equivalence-robust (but strongly
feasible) fairness notion being implementable. Similarly, a fairness notionCmay still be implementable
even ifC(IS) contains someπ such thatindistinct(π) 6⊆ C(IS). The crux is to find a nonblocking
schedulerS that can avoid generating “odd” runs likeπ whoseindistinct(π) contains an invalid run.
(Notice the existential quantifier in Theorem 3.2.) Section 5.3 presents an example for this.

However, there are runs that cannot be avoided by any nonblocking scheduler. So if these runs happen
to be “odd,” then the fairness notion in question is not possible.Singularruns, as defined below, are an
example of runs that must be generated by every nonblocking scheduler.

DEFINITION 4.1. A runπ is singular iff in every state of the run at most one interaction is enabled.

If a nonblocking scheduler faces a situation in which only one interaction is enabled, then by definition
the scheduler must select it for execution. So every nonblocking scheduler forIS must generate all
singular runs ofIS.

LEMMA 4.2. If π ∈ run(IS) is singular, then for every nonblocking scheduler S ofIS, there exists an
adversary A such thatπ = r (S, A).

Proof. The singular runπ itself expresses the behavior of the adversary: Letπ be

a1,1 . . .a1,n1x1a2,1 . . .a2,n2x2 . . . ,

6 It can be seen that the order of interactions inr (S, A) can still be preserved in5 even if only one participant of every scheduled
interaction needs to acknowledge the coordinator’s commit messages.

CHARACTERIZATION OF IMPLEMENTABILITY 17

where eachai,1 . . .ai,ni denotes a sequence of ready transitions andxi denotes interaction execution.
In roundi the adversary schedules the sequenceai,1 . . .ai,ni . Since onlyxi is enabled at this point, the
scheduler in turn must schedulexi for execution. Hence,SversusA generates exactly the run.

Therefore, ifC treats some run indistinguishable from a singular run as invalid, then by Theorem 3.2,
Cmust not be implementable. This is stated in the following lemma and, as we shall see in the following
section, is very useful in proving the unimplementability of fairness notions.

LEMMA 4.3. If there exists a singular runπ ∈ run(IS) such that indistinct(π) 6⊆ C(IS), thenC is
not implementable forIS.

Proof. By Lemma 4.2, every nonblocking scheduler forIS must generateπ . However, since
indistinct(π) 6⊆ C(IS), by Theorem 3.2, therefore, no undelayed scheduling program forIS can sa-
tisfy C.

5 APPLICATIONS OF THE CRITERION

In this section we use the proposed criterion to examine several fairness notions that are typically
associated with multiparty interactions. In particular, if a fairness notion is not implementable, we wish
to identify the system structure that renders the impossibility phenomenon. For this, we shall consider
interaction systems whose programs are of typeM∀. The fairness notions to be examined includestrong
interaction fairness(SIF),strong process fairness(SPF),weak process fairness(WPF),U-fairness[5],
andhyperfairness[6].

51. Strong Interaction Fairness

Recall that SIF requires an interaction that is enabled infinitely often to be executed infinitely often.
Using Lemma 4.3, we can establish an impossibility result for SIF. For intuition, definepermute(π) to
be the set of runs that can be obtained fromπ by an interprocess permutation. Clearly, ifπ satisfies SIF,
then all runs inpermute(π) satisfy SIF. Therefore, ifπ satisfies SIF but some run indistinguishable from
π does not, then there must exist someπ ′ ∈ permute(π) such thatπ ′ contains infinitely many sequences
of the form

yq1q2 . . .qk,

wherek ≥ 1, q1,q2, . . .qk 6∈ Py, such that movingq1q2 . . .qk forward ahead ofy (i.e., deferringy
until qk) causes some interactionx, which has been enabled only a finite number of times inπ ′, to be
enabled immediately beforey is executed. SoPx ∩ Py 6= ∅ and{q1,q2, . . . ,qk} ∩ Px 6= ∅. Given that
q1,q2, . . .qk 6∈ Py, we havePx − Py 6= ∅.

When two sequences of the formyq1q2 . . .qk . . . are placed next to each other, the resulting sequence
yq1q2 . . .qk . . . yq1q2 . . .qk . . . now contains a subsequenceq1q2 . . .qk . . . y. Hencex is immediately
enabled beforey is executed, unless a third interactionz is placed in betweenq1q2 . . .qk andy. Given
thatx is enabled only a finite number of times, such an interaction exists, and (Px − Py)∩ Pz 6= ∅; that
is, Px ∩ Pz 6⊆ Py (which subsumes the previous condition thatPx − Py 6= ∅). Let z be the first such
interaction that is executed after the sequenceyq1q2 . . .qk.

Takingz into account,π ′ contains infinitely many sequences of the formyq1q2 . . .qk . . . z Since
prior to the execution ofz all processes inPx − Py are ready,Px ∩ Py cannot be all ready before
z is executed. Otherwise,x would be enabled immediately beforez is executed, and so would be
enabled infinitely often throughoutπ ′. So Px ∩ Py 6⊆ Pz (which subsumes the previous condition that
Px ∩ Py 6= ∅).7

Hence, if the interaction structure of the underlying system can satisfy the above conditions and a run
like π is inevitable (e.g.,π is singular) to every nonblocking scheduler, then SIF will be impossible for
the system. Indeed, such a setting is possible, as can be illustrated by the systemIS= (P, I,M∀), where
I has the structure as depicted in Fig. 4c. Letπ = (p1 p3yp2 p4z)ω andρ = (p1 p3 p2yp4z)ω. Then,π

7 It should be noted that the conditionPx ∩ Py 6⊆ Pz is obtained only because the definition ofM∀ lets all processes inPx ∩ Py

be ready to executex whenever they are ready.

18 YUH-JZER JOUNG

FIG. 4. Interaction structures for which SIF is not possible.

satisfies SIF and is singular, andρVπ . However,ρ does not satisfy SIF becausex is enabled each time
p2 is ready butx is never executed. So by Lemma 4.3 SIF is not possible for the system. The following
theorem characterizes the interaction structure for which SIF is not possible.

THEOREM5.1. LetIS= (P, I,M∀). Assume∃ x, y, z,∈ I, Px ∩ Py 6⊆ Pz and Px ∩ Pz 6⊆ Py. Then SIF
cannot be implemented forIS.

Proof. Let S be a nonblocking schedulerS for IS that satisfies SIF. We present an adversaryA
such that some run inindistinct(r (S, A)) does not satisfy SIF. By Theorem 3.2, therefore, there is no
scheduling program forIS satisfying SIF.A behaves as follows.

1. Initially, A schedules all processes in (Px − Pz)∪ Py to enter a ready state. (The order of the state
transitions is rather arbitrary.) By the definition ofM∀, y is enabled (and possibly some others, too)
but x is not due to the lack of some process inPx ∩ Pz − Py. (Note thatPx ∩ Pz − Py 6= ∅ because
Px ∩ Pz 6⊆ Py.)

2. A’s subsequent behavior then depends onS’s reaction.

2.1. If S selectsy for execution, thenA in turn schedules the processes inPz to enter a ready
state. Soz becomes enabled, but stillx is disabled due to the lack of some process inPx ∩ Py − Pz.

2.1.1. If Snext selectsz for execution, thenA schedules the processes inPy to become ready
and waits forS’s response. Note that at this pointy is enabled again, but stillx is disabled due to the
lack of some process inPx ∩ Pz − Py. The following behavior ofA is the same as the beginning of
Step 2.

2.1.2. If, however,Sselects some interactionv instead ofz, thenA in response schedules the
processes inPv to be ready again so thatz is enabled inS’s next turn. If subsequentlyz is chosen byS,
thenA schedules the processes inPy to enter a ready state as described in 2.1.1. Otherwise,A continues
to schedule the set of processes for whichShas just selected for interaction to enter a ready state. Note
that in this tournamentzwill eventually be chosen becauseSsatisfies SIF. Moreover,x remains disabled
due to the lack of some process inPx ∩ Py − Pz.

2.2. If Sselects some other interactionu instead ofy, thenA in response schedules the processes
in Pu to become ready so thaty is enabled again inS’s next turn. If y is finally chosen byS, then
A behaves as that described in step 2.1. Otherwise,A continues to schedule the set of processes for
which Shas just selected for interaction to become ready. As discussed above, in this tournamenty will
eventually be selected becauseSsatisfies SIF. Also,x remains disabled due to the lack of some process
in Px ∩ Pz− Py.

Therefore,SversusA must generate a run in whichy is executed infinitely often becausey is enabled
infinitely often. However,x is never executed because it is never enabled. Furthermore, right before
each instance ofy is executed the processes in (Px − Pz) ∪ Py are ready, and wheny is executed the
processes inPz immediately become ready. Consider the runρ obtained fromr (S, A) by deferring
each execution ofy until the processes inPz− Py become ready. Clearly,ρV r (S, A). Moreover, each
deferment causesx to be enabled right beforey is executed. Sox is enabled infinitely often inρ. Since
x is never executed,ρ does not satisfy SIF.

