
Information and Computation166, 35–60 (2001)
doi:10.1006/inco.2000.3015, available online at http://www.idealibrary.com on

On Fairness Notions in Distributed Systems

II. Equivalence-Completions and Their Hierarchies∗

Yuh-Jzer Joung†
Department of Information Management, National Taiwan University, Taipei 106, Taiwan

E-mail: joung@ccms.ntu.edu.tw

Received October 4, 1996

This is the second part of a two-part paper in which we discuss the implementability offairness
notionsin distributed systems where asynchronous processes interact via multiparty interactions. We
focus here on equivalence-robust fairness notions where equivalence computations are either all fair or
all unfair. Francezet al. (1992,Formal Aspects Comput.4, 582–591) propose a notion ofcompletion
to transform a non-equivalence-robust fairness notion to an equivalence-robust one while maintain-

ing several properties of the source. However, a completion may not preservestrong feasibility—a
necessary and sufficient condition for a completion to be implementable. In this paper, we study
the system requirement for a completion to be strongly feasible and determine the strongest imple-
mentable completion for every given fairness notion. Moreover, for most systems we obtain a fairness
notion, which we refer to as SG+, such that SG+ is the strongest fairness notion that is both imple-
mentable and equivalence-robust. We also provide a comprehensive comparison of SG+ and several
well-known fairness notions and their minimal and maximal completions. Finally, we show that if
equivalence-robustness is dropped, then in general it is impossible to define a fairness notion that is
implementable and stronger than all other implementable fairness notions, unless the system consists
of only one interaction. This implies plenty of leeway in the design of fairness notions suitable for
various applications. C© 2001 Academic Press

INTRODUCTION

This is the second part of a two-part paper in which we discuss the implementability offairness
notionsin distributed systems where asynchronous processes interact via multiparty interactions. In
Part I [5] we have presented a necessary and sufficient criterion for determining the implementability of
fairness notions. We focus here on equivalence-robust fairness notions where equivalent computations
are either all fair or all unfair.

1. EQUIVALENCE-ROBUSTNESS AND COMPLETIONS

Intuitively, equivalence-robustness ensures that different observations of the same partial-order com-
putation obtain the same property of the system [6]. It thus serves as a natural bridge over the gap
betweeninterleaving semanticsandpartial-order semantics, which is highly desirable in distributed
languages [3]. Furthermore, as we have shown in Part I, under strong feasibility equivalence-robustness
suffices to guarantee the implementability of a fairness notion.

As it turns out, however, several important fairness notions are strongly feasible but are not
equivalence-robust. For example, consider the notion ofstrong interaction fairness(SIF), which re-
quires an interaction that is infinitely often enabled to be executed infinitely often. Assume a systemIS
with three interactionsx12, x13, andx24 depicted in Fig. 1, wherex12 involvesp1 andp2, x13 involvesp1

andp3, andx24 involvesp2 andp4. SIF is strongly feasible for the system because a nonblocking sched-
uler satisfying SIF can be constructed by always choosing as the continuation the enabled interaction
that is executed the least often; tie is broken arbitrarily. Then the computationπ = (p1 p3x13p2 p4x24)ω

∗A preliminary version of this paper appeared as Y.-J. Joung, 1996, On strong feasibilities of equivalence-Completions,in
“Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing,” Philadelphia, PA, pp. 156–165. This
research was supported by the National Science Council, Taipei, Taiwan, Grants NSC 85-2213-E-002-059 and NSC 86-2213-E-
002-053, and by the 1997 Research Award of College of Management, National Taiwan University.
†The author is currently visiting Laboratory for Computer Science, Massachusetts Institute of Technology (1999–2000).

35

0890-5401/01 $35.00
Copyright C© 2001 by Academic Press

All rights of reproduction in any form reserved.