According to the above theorem, if interactions can involve only a single process, then the smallest
system for which SIF is not possible consists of only two processesp1 andp2 and three interactionsx,

CHARACTERIZATION OF IMPLEMENTABILITY 19

FIG. 5. Interaction structures for which SIF is possible.

y, andz such thatPy = {p1}, Pz = {p2}, andPx = {p1, p2} (see Fig. 4a). Otherwise, the one shown
in Fig. 4b would be the smallest. In either case, SIF is not possible for both biparty and multiparty
interactions.

Conversely, SIF can be implemented for systems where either no two interactionsy andz conflict
with a third interactionx, or if they do then it must be the case thatPy ∩ Px ⊆ Pz or Pz∩ Px ⊆ Py (see
Fig. 5 for some examples).

THEOREM 5.2. Let IS= (P, I,M∀). Assume(1) |I| ≤ 2 or (2) ∀x, y, z ∈ I, if Px ∩ Py 6= ∅ and
Px ∩ Pz 6= ∅; then either Px ∩ Py ⊆ Pz or Px ∩ Pz ⊆ Py. Then SIF can be implemented forIS.

Proof. We present a nonblocking schedulerS satisfying SIF in Fig. 6. (Note that this implies that
SIF is strongly feasible.) The scheduler is based on the schedulers presented in [4, 40], except that we
do not need the function of random assignments that renders the scheduler’s behavior nondeterministic.

For each interactionx, the schedulerSassociates withx a unique id and maintains a variablex.count
(initialized to zero) recording the number of rounds in whichx is enabled but is not selected for execution.
Then, in each roundS increments the count variable of each enabled interaction by one. The enabled
interaction with the largest count is selected for execution, and itscountis reset to zero. Tie is broken
by, say, selecting the one with the largest interaction id.

We claim that for any given adversaryA, the scheduler guarantees the following assertion at the end
of every round:

INV = ∀ 0≤ k ≤ |I|, |{x ∈ I | x.count≥ k}| ≤ |I| − k.

The assertion implies that for everyx ∈ I, x.count≤ |I|, which then implies thatr (S, A) satisfies SIF.
It is easy to see that INV holds initially asx.countis initialized to 0. Assume that INV holds at the end
of roundi . By contradiction, if INV does not hold at the end of roundi + 1, then there must exist some
k, k ≥ 1, such that|{x ∈ I | x.count≥ k}| ≥ |I| − k + 1. Let Z = {x ∈ I | x.count≥ k} be the set of
interactions whose counts are at leastk at the end of roundi +1. By the definition ofS, for eachx ∈ Z,
x.count≥ k−1 at the end of roundi . Therefore, there are at least|Z| interactions having counts at least
k− 1 at the end of roundi . By the induction hypothesis, however, at most|I| − k+ 1 interactions can
have their counts greater than or equal tok− 1; that is,|Z| ≤ |I| − k+ 1. So|Z| = |I| − k+ 1, and the
set of interactions whose counts are at leastk− 1 at the end of roundi is equal toZ. Since INV holds
at the end of roundi but not at the end of roundi + 1, there must exist some interactiony ∈ Z such
thaty.counthas been changed in roundi + 1. This means thaty is enabled prior to roundi + 1. By the
definition of S, some interaction will be chosen for execution, and the interaction (sayy′) must be in
Z. Oncey′ is executed its count is reset to 0. However, this contradicts the fact thaty′.count≥ k > 0
at the end of roundi + 1.

FIG. 6. A nonblocking scheduler for SIF.

20 YUH-JZER JOUNG

We now show that if the interaction structure ofIS satisfies the conditions stated in the theorem,
then for every adversaryA all runs inindistinct(r (S, A)) must satisfy SIF. By Theorem 3.2, there is a
scheduling program forIS satisfying SIF. Suppose otherwise some run inindistinct(r (S, A)) does not
satisfy SIF. Then, by the discussion presented in the beginning of this section, there must exist three
interactionsx, y, andz such thatPx ∩ Pz 6⊆ Py andPx ∩ Py 6⊆ Pz. This then contradicts the assumption
imposed on the structure ofI.

In the above we assumed that the programs of interaction systems are of typeM∀. One would also
be interested to know, given anyIS= (P, I,M) whereM is not limited to typeM∀, whether SIF is
implementable forIS. In this case, the implementability is determined not only by the structure ofI
but also by the condition whether the semantics ofM allows the interactions to be enabled as required
so as to intrigue against SIF. So the structure ofI presented in Theorem 5.1 becomes only a necessary
condition for the unimplementability. It should be noted again that when a process does not need to be
ready for all interactions of which it is a member at a time, then the conditionPx ∩ Py 6⊆ Pz may be
lifted from Theorem 5.1. That is, we only requireI to contain three interactionsx, y, andz such that
Px ∩ Py 6= ∅ andPx ∩ Pz 6⊆ Py. This can be seen from the discussion in the beginning of this section
and from the following example: LetIS= ({p1, p2}, {x, y, z},M) be an interaction system such that
Px = Pz = {p1, p2}, Py = {p1}, andM behaves as follows:

p1 :: ∗[x→ skip p2 :: ∗[x→ skip

2 y→ z] 2 z→ skip]

Here we use the CSP notion∗[· · ·] to represent a repetitive command. Then run(IS) contains a run
π = (p1yp1.{z}p2z)ω satisfying SIF. Sinceπ is singular andindistinct(π) contains a non-SIF run
(p1 p2yp1.{z}z)ω, by Lemma 4.3 SIF is not implementable for the system.

In addition to the above structure requirement, from Theorems 3.2 and 5.1, it can also be seen that
if the semantics ofM allows that from some states onward all continuations ofs drive IS either into a
terminating state or into a state in whichx andy can be enabled simultaneously, and aftery is executedz
can subsequently be executed without ever requiringx to be enabled; then SIF is still unimplementable
if s has an infinite continuation and all nonblocking schedulers inevitably driveIS into states.

To illustrate, consider the program

p1 :: ∗[x→ skip p2 :: ∗[x→ skip p3 :: ∗[y→ z]

2 z→ skip 2 y→ skip]

wherex, y, andz are interactions as depicted in Fig. 4b. Clearly, the program does not belong to the
category ofM∀, asp3 is ready fory andz alternately. However, the program still allows a conspiracy to
be constructed so that from the time wheny is executed onward, the rest of the run is such thatz andy
alternately become enabled and executed (i.e., the run is like this:. . . (p1 p3.{z}zp2 p3.{y}y)ω), precluding
x from ever being enabled. Such a run then has an indistinguishable run in whichx is enabled infinitely
often but is executed only a finite number of times. Since every nonblocking scheduler satisfying SIF
for such a system must eventually scheduley to be executed, SIF cannot be implemented for the
system. Note that the adversary takes an advantage of the fact that althoughx and y can be enabled
simultaneously, it delays the readiness of the processes inPx − Py until y is executed, and then letz be
the only choice of the processes inPx − Py.

On the other hand, by a proof similar to Theorem 5.2, we can show that if the semantics ofM does
not allow the three interactionsx, y, andz to be enabled in a desirable way as described above, then
SIF can be implemented. For example, consider a variation of the above program:

p1 :: ∗[x→ skip p2 :: ∗[x→ y] p3 :: ∗[y→ z]

2 z→ skip]

In this programx andy can never be enabled simultaneously, and so no conspiracy like the above can
be constructed to preventx from being enabled but not executed. Note that by switching the roles of
y andz, we see thatx andz can be enabled simultaneously. But still, no conspiracy againstx can be

CHARACTERIZATION OF IMPLEMENTABILITY 21

constructed because a continuation from a state in which bothx andz are enabled butz is chosen for
execution always leads to a state in whichx is the only choice for execution. (It can also be seen that
there is no conspiracy againsty andz, either.)

We are now left with the case where some states can lead to a conspiracy against SIF, but some cannot.
By Theorem 3.2, the implementability then depends on whether there exists a nonblocking scheduler
that not only satisfies SIF but can also prevent itself from “painting into a corner” by driving the system
into a state from which a conspiracy against SIF cannot be avoided.

As an example, consider a systemIS= ({p1, p2, p3}, {x, y, z, u},M), wherex, y, z are structured as
in Fig. 4b,Pu = {p2}, andM behaves as follows:

p1 :: ∗ [x→ skip p2 :: i := 0; j := 0; p3 :: ∗[y→ z]

2 z→ skip] ∗ [i + j < 10;x→ i := i + 1

2 i + j < 10;y→ j := j + 1

2 i + j < 10;u→ j := j + 1];

if i ≥ j then

∗ [x→ skip

2 y→ skip]

else ∗[x→ y]

The program first letsp2 execute 10 interactions and then execute either the repetitive command
∗[x → skip 2 y → skip] or the command∗[x → y], depending on how may timesx, y, and
u have been executed in the first 10 interactions. By the previous two examples, the implementability
of SIF then depends on which repetitive command is executed, i.e., depends on which of the two states
i ≥ j andi < j (wheni + j = 10) is reached. We can easily design a nonblocking scheduler to ensure
that no matter which adversary is given, only the statei < j can be reached. The scheduler behaves
like the one presented in Fig. 6, except that for the first 10 states wherep2 is ready for interaction,p2

always executesu.
On the other hand, if we remove the guarded command “i + j < 10; u→ j := j + 1” from p2’s

program, then some adversary would be able to drive the system into the statei ≥ j regardless of
which nonblocking scheduler is employed. To do so, the adversary simply letsx be the only interaction
enabled at a time until 10 instances ofx are executed. (From then on, the adversary can then contrive a
conspiracy against SIF.) So SIF becomes unimplementable for the new system.