36 YUH-JZER JOUNG

FIG. 1. A system of four processesp1, p2, p3, andp4 and three interactionsx12, x13, andx24.

satisfies SIF, but its equivalent computationψ = (p1 p3 p2x13p4x24)ω does not becausex12 is now
enabled in every state immediately afterp2 is ready but it is never executed.

Francezet al. [3] propose a notion ofcompletionto transform a non-equivalence-robust fairness
notion to an equivalence-robust one while maintaining most properties of the source. To understand
completions, consider Fig. 2. In this figure, run(IS) denotes the set of all possible computations of a
systemIS, whileC(IS) denotes the set of computations allowed by a fairness notionC. Each partition
represents an equivalence class induced by the equivalence relation considered above by permuting
independent actions. Of these equivalence classes,Xi ’s are said to bepurely fair because they are
contained inC(IS), while Yj ’s arepurely unfairbecause they do not intersectC(IS). The classesZk’s
aremixedas they contain both fair and unfair computations. A completion has to resolve the fairness
of the mixed classes. Thus, the minimal completion (i.e., the strongest completion) can be obtained by
treating all mixed classes as unfair, whereas the maximal completion (i.e., the weakest completion) can
be obtained by treating all mixed classes as fair. A semantic comparison of the two can be found in [3].
In general, fewer liveness properties can be assumed for programs using the weakest completion, while
the strongest completion has exactly the opposite characteristics.

Unfortunately, a completion may not necessarily preserve strong feasibility, meaning that it may not
even be implementable. To see this, consider again the system shown in Fig. 1. The computation

π = (p1 p3x13p2 p4x24)
ω

is inevitableto all strongly feasible fairness notions ofIS, meaning that they must considerπ as fair.
This is because at any point of the computation at most one interaction is enabled. Thus according to the
strong feasibility criterion, when only one interaction is enabled, there must be a continuation allowing
the interaction to be executed. (Otherwise the system could be deadlocked if, say whenx13 is enabled,
the scheduling algorithm chooses to wait for more interactions to be enabled whilep2 and p4 instead
are busy doing their local actions forever.) So any completion of SIF, e.g., the minimal completion, that
excludes the equivalence class ofπ would not be strongly feasible.

In this paper we determine, for any given fairness notionC, the strongest strongly feasible completion
of C. Recall that strong feasibility is sufficient and necessary to guarantee the implementability of a
completion. So we are looking for a strongest implementable completion ofC. Our results show that if
no interaction contains an interaction (an interactionx contains yif x 6= y and the set of participants
of y is a subset ofx),1 then the strongest implementable completion ofC exists; otherwise, in general
no such completion is possible.

Furthermore, there exists a fairness notion, which we refer to as SG+, such that when interactions
are not allowed to contain interactions, SG+ is the strongest implementable fairness notion satisfying
equivalence-robustness. In other words, all other implementable and equivalence-robust fairness notions
must be weaker than SG+, and all other equivalence-robust fairness notions that are stronger than SG+

or incomparable with SG+ must not be implementable. We also compare SG+ with several existing
fairness notions. The results indicate that SG+ is equivalent to SIF+ and SPF+ and is stronger than
WIF and WPF+, where SIF+, SPF+, and WPF+ are the maximal completions of SIF, SPF, and WPF,
respectively. In particular, when interactions are CSP-like bipartied, SG+ is also equivalent to SPF. So
SPF is the strongest equivalence-robust property one can observe from a CSP-like program executing
in any asynchronous environment. Conversely, if interactions can contain interactions, then in general
the strongest implementable and equivalence-robust fairness notion does not exist.

1 Note that althoughx containsy, the establishment ofy doesnot depend on the establishment ofx. In the literature, some
languages (e.g., IP and Script) allow participants of an interactionv to establish a “subinteraction” withinv. So the subinteraction
can be established only whenv has been established.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 37

FIG. 2. The fairness-equivalence partitioning [3].