In the above examples, determining SIF’s implementability reduces to the problem of determining
whether some state of the system is reachable. Unfortunately, state reachability, like thehalting problem,
is in general undecidable. Therefore, in the worst case determining whether SIF is implementable or
not for a given system is also undecidable!

52. Strong Process Fairness

The notion of strong process fairness requires a process that is infinitely often ready for an enabled
interaction to participate in an interaction infinitely often. Unfortunately, like SIF, SPF is, in general,
impossible to implement. To see this, observe first that ifπ satisfies SPF, then all runs inpermute(π)
satisfy SPF. So ifπ satisfies SPF but some run indistinguishable fromπ does not, then there must exist
someπ ′ ∈ permute(π) such thatπ ′ contains infinitely many sequences of the form

yq1q2 . . .qk

such thatk ≥ 1, q1,q2, . . .qk 6∈ Py, and deferringy until qk causes some interactionx (which has
been enabled only a finite number of times inπ ′) to be enabled immediately beforey is executed.
So Px ∩ Py 6= ∅ and Px − Py 6= ∅. Moreover, there must exist some process inPx − Py (say p1)
which at some point inπ ′ is ready for interaction and remains ready thereafter because no interaction
involving p1 will be enabled. There must also exist a second process (sayp2) in Px − Py such that
p2 will execute some interactionz after the sequenceyq1q2 . . .qk (for otherwise when two sequences

22 YUH-JZER JOUNG

of the form yq1q2 . . .qk . . . are placed next to each other,x would be immediately enabled beforey
is executed). SoPx ∩ Pz 6⊆ Py. Let z be the first such interaction that is executed after the sequence
yq1q2 . . .qk. Clearly, p1 6∈ Pz; that is,Px − Py − Pz 6= ∅.

Takingz into account,π ′ contains infinitely many sequences of the formyq1q2 . . .qk . . . z Since
prior to the execution ofz all processes inPx − Py are ready,Px ∩ Py cannot be all ready before
z is executed. Otherwise,x would be enabled immediately beforez is executed, and so would be
enabled infinitely often throughoutπ ′. So there must exist a third process inPx ∩ Py which is not ready
immediately beforez is executed; that is,Px ∩ Py 6⊆ Pz.8

Finally, since no interaction involvingp1 can be enabled infinitely often, the structure ofI must
guarantee that at any point of the sequenceyq1q2 . . .qk . . . z . . . no interaction involvingp1 can be
enabled while some of the processesPx ∪ Py ∪ Pz are ready.9

Hence, if the interaction structure of the underlying system satisfies the above conditions and a run
like π is inevitable to every nonblocking scheduler, then SPF will be impossible for the system. To
illustrate such a setting, consider an interaction systemIS= (P, I,M∀), whereI has the structure as
depicted in Fig. 7c. Then the following are two runs of the system:

π = p1(p3 p5yp2 p4z)ω

ρ = p1(p3 p5 p2yp4z)ω.

Observe thatπ satisfies SPF andρVπ . However,ρ does not satisfy SPF becausep1 is ready forx
each time when bothp2 and p3 are ready butp1 never takes part in any interaction execution. Sinceπ

is singular, by Lemma 4.3 SPF is not possible for the system.

THEOREM 5.3. Let IS= (P, I,M∀). Assume there are x, y, z ∈ I satisfying the following conditions:

1. Px − Py − Pz 6= ∅, Px ∩ Py 6⊆ Pz, and Px ∩ Pz 6⊆ Py.

2. ∃ p1 ∈ Px − Py − Pz, ∀u ∈ I, p1 ∈ Pu ⇒ [Pu 6⊆ (Px − Py) ∪ Pz and Pu 6⊆ (Px − Pz) ∪ Py].

Then, SPF cannot be implemented forIS.

Proof. Let Sbe any given nonblocking scheduler satisfying SPF. We present an adversaryAsuch that
some run inindistinct(r (S, A)) does not satisfy SPF. By Theorem 3.2, therefore, there is no scheduling
program forIS satisfying SPF. The technique in constructing the adversary is similar to Theorem 5.1.
However, finding appropriate interactions and processes for which the adversary can be constructed
is somewhat tedious. To illustrate the main idea of the construction, we shall first make an additional
assumption onIS:

3. ∃ p2 ∈ Pz − Py, ∃ p3 ∈ Py − Pz, ∀ u ∈ I, [[p2 ∈ u andu ⊆ (Px − Py) ∪ Pz ⇒ Pz ⊆ Pu]] and
[[p3 ∈ u andu ⊆ (Px − Pz) ∪ Py] ⇒ Py ⊆ Pu].

Later we sketch the proof without this extra condition.
Let x, y, z, p1, p2, andp3 be as given in Conditions 1–3. The adversary is given as follows.

1. Initially, the adversaryA schedules all processes in (Px − Pz) ∪ Py to enter a ready state (in
arbitrary order). By the definition ofM∀, p3 is ready for an enabled interaction (becausey and possibly
some other interactions are enabled), butp2 is idle (becausep2 ∈ Pz − Py). Also, p1 is ready but no
interaction involving it is enabled due to the second part of Condition 2 imposed on the structure ofI.

2. A’s subsequent behavior then depends onS’s reaction.

2.1. If S selects an interactiony′ (not necessaryy) involving p3, then A in turn schedules the
processes inPz to enter a ready state. By Condition 3,Py ⊆ Py′ . So at this point the processes in
(Px − Py′) ∪ Pz are ready for interaction. Sop2 is ready for an enabled interaction (z and possibly

8 Like SIF, the conditionPx ∩ Py 6⊆ Pz is needed only because the definition ofM∀ lets all processes inPx ∩ Py be ready
to executex whenever they are ready. Irrespective ofM andM∀, however,Px must contain at least three processes in order to
contrive a conspiracy against SPF. This can be seen from the above conditions thatPx ∩ Py 6= ∅, p1 6= p2, andp1, p2 ∈ Px− Py.

9 Note again that the condition that restrainsI from containing any interactionu that may causep1 to be ready for an enabled
interaction infinitely often is needed only because the program in consideration is of typeM∀. Otherwise, the program can take
the role to preventp1 from being ready for any enabled interaction that may avoid the conspiracy.

CHARACTERIZATION OF IMPLEMENTABILITY 23

some others), butp3 is idle. Also,p1 remains ready and, by Condition 2, no interaction involvingp1 is
enabled at this point.

2.1.1. If S next selects an interactionz′ involving p2, then A schedules the idle processes in
Py′ to be ready and waits forS’s response. By Condition 3,Pz ⊆ Pz′ . So at this point the processes in
(Px − Pz′) ∪ Py are ready for interaction. Sop3 is again ready for an enabled interaction (e.g.,y), p2

is idle, andp1 remains ready. By Condition 2 no interaction involvingp1 can be enabled at this point.
The following behavior ofA is same as the beginning of step 2 (except that afterS has selected some
y′ involving p3, A in turn schedules the idle processes inPz′ to be ready).

2.1.2. If, however,Sselects some interactionv which does not involvep2, thenA in response
schedules the processes inPv to enter a ready state so thatp2 is again ready for an enabled interaction
in S’s next turn. If subsequentlySchooses some interactionz′ involving p2, thenA schedules the idle
processes inPy′ to enter a ready state as described in step 2.1.1. Otherwise,A continues to schedule
the set of processes for whichShas just selected for interaction to enter a ready state. Note that in this
tournament some interaction involvingp2 will eventually be chosen becauseSsatisfies SPF. Meanwhile,
p1 remains ready but still no interaction involving it has been enabled.

2.2. If Sselects some interactionu which does not involvep3, thenA in response schedules the
processes inPu to enter a ready state so thatp3 is again ready for an enabled interaction (e.g.,y) in S’s
turn. If Sfinally chooses some interactiony′ involving p3, thenA behaves as that described in step 2.1.
Otherwise,A continues to schedule the set of processes for whichShas just selected for interaction to
become ready. As discussed above, in this tournament some interaction involvingp3 will eventually be
selected becauseSsatisfies SPF, whilep1 remains ready but no interaction involving it has been enabled.

ThenSversusA must generate a run in whichp3 executes some interaction (sayy′) infinitely often
because it is ready for an enabled interaction infinitely often. However,p1 is ready forever but it never
executes an interaction because it is never involved in an enabled interaction. Furthermore, immediately
beforep3 executes each instance ofy′ the processes in (Px − Pz′)∪ Py are ready, and afterp3 executes
y′ the processes inPz′ are ready before any interaction is to be executed. Consider the runρ obtained
from r (S, A) by deferring each execution ofy′ until the processes inPx − Py′ are all ready. Clearly,
ρV r (S, A). Moreover, each deferment causesx to be enabled right beforey′ is executed. Then,p1

is ready for an enabled interaction (i.e.,x) infinitely often inρ. Sincex is never executed,ρ does not
satisfy SPF.

We now consider the theorem without Condition 3. The main idea behind the construction of the
adversary is the same: it chooses three processesp1, p2, andp3 in an interactionx and letsp2 and p3

execute interactions alternately, but preventsp1 from being involved in any enabled interaction during
the game versusS. Without Condition 3, however, not every set ofx, y, andz (wherey andz are used
to determinep3 and p2) satisfying Conditions 1 and 2 can be used to contrive a conspiracy, as some
may causep1 to be exposed to an enabled interaction during the game. In the following we show how
to obtainp2 and p3 for the adversary. Once they are obtained, the proof of the theorem is essentially
the same as above, and so we shall omit the details. (Note that arguing that no interaction involvingp1

can be enabled at any point during the game is quite tedious, but is not hard.)
Let x, y, z, andp1 be as given in the theorem statement. Without loss of generality, assume thatx, y,

andz satisfy the following condition:

I. |Px ∪ Py ∪ Pz| is minimal; that is, there are no otherx′, y′ andz′ satisfying Conditions 1 and 2
such that|Px′ ∪ Py′ ∪ Pz′ | < |Px ∪ Py ∪ Pz|.
DefineIp;x,y,z = {u ∈ I | Pu ⊆ (Px− Pz)∪ Py}, andrank(p; x, y, z) = min{|Pu∩ (Px ∩ Py− Pz)| | u∈
Ip;x,y,z}. Assume that in the latest two roundsS schedulesz′ in Step 2.1.1 and schedulesy′ in
Step 2.1. (Initially,z′ = z and y′ = y). Then in the new round “p2” and “p3” are dynamically deter-
mined as follows: “p3” in Step 2.1 is chosen to be the process inPx ∩ Py′ − Pz′ with the maximum
rank(p; x, y′, z′), and “p2” in Step 2.1.1 is chosen to be the process inPx ∩ Pz′ − Py′ with the maximum
rank(p; x, z′, y′).

Figure 7 illustrates some interaction structures for which SPF is not possible. All of them consist of an
interaction involving more than two processes. It is proven in [4] that SPF for purely biparty interactions
is equivalence robust. SPF is also strongly feasible because SIF is strongly feasible and SPF is weaker

24 YUH-JZER JOUNG

FIG. 7. Interaction structures for which SPF cannot be implemented.

than SIF. By Lemma 4.1, therefore, SPF is implementable for systems consisting of strictly biparty
interactions (even if the associated programs are not of typeM∀).

THEOREM 5.4. Let IS= (P, I,M∀). Assume that for all x, y, z ∈ I the following conditions do not
hold:

I. Px − Py − Pz 6= ∅, Px ∩ Py 6⊆ Pz, and Px ∩ Pz 6⊆ Py, and

II. ∃ p1 ∈ Px − Py − Pz, ∀u ∈ I, p1 ∈ Pu ⇒ [Pu 6⊆ (Px − Py) ∪ Pz, and Pu 6⊆ (Px − Pz) ∪ Py].

Then, SPF is implementable forIS.

Proof. Since every run that satisfies SIF must satisfy SPF, the nonblocking schedulerS presented
in Fig. 6 also satisfies SPF. So to show that SPF is implementable for the system, by Theorem 3.2 it
suffices to show that for every adversaryA all runs inindistinct(r (S, A)) satisfy SPF. Letπ = r (S, A).
Suppose by contradiction thatπ satisfies SPF but some run inindistinct(π) does not. By the argument
presented in the beginning of this section, there must exist someπ ′ ∈ permute(π) and three interactions
x, y, z, wherePx − Py − Pz 6= ∅, Px ∩ Py 6⊆ Pz, andPx ∩ Pz 6⊆ Py, such thatπ ′ contains infinitely
many sequences of the form

yq1q2 . . .qk . . . z

but movingq1q2 . . .qk ahead ofy causesx to be enabled immediately beforey is executed. Herez
is the first interaction executed aftery that involves a process inPx − Py. Moreover, there must exist
somep1 ∈ Px − Py − Pz such that from some point onward,p1 remains ready forever inπ ′ because
no interaction involvingp1 is enabled.

Since beforez is executed the set of processes (Px − Py) ∪ Pz are ready, and since no interaction
involving p1 is enabled at this point,I contains nou such thatp1 ∈ Pu and Pu ⊆ (Px − Py) ∪ Pz. If
there is also nou such thatp1 ∈ Pu andPu ⊆ (Px − Pz)∪ Py, then we have obtained three interactions
x, y, z and a processp1 ∈ Px that contradict the theorem assumption imposed on the structure ofI. So
in the following we assume that there is someu such thatp1 ∈ Pu andPu ⊆ (Px − Pz) ∪ Py. We shall
show that this assumption leads to a contradiction, and so there is noπ such thatπ satisfies SPF but
some run inindistinct(π) does not. Without loss of generality assume that|Pu ∪ Py| is the “smallest” in
the sense that there is no other interactionu′ such thatp1 ∈ Pu′ , Pu′ ⊆ (Px− Pz)∪ Py, and|Pu′ ∪ Py| <
|Pu ∪ Py|.

When two sequences of the formyq1q2 . . .qk . . . z are placed next to each other, we have a se-
quence

yq1q2 . . .qk . . . z . . . yq1q2 . . .qk . . . z

So the set of processes (Px− Pz)∪ Py are ready immediately before the second instance ofy is executed
(and sou is enabled immediately before thaty is executed), unless an interactionz′ which does not
involve p1 but does involve some process in (Px − Pz− Py)∩ Pu is placed in betweenz andy. Sinceu
cannot be enabled at any point in the above sequence, such az′ exists; and, in addition,Pu ∩ Pz′ 6⊆ Py.
Let z′ be the first such interaction executed in betweenz andy.

On the other hand, it can also be seen thatPu ∩ Py 6= ∅ andPu ∩ Py 6⊆ Pz′ , for otherwiseu would be
enabled immediately beforez′ is executed. Recall thatp1 ∈ Pu − Py − Pz′ . So up to this point we have
obtained three interactionsu, z′, y such thatPu − Py − Pz′ 6= ∅, Pu ∩ Py 6⊆ Pz′ , andPu ∩ Pz′ 6⊆ Py.

CHARACTERIZATION OF IMPLEMENTABILITY 25

FIG. 8. Interaction structures for which SPF can be implemented.

We now argue that there is nov ∈ I such thatp1 ∈ Pv andPv ⊆ (Pu − Pz′) ∪ Py. This is because if
suchv exists, then since (Pu∩ Pz′)− Py 6= ∅, we must have|Pv ∪ Py| < |Pu∪ Py|; this then contradicts
the assumption we made earlier that no suchv exists. Moreover, sincez′ is the first interaction executed
in betweenz and y satisfying the conditionPu ∩ Pz′ 6= ∅ and Pu ∩ Pz′ 6⊆ Py, the set of processes
(Pu − Py) ∪ Pz′ are all ready immediately beforez′ is executed. So there cannot exist any interaction
v such thatp1 ∈ Pv and Pv ⊆ (Pu − Py) ∪ Pz′ . Then the existence ofu, z′, and y contradicts the
assumption imposed on the structure ofI. So there cannot exist an interactionu such thatp1 ∈ Pu and
Pu ⊆ (Px − Pz) ∪ Py. The theorem then is established.

Note that since a run satisfying SIF must also satisfies SPF, interaction systems for which SIF is
possible can also be implemented for SPF. Therefore, SPF can be implemented for systems with the
interaction structures shown in Fig. 5. Figure 8 illustrates some more examples for which SIF is not
possible but for which SPF is possible.

By a reasoning similar to the one presented for SIF in Section 5.1, one can also determine the structure
of I and the semantics ofM rendering the possibility and impossibility phenomena of SPF for any given
IS= (P, I,M), whereM is not limited to typeM∀. Note that because some system causes SPF to be
unimplementable and some does not, like SIF, we can also construct a system such that determining
SPF’s implementability reduces to the problem of determining whether some state of the system is
reachable. Therefore, in the worst case determining whether SPF is implementable or not for a given
system is also undecidable.

53. Weak Process Fairness

The notion of weak process fairness requires a process that is continuously ready for an enabled
interaction (not necessary the same interaction) to execute an interaction eventually. Like SIF and SPF,
for some interaction system WPF may include a runπ such that some run indistinguishable fromπ does
not satisfy WPF. This can be illustrated by the interaction systemIS= ({p1, p2, p3, p4, p5}, {u, v, x, y},
M∀), wherePu = {p1, p5}, Pv = {p2, p5}, Px = {p1, p3}, andPy = {p2, p4} (see Fig. 9). Then the
following are two runs of the system:

π = p5 p1 p3(xp2 p4yp1 p3)ω

ρ = p5 p1 p3(p2 p4xp1 p3y)ω.

Observe thatρVπ andπ satisfies WPF because no process is continuously ready for an enabled
interaction. However,ρ does not satisfy WPF because from the second state onwardp5 is continuously
ready for an enabled interaction (u andv alternately), but it never executes any interaction.

FIG. 9. An interaction structure.