Finally, we show that if equivalence-robustness is not required, then no system can have a strongest
implementable fairness notion, unless the system consists of only one interaction. So, in general, for
any implementable fairness notionC, there exists another implementable fairness notionC′ such that
C′ is either strictly stronger thanC or is incomparable withC. This implies plenty of leeway in the
design of fairness notions suitable for various applications.

The rest of the paper is organized as follows. Section 2 provides some preliminaries. Section 3
considers the implementability of completions. Section 4 presents a comprehensive analysis of several
commonly used fairness notions and their minimal and maximal completions. The impossibility result
of a strongest implementable fairness notion is the subject of Section 5. Section 6 concludes.

2. PRELIMINARIES

We shall follow the same notations as those given in Part I. In addition, we shall useeq(π) to
denote the equivalence class ofπ , i.e., the set of runs that are equivalent toπ . Moreover, for notational
simplicity we shall use a setP in a run to denote an arbitrary sequence of ready transitions, one by each
process inP, where each ready transition is of the formpi · {x ∈ I | pi ∈ Px}. For example, assume that
Px12 = {p1, p2} and Px23 = {p2, p3}. ThenPx12x12Px23x23 represents a partial run in whichp1 and p2

become ready (in arbitrary order), they executex12, and thenp2 andp3 become ready (again, in arbitrary
order) and executex23. Likewise, (Px12 ∪ Px23)x12Px12x23 represents a partial run in whichp1, p2, and
p3 become ready,p1 and p2 executex12 and become ready again, and thenp2 and p3 executex23.

In addition to the definitions given in Part I, the following are used in this artical.

DEFINITION 2.1. A fairness notionC1 for IS is strongerthanC2 (or, alternatively,C2 is weakerthan
C1) if C1(IS) ⊆ C2(IS).C1 is strictly strongerthanC2 if C1(IS)⊆

�
C2(IS).C1 andC2 areincomparable

if C1(IS) 6⊆ C2(IS) andC2(IS) 6⊆ C1(IS); they areequivalentif C1(IS) = C2(IS).

DEFINITION 2.2. [1]. A fairness notionC isequivalence-robustfor IS iff ∀π ∈ C(IS), eq(π) ⊆ C(IS).

The following is a restatement of strongly feasibility.

DEFINITION 2.3. A fairness notionC isstrongly feasiblefor IS iff there exists a nonblocking scheduler
Ssuch thatr (S, A) ∈ C(IS) for every adversaryA.

An immediate consequence of these definitions is the following.

LEMMA 2.1. Let IS = (P, I, M).

1. If I 6= ∅, then for any strongly feasible fairness notionC, C(IS) 6= ∅.
2. If C1 is strongly feasible forIS andC1(IS) ⊆ C2(IS), thenC2 is also strongly feasible forIS.

3. It may be the case that bothC1 andC2 are strongly feasible forIS, butC1 ∩C2 is not, where
the notionC1 ∩ C2 is defined byC1(IS) ∩ C2(IS).

Proof. The first two follow directly from the definitions. For the third, letIS = ({p1, p2, p3},
{x12, x23}, M∀), wherePx12 = {p1, p2} and Px23 = {p2, p3}. Let C1 be defined as follows: in a state
where bothx12 andx23 are enabled,x12 must be scheduled for execution (i.e.,x12 has a higher priority
thanx23) andC2 be defined as “x23 has a higher priority thanx12.” Then, bothC1 andC2 are strongly

38 YUH-JZER JOUNG

feasible, butC1 ∩ C2 is not because no scheduler can make a move if the adversary lets the three
processes be ready simultaneously.j

We have shown in Part I that SIF is strongly feasible. Then by Lemma 2.1, any fairness notion that
is weaker than SIF is also strongly feasible. Examples include SPF, WPF, and WIF

LEMMA 2.2. The following four fairness notions are all strongly feasible: SIF, SPF, WPF, and WIF.

On the other hand, as we have shown in Part I, both U-fairness and hyperfairness are not strongly
feasible.