26 YUH-JZER JOUNG

Note thatπ is not singular. So it is not necessary that every nonblocking scheduler for the system must
generateπ . So if we can devise a nonblocking scheduler which can avoid generating runs likeπ whose
indistinct(π) contains a non-WPF run, then we can obtain an implementation for WPF. In fact, we can
show that ifindistinct(π) contains a non-WPF run, thenπ must not satisfy SIF. Therefore, if we can
construct a nonblocking scheduler which generates only SIF runs, then we will have an implementation
for WPF. Since such a scheduler is indeed possible (because SIF is strongly feasible; see Section 5.1),
WPF is implementable.

LEMMA 5.5. For any runπ ∈ run(IS), if π satisfies SIF, then all runs in indistinct(π) satisfy WPF.

Proof. Let π ∈ run(IS) be a run satisfying SIF. Clearly,π must also satisfy WPF. Moreover, ifπ is
finite or no process inπ has stayed in a ready state forever, then every run inindistinct(π) must satisfy
WPF. So suppose thatπ is infinite, and at some point inπ some processp has entered a ready state
and remained ready thereafter, but from that point onward no interaction involvingp has been enabled.
Consider any subsequence ofπ which is of the form

y p1.I1 p2.I2 . . . pk.Ik z

and assume that in the subsequencep is ready but no interaction involvingp is enabled. Letρ be
any arbitrary run inindistinct(π). Clearly, if ρ differs from π only in the ordering of the actions
p1.I1, p2.I2, . . . , pk.Ik in betweeny andz, thenρ must also satisfy WPF. This is because the reordering
of these actions cannot cause any new interaction to be enabled.

On the other hand, suppose thatρ is obtained fromπ by moving some of thepi .Ii ’s forward beforey
(via an operation of retraction), and the movement causes some interactionx involving p to be enabled
immediately beforey is executed. Then,Px ∩ Py 6= ∅. Sox must be disabled immediately aftery is
executed. Furthermore, since in the process of retraction any state transition occurring afterz cannot
be moved forward acrossy, the duration ofp’s readiness for an enabled interaction cannot be extended
acrossy. So p cannot be continuously ready for an enabled interaction inρ. Hence,ρ must also satisfy
WPF.

THEOREM 5.6. WPF is implementable for every interaction systemIS= (P, I,M).

Proof. For any given interaction systemIS, every runπ generated by the the nonblocking scheduler
presented in Fig. 6 satisfies SIF, and thus also satisfies WPF. Moreover, by Lemma 5.5 for everyπ

generated by the scheduler, all runs inindistinct(π) satisfy WPF. Hence, by Theorem 3.2 there exists
an undelayed scheduling program forIS satisfying WPF.

54. U-Fairness

The notion of U-fairness is first proposed by Back and Kurki-Suonio [8] (called by there a different
name,action justice) to consider situations where each participantp of an interactionx is willing
to executex every time when it is ready for interaction. Subsequently, Attieet al. [5] show that U-
fairness provides an abstraction for stable property detection which most well-known fairness notions
do not.

DEFINITION 5.1 (U-fairness [5]). A runπ ∈ run(IS) satisfiesU-fairnessiff for every interactionx,
x will eventually be executed if the following condition is satisfied: if from some point onward every
participantp of x is ready for interaction infinitely often, and whenever it is ready for interaction, it is
willing to executex.

Note that in the above definitionx may never be enabled because the participants need not be in a
ready state simultaneously.

To see how U-fairness detects stable properties, assume that we are to compute a functiong(v1, v2).
The result is acceptable only iff1(v1) ≤ δ1 and f2(v2) ≤ δ2 for some constantsδi ’s and functionsfi ’s,
i = 1, 2. Moreover, the smallerfi (vi) is, the closerg(v1, v2) approaches to the optimal. To do so, we
can use two processesp1 andp2 to prepare the appropriatev1 andv2 respectively, and then let, say,p1

CHARACTERIZATION OF IMPLEMENTABILITY 27

computeg(v1, v2), as shown in the following program:

p1 :: v1 := 0; a1 := 0;d1 := ∞; continue1 := true ;

∗[continue1 & x[if f1(a1) < d1 then d1 := f1(a1); v1 := a1; endif] → a1 := a1+ 1;

2 continue1 ∧ f1(v1) ≤ δ1 & z[output g(v1, v2); continue1 := false ;] → skip ;]

p2 :: v2 := 0;a2 := 0;d2 := ∞; continue2 := true ;

∗ [continue2 & y[if f2(a2) < d2 then d2 := f2(a2); v2 := a2; endif] → a2 := a2+ 1;

2 continue2 ∧ f2(v2) ≤ δ2 & z[continue2 := false ;] → skip ;]

The program is written in the style of IP [18], wherex[. . .] represents an interaction with namex and
body. . . , & denotes the guard operator, and∗[. . .] represents a repetitive command.

Note that since smallerfi (vi) implies better results, instead of idlingpi when the thresholdfi (vi) ≤ δi

is met, we allowpi to continue to find a better value ofvi while its partner is still preparing the other
v-value.

We observe that for eachi , the boolean guardfi (vi) ≤ δi of interactionz is a stable property: once
it holds, it continues to hold during the computation. So when both processes have found appropriate
values forv1 andv2, each process is willing to executez every time when it is ready for interaction. So
under U-fairnessz is guaranteed to be executed and the resultg(v1, v2) is then obtained.

On the other hand,z may not necessarily be executed under, say, SIF. For example, assume that the
thresholdfi (vi) ≤ δi for both i = 1, 2 have already been met. Consider the run

(p1xp2y)ω,

which represents thatp1 becomes ready for interaction, then it executes an instance ofx to compute a
new value ofv1, and beforep1 finishesx and becomes ready again for interaction,p2 becomes ready
and then executesy to preparev2, and so on. The overall computation satisfies SIF becausez is never
enabled throughout the computation. Note that the run does not satisfy U-fairness.

Although with respect to the above specific example U-fairness is stronger than SIF, as shown in [5,
8], U-fairness is actually incomparable with SIF; that is, a run satisfying SIF does not necessarily satisfy
U-fairness, and vice versa. To see an example of a run that satisfies U-fairness but not SIF, consider an
interaction system with a structure depicted in Fig. 4c. Assume the associated program allows the run

ρ = ((p1 p3 p2 y p4 z)(p1.{y} p3 y p2 p4 z))ω.

Thenρ satisfies U-fairness becausep1 is not always willing to executex every time when it is ready
for interaction. The run does not satisfy SIF becausex is infinitely often enabled but is never executed.
From this example, it is not difficult to see that for any givenIS= (P, I,M), if U(IS)−SIF(IS) 6= ∅, then
the programM must let some process ready some interaction intermittently, where U(IS) and SIF(IS)
denote the set of complete runs ofIS satisfying U-fairness and SIF, respectively.

Conversely, if no interaction is readied by a process in an intermittent fashion, then U(IS)−SIF(IS) =
∅; that is, U-fairness is either stronger than SIF or equal to SIF. This is proved in the following lemma.

LEMMA 5.7. For everyIS= (P, I,M∀), U(IS) ⊆ SIF(IS). Moreover, U(IS) 6= SIF(IS) iff ∃ x, y,
z,∈ I, Px ∩ Py 6⊆ Pz and Px ∩ Pz 6⊆ Py.

Proof. We first show that U(IS) ⊆ SIF(IS); that is, if a runπ ∈ run (IS) is not in SIF(IS) then it is
not in U(IS), either. To see this, observe that ifπ 6∈ SIF(IS), there must exist an interactionx in π such
that from some pointt onwardx is infinitely often enabled but is never executed. Recall that program
M∀ allows a process, whenever it is ready, to be ready for all interactions of which it is a member. So
from t onward, every processp ∈ Px is ready for interaction infinitely often, and whenever it is ready
it is willing to executex. However, sincex is never executed inπ , π does not satisfy U-fairness.

We now show that if U(IS)(SIF(IS), then∃ x, y, z ∈ I, Px ∩ Py 66⊆ Pz and Px ∩ Pz 66⊆ Py. Let
π ∈SIF(IS)−U(IS). Then, there exists an interactionx in π such that from some point onward every

28 YUH-JZER JOUNG

p ∈ Px is ready for interaction infinitely often, and whenever it is ready for interaction it is willing to
executex. However, the processes ofPx are never ready forx simultaneously (sox is never enabled
and thus is never executed). Hence there must exist two processesp1, p2 ∈ Px such that the following
scenario occurs infinitely often: whenp1 is ready, p2 is idle. Then, afterp1 participates in some
interactiony, p2 becomes ready. Moreover,p1 remains idle untilp2 participates in another interaction
z. Clearly, the conditionsPx∩Py 66⊆ Pz andPx∩Pz 66⊆ Py are satisfied by the three interactionsx, y, andz.

Finally, we show that if∃ x, y, z ∈ I, Px ∩ Py 66⊆ Pz and Px ∩ Pz 66⊆ Py, then U(IS)(SIF(IS). For
this, we need to construct a computationπ such thatπ ∈SIF(IS)−U(IS). Consider first the run

π = (Px − Py − Pz)(Py y Pz z)ω.

Here we liberally use setP in a run to represent an arbitrary permutation of the elements inP. Since
eachp ∈ Px is ready for interaction infinitely often, and since the programM∀ allows p to be ready for
all interactions of which it is a member wheneverp is ready, each process inPx is ready for interaction
infinitely often, and whenever it is ready for interaction it is willing to executex. However, sincex is
never executed inπ , π /∈U(IS). So ifπ ∈SIF(IS), then we are done. Otherwise, there must exist some
interactionw such thatw is enabled infinitely often inπ butw is never executed. Obviously,w 6= y
andw 6= z. Furthermore, due to the restriction imposed onx, y, andz, w 6= x, either. Then there are
only two possibilities: eitherPw ⊆ (Px − Py − Pz) ∪ Py or Pw ⊆ (Px − Py − Pz) ∪ Pz.

Consider the first case, and letπ ′ be as follows:

π ′ = (Px − Py − Pz)(PywPwy Pzz)ω.

Note thatπ ′ is still not in U(IS) because for every process inPx, it is still ready for interaction infinitely
often, and whenever it is ready for interaction it is willing to executex. However,w is executed infinitely
often inπ ′. So if π ′ is in SIF(IS), then we are done. Otherwise, there must be another interactionu,
u 6= x, y, z, w, such thatu is enabled infinitely often inπ ′ but it is never executed. Then we can use the
same method to convertπ ′ to another runπ ′′ such thatu, w, y, andz are executed infinitely often in
π ′′, and stillπ ′′ /∈U(IS). Since there are at most a finite number of interactions inI, eventually we can
construct a run in SIF(IS)−U(IS).

The other case wherePw ⊆ (Px − Py − Pz) ∪ Pz can be handled similarly. The lemma is therefore
established.

From Lemma 5.7 and Theorems 5.1 and 5.2, we can obtain the interaction structures that render the
unimplementability and implementability of U-fairness, respectively.

COROLLARY 5.8. Let IS= (P, I,M∀). Assume∃ x, y, z ∈ I, Px ∩ Py 6⊆ Pz and Px ∩ Pz 6⊆ Py. Then
U-fairness cannot be implemented forIS.

Proof. Suppose otherwise that U-fairness is implementable forIS. Then by Theorem 3.2 there
is a nonblocking schedulerS such that for every adversaryA of IS indistinct(r (S, A)) ⊆ U(IS). By
Lemma 5.7,indistinct(r (S, A)) ⊆ SIF(IS). That is, there is a nonblocking schedulerS such that for
every adversaryA of IS indistinct(r (S, A)) ⊆ SIF(IS). Then by Theorem 3.2 SIF is implementable for
IS. This contradicts Theorem 5.1 that SIF is not implementable forIS.

COROLLARY 5.9. Let IS= (P, I,M∀). Assume(1) |I| ≤ 2 or (2) ∀x, y, z ∈ I, if Px ∩ Py 6= ∅ and
Px ∩ Pz 6= ∅, then either Px ∩ Py ⊆ Pz or Px ∩ Pz ⊆ Py. Then U-fairness can be implemented forIS.

Proof. By Lemma 5.7 and the restriction imposed onIS we have U(IS)=SIF(IS). Theorem 5.2
therefore implies that U-fairness is implementable forIS.

Note that like SIF, U-fairness is in general impossible to implement even if interactions are strictly
bipartied.

For interaction systemsIS= (P, I,M) whose programs are not of typeM∀, we can use the method pre-
sented in Section 5.1 to analyze how the structure ofI and the semantics ofM affect the implementability
of U-fairness. It is important to note, however, that U-fairness is equivalence-robust; see [18]. This means
that for every nonblocking schedulerS satisfying U-fairness, every runπ generated byS must satisfy

CHARACTERIZATION OF IMPLEMENTABILITY 29

the conditionindistinct(π) ⊆ U(IS). So the unimplementability must be due to the fact that we cannot
even construct a nonblocking scheduler satisfying U-fairness for the system. Recall that we can design
a nonblocking scheduler satisfying SIF (see Fig. 6). So for an adversaryA to preventS from generating
a U-fair run,I andM must be such that from some point onward some interactionx is never enabled, but
every participant ofx is ready for interaction infinitely often, and whenever it is ready for interaction
it is willing to executex. Sincex is never enabled, there must exist two other interactionsy andz,
Py ∩ Px 6⊆ Pz and Pz ∩ Px 6⊆ Py, such thaty andz alternately engage some ofx’s participants, pre-
venting the participants ofx from being ready forx simultaneously (a phenomenon calledconspiracy;
see Section 5.5). As the proof techniques for establishing the impossibility and possibility results are
similar to those for Theorems 5.1 and 5.2, we omit the details.

55. Hyperfairness

Hyperfairness is proposed by Attieet al.[6] as a fairness notion to preventconspiracies. A conspiracy
against an interactionx occurs if from some point onwardx is never enabled because conflicting
interactions intermittently engage some ofx’s participants. For example, consider an interaction system
IS= ({p1, p2, p3}, {x, y, z},M∀), where{x, y, z} has the structure as depicted in Fig. 4b. Soπ =
(p1 p3zp2 p3y)ω is a run of the system. Observe thatx is never enabled inπ becausez andy alternately
engagep1 and p2, respectively. Note that the conspiracy is due solely to the “race conditions” of two
independent actions:z’s execution andp2’s readiness. Ifp2 becomes ready beforez is executed, then
the resulting computationπ ′ = (p1 p3 p2zp3y)ω would have no conspiracy againstx. Hyperfairness is
therefore used to excludeπ as valid by requiringx12 be enabled infinitely often as inπ ′. Note further that
if some other fairness notion, say SIF, is additionally assumed, thenπ ′ would not be fair either. Hence,
hyperfairness on top of SIF ensures that no computation satisfies SIF simply because some conspiracy
prevents an interaction from being enabled (and thus from being potentially scheduled for execution).

Note that some conspiracy may be inherent from the program semantics. For example, assume that
the program of the above system is changed to the following:

p1 :: ∗[x→ skip p2 :: ∗[y; [x→ skip p3 :: ∗[z→ y]

2 z→ skip] 2 y→ skip]]

Then the program preventsp1 from establishingx with p2, unlessp1 first establishesz with p3.
To distinguish programs for which conspiracies can be prevented by an appropriate scheduling of

the execution events from those whose semantics inherently incurs some conspiracies, Attieet al. [6]
propose a notion ofconspiracy resistanceas follows: A programM is conspiracy resistantiff for every
fair runπ (fair with respect to some underlying fairness notion) the following holds:

Let π ′ be any finite prefix ofπ with final states, and let Qx be the set of processes that are ready forx in s.
Furthermore, letπ ′′ be the same asπ ′ except that in the final state every process inQx is ready for onlyx. Then
for every fair continuation ofπ ′′, there exists a processp ∈ Px − Qx such thatp will eventually readyx along this
continuation.

Hyperfairness excludes conspired runs for conspiracy resistant programs, but does not impose any
constraint (other than that imposed by the underlying fairness notion) on programs that are not conspiracy
resistant to avoid any possibility of deadlock in the implementation. Formally, hyperfairness is defined
as follows.

DEFINITION 5.2 (Hyperfairness [6]). A complete runπ of IS= (P, I,M) is hyperfair iff one of the
following conditions is satisfied:

I. M is not conspiracy resistant andπ satisfies SIF.

II. π is finite.

III. π is infinite,π satisfies SIF, and every interaction for which every participant readies it infinitely
often is enabled infinitely often.

Note that like [6], we have assumed SIF beneath hyperfairness. A different hyperfairness notion
would be required if SIF is replaced by another. Its implementability can then be studied analogously.

30 YUH-JZER JOUNG

Since hyperfairness imposes additional constraint on runs that satisfy SIF and since SIF, in general,
is impossible to implement, hyperfairness is also unimplementable. What interests us, then, is whether
hyperfairness is possible for those cases where SIF is possible. For this problem, we again assume an
interaction systemIS associated with a programM∀. Clearly,M∀ is conspiracy resistant. Moreover,
run(IS) contains only infinite runs. Thus a runπ ∈ run (IS) is hyperfair iff it satisfies SIF and every
interaction that is infinitely often readied by every participant is enabled infinitely often.

To study the structure of interaction systems that renders the implementability and unimplementability
phenomena of hyperfairness, we first observe that U-fairness and hyperfairness are indeed the same
semantic constraint for those systems associated withM∀. This is shown in the following lemma, where
Hyper(IS) denotes the the set of runs in run(IS) satisfying hyperfairness.

LEMMA 5.10. For everyIS= (P, I,M∀), Hyper(IS) = U(IS).

Proof. We first show that Hyper(IS) ⊆ U(IS). Letπ ∈ run(IS)−U(IS). Sinceπ is not U-fair, there
exists some interactionx such that from some point onward every process inPx is ready for interaction
infinitely often, and whenever it is ready for interaction it is willing to executex, butx is never executed.
Then,x is infinitely often readied by all of its participants but is never executed. Soπ /∈Hyper(IS). This
implies that Hyper(IS) ⊆ U(IS).