In general, to prove thatC is not strongly feasible forIS, we must show that for every nonblocking
schedulerS, there is an adversaryA such thatr (S, A) 6∈ C(IS). However, for most systems there exists
an adversary such that every scheduler versus it must generate the same run. So if the run is not included
in C(IS), then obviouslyC cannot be strongly feasible. For example, if an adversary always lets at
most one interaction be enabled, then any nonblocking scheduler versus the adversary must generate
the same run: whichever interaction is enabled, it must be selected for execution. The resulting runs are
calledsingular in Part I, and are inevitable to every strongly feasible fairness notion ofIS. We shall
use SG(IS) to denote the set of singular runs ofIS. An immediate consequence of the definition is the
following.

LEMMA 2.3. For every strongly feasible fairness notionC, SG(IS) ⊆ C(IS).

Note that for everyIS, SG(IS) 6= ∅, unlessIS contains more than one interaction and for every
interactionx, there exists another interactiony such thaty is contained inx. Moreover, if SG(IS) 6= ∅,
then for every fairness notionC it is never the case that SG(IS) ⊆ C(IS) and SG(IS) ⊆ C̄(IS), whereC̄
is the complement ofC defined byC̄(IS) = run(IS)−C(IS). Therefore, ifC is strongly feasible forIS,
thenC̄must not be strongly feasible. In other words, it is never the case that bothC and its complement
are implementable.

COROLLARY 2.4. Let IS = (P, I, M∀). If ∃ x ∈ I, ∀ y ∈ I, y 6= x⇒ Py 6⊆ Px. Then for every fairness
notionC, it is never the case that bothC andC̄ are implementable forIS.

Recall from Lemma 4.1 of Part I that in the presence of equivalence-robustness, strong feasibility is
sufficient and necessary to determine fairness implementability. As this result will be referenced several
times in the paper, for ease of reference, we restate the lemma below.

LEMMA 2.5. If C is strongly feasible and equivalence-robust forIS, thenC is implementable forIS.

Moreover, since ifC is stronger thanC′ thenC(IS) ⊆ C′(IS), the fairness implementability criterion
immediately implies the following lemma:

LEMMA 2.6. SupposeC is stronger thanC′. If C is implementable forIS, then so isC′; and ifC′ is
not implementable, then neither isC.

3. STRONG FEASIBILITY OF COMPLETIONS

In this section we consider the implementability of equivalence-robust fairness notions. In particular,
we shall focus oncompletions—equivalence-robust fairness notions derived from a non-eqivalence-
robust one. We shall show that the process of completion may not preserve strong feasibility. Since in
the presence of equivalence-robustness strong feasibility suffices to determine fairness implementability,
completions are not necessarily implementable.

Furthermore, we shall also show that if no interaction ofIS contains an interaction, then there exists a
fairness notion, denoted by SG+, such that SG+ is the strongest implementable and equivalence-robust
fairness notion ofIS. On the other hand, ifIS contains two interactionsx, y such thatPx ⊆ Py then in
general there does not exist a strongest implementable and equivalence-robust fairness notion forIS.

3.1. Definitions

DEFINITION 3.1 [3]. 1. An equivalence classeq(π) in run(IS) is purelyC-fair iff eq(π) ⊆ C(IS), it
is purelyC-unfair iff eq(π) ∩ C(IS) = ∅, and it isC-mixedotherwise.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 39

2. A fairness notion̂C is a comletion ofC iff the following three conditions are satisfied:

(i) for every purelyC-fair classeq(π), eq(π) ⊆ Ĉ(IS)

(ii) for every purelyC-unfair classeq(π), eq(π) ∩ Ĉ(IS) = ∅, and

(iii) for every classC-mixed classeq(π), eithereq(π) ⊆ Ĉ(IS) or eq(π) ∩ Ĉ(IS) = ∅.
It follows directly that a completion̂C must be equivalence-robust. Two extreme completions ofC

arise naturally: themaximalcompletionC+, which treats everyC-mixed class as fair, and theminimal
completionC−, which treats everyC-mixed class as unfair [3]. Moreover,C−(IS) ⊆ C(IS) ⊆ C+(IS)
for everyC. By Lemma 2.1, ifC is strongly feasible then so isC+. SinceC+ is equivalence-robust, by
Lemma 2.5, ifC is strongly feasible thenC+ must be implementable.