Next, suppose thatρ is U-fair. Then, for every interactionx, x will eventually be executed if from
some point onward every process inPx is ready for interaction infinitely often, and whenever it is ready
for interaction it is willing to executex. Due to the semantics ofM∀, no interaction that is infinitely
often readied by all of its participants is executed only a finite number of times. That is, every interaction
that is infinitely often readied by all of its participants is executed infinitely often. This also implies
that every interaction that is enabled infinitely often is executed infinitely often. Soρ is also hyperfair.
Hence, U(IS) ⊆ Hyper(IS).

The above lemma together with Corollaries 5.8 and 5.9 immediately implies the following two
corollaries, respectively.

COROLLARY 5.11. Let IS= (P, I,M∀). Assume∃ x, y, z ∈ I, Px ∩ Py 6⊆ Pz and Px ∩ Pz 6⊆ Py. Then
hyperfairness cannot be implemented forIS.

COROLLARY 5.12. Let IS= (P, I,M∀). Assume(1) |I| ≤ 2 or (2) ∀x, y, z ∈ I, if Px ∩ Py 6= ∅ and
Px∩ Pz 6= ∅, then either Px∩ Py ⊆ Pz or Px∩ Pz ⊆ Py. Then hyperfairness can be implemented forIS.

So like SIF and U-fairness, for systems consisting of only biparty interactions hyperfairness is, in
general, not implementable.

Using the fairness implementability criterion, we can also analyze the implementability of hyperfair-
ness for any given systemIS= (P, I,M) whose program is not limited to typeM∀ (but is conspiracy
resistant). We note here that, like U-fairness, hyperfairness is also equivalence-robust [6]. So hyper-
fairness can pass the criterion if, and only if, we can construct a nonblocking scheduler for the system
satisfying hyperfairness.

Finally, it is interesting to note that for everyIS= (P, I,M) whoseM is conspiracy resistant, hyper-
fairness is, in general, stronger than U-fairness.10

THEOREM 5.13. For everyIS= (P, I,M) such thatM is conspiracy resistant, Hyper(IS) ⊆ U(IS).

Proof. Let π ∈ run(IS)−U(IS). Sinceπ is not U-fair, there exists an interactionx such that from
some point onward every process inPx is ready for interaction infinitely often, and whenever it is ready
for interaction it is willing to executex, but x is never executed. Then,x is infinitely often readied by
all of its participants but is never executed. SinceM is conspiracy resistant,π should also be excluded
from Hyper(IS). So Hyper(IS) ⊆ U(IS).

Note that for some interaction systems hyperfairness may be strictly stronger than U-fairness. For
example, letIS= (P, I,M) be an interaction system with the structure shown in Fig. 4c, and thenM

10 For thoseIS = (P, I,M) whoseM is not conspiracy resistant, hyperfairness on top of SIF imposes no additional constraint
other than that imposed by SIF. So hyperfairness is identical to SIF. It is not difficult to see that U-fairness then is still incomparable
with SIF (and thus incomparable with hyperfairness).

CHARACTERIZATION OF IMPLEMENTABILITY 31

behaves as follows:

p1 :: ∗[x→ y p2 :: ∗[x→ skip p3 :: ∗[y→ skip] p4 :: ∗[z→ skip]

2 y→ y] 2 z→ skip]

It is not difficult to see that the program is conspiracy resistant. Consider the run

ρ = ((p1 p3 p2 y p4 z)(p1.{y}p3 y p2 p4 z))ω.

As shown in Section 5.4,ρ satisfies U-fairness but does not satisfy SIF. Soρ is not hyperfair.

6 CONCLUSIONS

We have presented a necessary and sufficient criterion for determining the implementability of fairness
notions in distributed systems where processes interact by engaging in synchronous constructs. As
we have seen, the criterion allows us to establish several impossibility results for various fairness
notions, including strong interaction fairness, strong process fairness, U-fairness, and hyperfairness,
and a possibility result for weak process fairness.

The impossibility results do not depend on the type of communication primitives (e.g., message-
passing or shared-memory) provided by the underlying execution model. It holds as long as (1) one
process’s readiness for multiparty interaction can be known by another only through communication,
and the time it takes two processes to communicate is nonnegligible (but can be finitely bounded);
and (2) the time when a process will make its transition to this ready state (from a state not willing
to engage in any interaction) cannot be determined a priori. Algorithms which claim any of these
“impossible” fairness notions, therefore, must make use of some assumption which contradicts one of
the two conditions, or assume a system topology which complies with the structure we have analyzed
in the paper that can render the possibility phenomena (see Theorems 5.2 and 5.4 and Corollaries 5.9
and 5.12).

For example, Attieet al.[5] propose a distributed multiparty interaction scheduling algorithm fulfilling
U-fairness. Their algorithm does not assume any system topology, and so is general for all interaction
systems. However, they do implicitly assume that the time a process can stay in an idle state and the
time it takes to execute an interaction are both finitely bounded. From time to time, a coordinating
process has to pause its coordination activity, waiting for some process to be ready for an interaction
even if there is another interaction enabled for execution. The delay imposed by the coordinator implies
that the time it takes to schedule one interaction may depend on the other processes not involved in the
interaction. From the efficiency’s concern, this violates one of the four criteria proposed by Buckley and
Silberschatz [14] for evaluating distributed interaction scheduling algorithms. Note that if the “bounded
transition time” assumption is removed, the above algorithm would be deadlocked if the target process
waited for by the coordinator is no longer interested in interaction.

Many algorithms for scheduling multiparty interactions that conform to the above two assumptions
have also been proposed, e.g., [9, 21, 26, 29, 33, 42, 43, 45, 47]. From our results, it is not surprising to
see that only few of them have claimed a fairness notion stronger than weak interaction fairness. (Weak
interaction fairnessrequires an interaction that is continuously enabled to be established eventually,
and so is much weaker than all fairness notions discussed in Section 5.) In particular, the algorithms
of [26, 45, 47] also satisfy SPF with the proviso that interactions must be strictly bipartied, which, by
our results in Section 5.2, is indeed possible to implement.

For other fairness notions that satisfy the criterion, we have also presented a general algorithm to
implement them. The algorithm employs a centralized coordinator to simulate the behavior of the
nonblocking scheduler characterized by the criterion. Our future work will focus on a distributed
implementation for our criterion. That is, nonconflicting interactions can be established concurrently
by different coordinators.

The impossibility results for SIF and SPF have also been established independently by Tsay and
Bagrodia [46] and by Joung [26]. Our impossibility results for SIF and SPF improve upon theirs in

32 YUH-JZER JOUNG

three ways: First, our results do not depend on any system topology underlying the implementation. By
contrast, each process in [46] is paired with a coordinating process to schedule interactions, while [26]
assumes a centralized coordinator for the scheduling. Second, they establish the impossibility results
by identifying a particular system for which SIF and SPF are not possible. We are able to determine
the structure of systems that renders the impossibility phenomena, and using the criterion we can also
determine if SIF and SPF are implementable for any given specific system. Finally, and most importantly,
they observe the impossibility phenomena in a specific implementation model. We, however, have
generalized the model and lifted its properties to the semantic level. In effect, this reduces reasoning
about a complex and concrete implementation model to reasoning about a simpler and abstract model
for process interaction, and allows the criterion to apply toeverypossible fairness notion for multiparty
interaction.

It should be noted that when we say that a fairness notionC is not implementable, we mean that
there exists an interaction system for whichC cannot be implemented by any deterministic algorithm.
An unimplementable fairness notion may be implementable for some specific interaction system. The
criterion we have proposed allows us to determine whether a fairness notion is implementable for any
given interaction system. However, as we have also analyzed in the paper, the problem of determining
whether an unimplementable fairness notion is implementable for some specific interaction system may
turn out to be undecidable!

Furthermore, the multiparty interactions we have addressed in the paper assumed that the participants
of an interaction are fixed in advance. This form of interactions has been widely used in distributed
languages that support multiparty interactions. The participants of an interaction may also be parame-
terized, or even dynamically configured. In the latter case, determining the participants of an interaction
could become very complex, and even intractable. A taxonomy of programming languages offering lin-
guistic support for multiparty interaction along with a comprehensive complexity analysis of interaction
membership decision problem is given by Joung and Smolka [30]. It is easy to see that the impossibility
results we established in the paper also apply to other forms of multiparty interactions in which the
participants of an interaction may vary dynamically.

Since deterministic algorithms are not possible for most fairness notions,randomizationmight be
appealing. Randomization has proven to be an effective technique for coping with some impossibility
phenomena occurring in the Dining Philosophers problem and CSP-like biparty interaction [20, 35, 44].
In fact, randomization is also effective for the more general problem, viz., the multiparty interaction
scheduling. Joung and Smolka [31] present a symmetric, distributed, and randomized algorithm that,
with probability 1, satisfies SIF. It thus offers an appealing tonic to other fairness notions lacking
deterministic realizations.

ACKNOWLEDGMENTS

The author thank Reino Kurki-Suonio for his encouragement to carry out this research and his comments on an earlier version
of this paper. The author is also deeply grateful to the anonymous referees for their thorough reading of the manuscript. Their
numerous comments and suggestions have helped to significantly improve the paper.

REFERENCES

1. Abadi, M., and Lamport, L. (1991), The existence of refinement mappings,Theoret. Comput. Sci.82(2), 253–284.
2. Abadi, M., and Lamport, L. (1993), Composing specifications,ACM Trans. Programming Lang. Syst.15(1), 73–132.
3. Andrews, G. R., Olsson, R. A., Coffin, M., Elshoff, I., Nilsen, K., and Purdin, T. (1988), An overview of the SR language

and implementation,ACM Trans. Programming Lang. Syst.10(1), 51–86.
4. Apt, K. R., Francez, N., and Katz, S. (1988), Appraising fairness in languages for distributed programming,Distrib. Comput.

2(4), 226–241.
5. Attie, P. C., Forman, I. R., and Levy, E. (1990), On fairness as an abstraction for the design of distributed systems.in

“Proceedings of the 10th International Conference on Distributed Computing Systems, Paris, France,” pp. 150–157.
6. Attie, P. C., Francez, N., and Grumberg, O. (1993), Fairness and hyperfairness in multi-party interactions,Distrib. Comput.

6, 245–254.
7. Back, R. J. R., and Kurki-Suonio, R. (1988), Distributed cooperation with action systems,ACM Trans. Programming Lang.

Syst.10(4), 513–554.

CHARACTERIZATION OF IMPLEMENTABILITY 33

8. Back, R. J. R., and Kurki-Suonio, R. (1988), Serializability in distributed systems with hand-shaking,in “Proceedings of the
15th International Colloquium on Automata, Languages and Programming, Tampere, Finland,” Lecture Notes in Computer
Science, Vol. 317, pp. 52–66, Springer-Verlag, Berlin.

9. Bagrodia, R. L. (1989), Process synchronization: Design and performance evaluation of distributed algorithms,IEEE Trans.
Software Eng.SE-15(9), 1053–1065.

10. Bagrodia, R. L. (1989), Synchronization of asynchronous processes in CSP,ACM Trans. Programming Lang. Syst.11(4),
585–597.

11. Bolognesi, T., and Brinksma, E. (1987), Introduction to the ISO specification language LOTOS,Comput. Networks ISDN
Syst.14, 25–59.

12. Bougé, L., and Francez, N. (1988), A compositional approach to superimposition,in “Proceedings of the 15th ACM Sym-
posium on Principles of Programming Languages, San Diego, California,” pp. 240–249, ACM Press, New York.

13. Brinksma, E. (1988), “On the Design of Extended LOTOS—A Specification Language for Open Distributed Systems,” Ph.D.
thesis, University of Twente, The Netherlands.

14. Buckley, G. N., and Silberschatz, A. (1983), An effective implementation for the generalized input–output construct of CSP,
ACM Trans. Programming Lang. Syst.5(2), 223–235.

15. Charlesworth, A. (1987), The multiway rendezvous,ACM Trans. Programming Lang. Syst.9(2), 350–366.
16. Coffin, M., and Olsson, R. A. (1989), An SR approach to multiway rendezvous,Comput. Lang.14(4), 255–262.
17. Evangelist, M., Francez, N., and Katz, S. (1989), Multiparty interactions for interprocess communication and synchronization,

IEEE Trans. Software Eng.SE-15(11), 1417–1426.
18. Francez, N., and Forman, I. R. (1996), “Interacting Processes: A Multiparty Approach to Coordinated Distributed Program-

ming,” Addison–Wesley, Reading, MA.
19. Francez, N., Hailpern, B., and Taubenfeld, G. (1986), Script: A communication abstraction mechanism,Sci. Comput. Pro-

gramming6(1), 35–88.
20. Francez, N., and Rodeh, M. (1980), A distributed abstract data type implemented by a probabilistic communication scheme,

in “Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, Long Beach, California,”
pp. 373–379.

21. Gao, Q., and Bochmann, G. V. (1989), Distributed implementation of LOTOS multi-rendezvous,in “Participants Proceedings
of the 9th IFIP WG 6.1 International Symposium on Protocol Specification, Testing, and Verification (E. Brinksma, G. Scollo,
and C. Vissers, Eds.), University of Twente, The Netherlands.

22. Hoare, C. A. R. (1978), Communicating sequential processes,Commun. ACM21(8), 666–677.
23. Hoare, C. A. R. (1984), “Occam Programming Manual,” Prentice–Hall, New York.
24. Järvinen, H.-M., and Kurki-Suonio, R. (1991), DisCo specification language: Marriage of actions and objects,in “Proceedings

of the 11th International Conference on Distributed Computing Systems, Arlington, TX,” pp. 142–151, IEEE Computer
Society Press, New York.

25. Järvinen, H.-M., Kurki-Suonio, R., Sakkinen, M., and Syst¨a, K. (1990), Object-oriented specification of reactive systems,
in “Proceedings of the 12th International Conference on Software Engineering, Nice, France,” pp. 63–71, IEEE Computer
Society Press, NewYork.

26. Joung, Y.-J. (1992), “On the Design and Implementation of Multiparty Interaction,” Ph.D. thesis, Department of Computer
Science, State University of New York at Stony Brook.

27. Joung, Y.-J. (1996), Characterizing fairness implementability for multiparty interaction,in “Proceedings of the 23rd In-
ternational Colloquium on Automata, Languages and Programming, Paderborn, Germany,” pp. 110–121, Lecture Notes in
Computer Science, Vol. 1099, Springer-Verlag, Berlin.

28. Joung, Y.-J. (2001), On fairness notions in distributed systems. II. Equivalence-completions and their hierarchies,Inform.
Comput.166, 35–60.

29. Joung, Y.-J., and Smolka, S. A. (1994), Coordinating first-order multiparty interactions,ACM Trans. Programming Lang.
Syst.16(3), 954–985.

30. Joung, Y.-J., and Smolka, S. A. (1996), A comprehensive study of the complexity of multiparty interaction,J. ACM43(1),
75–115.

31. Joung, Y.-J., and Smolka, S. A. (1998), Strong interaction fairness via randomization,IEEE Trans. Parallel Distrib. Syst.
9(2), 137–149.

32. Katz, S., Forman, I., and Evangelist, M. (1990), Language constructs for distributed systems,in “IFIP TC2 Proceedings of
Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel,” pp. 70–97.

33. Kumar, D. (1990), An implementation of N-party synchronization using tokens,in “Proceedings of the 10th International
Conference on Distributed Computing Systems, Paris,” pp. 320–327.

34. Lamport, L. (1978), Time, clocks and the ordering of events in a distributed system,Commun. ACM21(7), 558–565.
35. Lehman, D., and Rabin, M. O. (1981), On the advantage of free choice: A symmetric and fully distributed solution to the

dining philosophers problem (extended abstract),in “Proceedings of the 8th Annual ACM Symposium on Principles of
Programming Languages,” pp. 133–138, ACM Press, New York.

36. Milne, G. J. (1985), CIRCAL and the representation of communication, concurrency, and time,ACM Trans. Programming
Lang. Syst.7(2), 270–289.

37. Milner, R. (1983), Calculi for synchrony and asynchrony,Theoret. Comput. Sci.25, 267–310.
38. Milner, R. (1989), “Communication and Concurrency,” International Series in Computer Science. Prentice–Hall, London.
39. Milner, R., Parrow, J., and Walker, D. (1992), A calculus of mobile processes, I,Inform. Comput.100(1), 1–40.
40. Olderog, E. R., and Apt, K. R. (1988), Fairness in parallel programs: The transformational approach,ACM Trans. Programming

Lang. Syst.10(3), 420–455.

34 YUH-JZER JOUNG

41. Owicki, S., and Lamport, L. (1982), Proving liveness properties of concurrent programs,ACM Trans. Programming Lang.
Syst.4(3), 455–495.

42. Park, M. H., and Kim, M. (1990), A distributed synchronization scheme for fair multi-process handshakes,Inform. Process.
Lett.34, 131–138.

43. Ramesh, S. (1987), A new and efficient implementation of multiprocess synchronization,in “Proceedings, Conference on
PARLE,” Lecture Notes in Computer Science, Vol. 259, pp. 387–401, Springer-Verlag, Berlin.

44. Reif, J. H., and Spirakis, P. G. (1984), Real time synchronization of interprocess communications,ACM Trans. Programming
Lang. Syst.6(2), 215–238.

45. Sistla, P. A. (1984), Distributed algorithms for ensuring fair interprocess communications,in “Proceedings of the Third
Annual ACM Symposium on Principles of Distributed Computing,” pp. 266–277, ACM Press, New York.

46. Tsay, Y.-K., and Bagrodia, R. L. (1993), Some impossibility results in interprocess synchronization,Distrib. Comput.6(4),
221–231.

47. Tsay, Y.-K., and Bagrodia, R. L. (1994), Fault-tolerant algorithms for fair interprocess synchronization,IEEE Trans. Parallel
Distrib. Syst.5(7), 737–748.

48. U.S. Department of Defense (1983), “Reference Manual for the Ada Programming Language,” ANSI/MIL-STD-1815A,
U.S. Government Printing Office, Washington, DC.

	INTRODUCTION
	FIG. 1.

	1 APPRAISING FAIRNESS NOTIONS
	2 PRELIMINARIES
	FIG. 2.

	3 THE CRITERION
	FIG. 3.

	4 PROPERTIES OF IMPLEMENTABLE FAIRNESS NOTIONS
	5 APPLICATIONS OF THE CRITERION
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.

	6 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