LEMMA 3.1. If C is strongly feasible forIS, thenC+ must be implementable forIS.

On the other hand, since the process of minimal completion may exclude some runs that are inevitable
toC−,C− may be unimplementable. In fact, ifC is not implementable then strong feasibility cannot be
preserved byC−. Therefore, unlike maximal completions, minimal completions do not help us obtain an
implementable fairness notion from an unimplementable one while pursuing equivalence-robustness.

LEMMA 3.2. If C is not implementable forIS, then neither isC−. Moreover, if C is not implementable,
thenC− must not be strongly feasible.

Proof. SinceC−(IS) ⊆ C(IS), by Lemma 2.6, ifC is not implementable then neither isC−. Since
C− is equivalence-robust, by Lemma 2.5, it must not be strongly feasible.j

3.2. Strongly Feasible Completions

As it turns out, the weakest completion (i.e., the maximal completion) of a strongly feasible fairness
notion is also strongly feasible, while the strongest completion (i.e., the minimal completion) may not
be. Since strongly feasible completions are implementable, and since stronger completions induce more
liveness properties, given a strongly feasible fairness notionC, one would wish to know what is the
strongest, strongly feasible completion ofC, or does it even exist. To answer this, we first establish
a more important theorem showing the existence of a strongest fiarness notion that is both strongly
feasible and equivalence-robust. For this, we need the following lemma.

LEMMA 3.3. Let IS = (P, I,M) and assume that∀x, y ∈ I, x 6= y ⇒ Px 6⊆ Py. The everyπ ∈
run(IS) satisfying SIF is equivalent to a singular run.

Proof. Let π ∈ run(IS) be a run given by

π = p1,1.I1,1 . . . p1,n1.I1,n1 x1 p2,1.I2,1 . . . p2,n2.I2,n2 x2 . . . ,

wherex1, x2, . . . are the sequence of interactions executed inπ . Assume thatπ satisfies SIF. Consider
x1. Suppose that we transformπ into another runπ1 by the following procedure: For eachp1, j .I1, j , 1≤
j ≤ n1, if (1) p1, j /∈ Px1 and (2) at some point inπ (after the ready transitionp1, j .I1, j) some interaction
y involving p1, j is enabled, then move the actionp1, j .I1, j afterx1. Clearly,π ≡ π1. Due to the restriction
imposed on the structure ofIS, no subset ofPx1 is involved in any other interaction. So inπ1 at most
one interaction is enabled at any point up tox1.

Similarly, we can transformπ1 into another runπ2 by applying the above procedure to the ready
transitions occurring betweenx1 andx2 so thatπ1 ≡ π2, and inπ2 at most one interaction is enabled at
any point up tox2. We claim that if we apply the procedure repeatedly for the rest ofxi ’s, then we will
obtain a runπ∞ such thatπ ≡ π∞ andπ∞ is singular. To see this, observe that for any finitei , we have
π ≡ π1 ≡ · · · ≡ πi , and inπi at most one interaction is enabled at any point up toxi So it suffices to
show that the equivalence relation betweenπ andπi is preserved wheni →∞.2

2 Note that, in general, equivalence relation maynot be preserved through an infinite number of such transformations. For
example, considerπ = p1(p2 p3x)ω, and assume thatPy = {p1, p2} andPx = {p2, p3}. Letπi = (p2 p3x)i p1(p2 p3x)ω. Then,
for each finitei, πi−1 ≡ πi . However,π∞ = (p2 p3x)ω, which is not equivalent toπi for any finitei .

40 YUH-JZER JOUNG

Suppose otherwise that the equivalence relation does not hold. Then, it must be the case that some
ready transitionpk, j .Ik, j in betweenxk−1 andxk of runπk has to be moved during the transformation
from πl−1 to πl for every l ≥ k, resulting in the extinction ofpk, j .Ik, j when the transformation is
performed an infinite number of times. However, recall that ifpk, j .Ik, j has to be moved in thekth
transformation (i.e., fromπk−1) to πk, then (1)pk, j /∈ Pxk and (2) later at some point inπk−1 (and thus
in π) some interactiony involving pk, j is enabled. Since in the remaining transformationspk, j .Ik, j

is continually moved, none of the interactionsxk, xk+1, . . . involves processpk, j , and there exists an
infinitely number of points inπ such that at each point some interaction involvingpk, j is enabled, but
from xk onwardpk, j never participates in any interaction. Soπ does not satisfy SPF, and thusπ does
not satisfy SIF. This contradicts the assumption thatπ satisfies SIF. Therefore, the equivalence relation
betweenπ andπ∞ is preserved during the transformations fromπ to π∞. j

Recall from Lemma 2.3 that for every strongly feasible fairness notionC, SG(IS) ⊆ C(IS), where
SG(IS) is the set of singular runs ofIS. Define fairness notion SG+ to be the maximal completion of
SG, i.e.,

SG+(IS) =
⋃

π∈SG(IS)

eq(π).

Then, for everyC that is both strongly feasible and equivalence-robust, SG+(IS) ⊆ C(IS). Moreover,
by Lemma 3.3, SIF(IS) ⊆ SG+(IS). Since SIF is strongly feasible, by Lemma 2.1 SG+ is also strongly
feasible. Hence, by Lemma 2.5 SG+ is implementable. The following theorem can thus be established.

THEOREM 3.4. Let IS = (P, I,M) and assume that∀x, y ∈ I, x /∈ y ⇒ Px 6⊆ Py. Then,SG+ is
strongly feasible and equivalence-robust forIS, and for every other strongly feasible and equivalence-
robust fairness notionC, SG+(IS) ⊆ C(IS).

To illustrate SG+, consider the following example taken from [1]:

p1 :: b1 := true;
∗ [b1; p2 ! 0→ b1 := false]

p2 :: b2 := true;
∗ [b2; p1 ?x→ b2 := false

2 b2; p3 ?x→ skip];

p3 ! 0

p3 :: b3 := true;
∗ [b3; p2 ! 0→ skip

2 b3; p2 ?y→ b3 := false]

In this system,p1 and p2 may interact, andp2 and p3 may interact. In particular,p2 and p3 may
establish two possible interactions, one to deliver a value fromp3 to p2 and the other in the opposite
direction. Although the two interactions contain each other, the program does not allow them to be
enabled simultaneously. So Theorem 3.4 can be applied to the system so that SG+ is the strongest
implementable and equivalence-robust fairness notion for the system. From the program, it can be seen
that the system may not terminate asp2 andp3 may repeatedly establish an interaction forever. However,
any run of the system satisfying SG+ must terminate.

From Theorem 3.4, we can derive the following corollary.

COROLLARY 3.5. Let IS = (P, I,M) and assume that∀x, y ∈ I, x 6= y⇒ Px 6⊆ Py. Then for every
strongly feasible fairness notionC, the completionC∗ defined by

C∗(IS) = SG+(IS) ∪ {π ∈ E | E is a purelyC-fair equivalence class inrun(IS)}
is the strongest implementable completion ofC.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 41

Proof. SinceC is strongly feasible, by Lemma 2.3, SG(IS) ⊆ C(IS). So every equivalence class in
SG+(IS) must be purelyC-fair orC-mixed. So by definitionC∗ is a completion ofC. Moreover, since
SG+(IS) ⊆ C∗(IS) and since SG+ is strongly feasible, by Lemma 2.1,C∗ is also strongly feasible. By
Lemma 2.5, therefore,C∗ is an implementable completion ofC.

To show thatC∗ is the strongest implementable completion ofC, let Ĉ be any other implementable
completion ofC. Then, by Theorem 3.4 and by the definition of completions,C∗(IS) ⊆ Ĉ(IS). Hence,
C∗ is the strongest strongly feasible completion ofC. j

Note that Theorem 3.4 does not depend on the arity of interactions, and so it holds as well if interactions
are strictly bipartied. In particular, if every pair of processes share at most one interaction, then SG+ is
the strongest strongly feasible and equivalence-robust fairness notion one can get for biparty interaction
systems.

COROLLARY 3.6. For everyIS = (P, I,M) such that∀x ∈ I, |Px| = 2 and∀x, y ∈ I, x 6= y⇒ Px 6=
Py, SG+ is the strongest fairness notion forIS that is both strongly feasible and equivalence-robust.

3.3. Non-Strongly-Feasible Completions

On the other hand, if some interaction contains an interaction, then the strongest strongly feasible and
equivalence-robust fairness notion may not exist. Before proving this, we first show that ifIS in addition
contains at least two processes, then not all strongly feasible fairness notions ofIS have a strongest
implementable completion. Note that for this we shall consider interaction systems with programs of
type M∀. It can be seen that even if interactions may contain interactions, if the associated program
M guarantees that at any time no enabled interactionx contains an interaction that is also enabled
simultaneously, then SG+ is still the strongest strongly feasible and equivalence-robust fairness notion
for the system.

THEOREM 3.7. Let IS = (P, I,M∀) be an interaction system satisfying the following conditions:

1. |P| > 1 and

2. ∃x, y ∈ I, x 6= y, Px ⊆ Py, and∀z ∈ I, Pz ⊆ Py ⇒ Px ⊆ Pz.

Then, there exists a fairness notionC which is strongly feasible but does not have a strongest strongly
feasible completion.

Proof. Let x, y ∈ I be two interactions satisfying condition (2). Consider first that|Py| ≥ 2. let p1

and p2 be two arbitrary processes inPy. Clearly, run(IS) contains runs of the form

p1 p2(Py − {p1, p2})z1Pz1z2Pz2z3Pz3 (1)

Let Ex andEx̄ be two subsets of run(IS) defined by

Ex = {π | π is equivalent to some run of form (1) where∀i, zi = x}
Ex̄ = {π | π is equivalent to some run of form (1) where∃i, zi 6= x}.

The two sets are obviously not empty and disjoint. Note that in the presence ofp1 and p2, each runπ
in Ex andEx̄ has at least one equivalent run different fromπ , i.e.,|eq(π)| ≥ 2 (because the first ready
transitions of the two processes can be arbitrarily permuted).

Let Sbe a nonblocking scheduler which selects an arbitrary enabled interaction for execution, except:

• If initially the adversary schedules the sequence of ready transitionsp1 p2(Py − {p1, p2}), thenx
will always be chosen for execution whenever it is enabled.
• If initially the adversary schedules the sequence of ready transitionsp2 p1(Py − {p1, p2}), theny

will always be chosen for execution whenever it is enabled.

Define fairness notionC to be the following:

C(IS) = {π | there is an adversaryA of IS such thatr (S, A) = π}.

42 YUH-JZER JOUNG

ThenC is strongly feasible becauseS generates onlyC-fair runs. Observe that every run of the form
p1 p2(Py − {p1, p2})(x Px)ω belongs toC(IS) but its equivalent runp2 p1(Py − {p1, p2})(x Px)ω does
not. So every equivalence classeq(π) ⊆ Ex is C-mixed. (In fact, there is only one equivalence class
in Ex.) On the other hand, for everyπ of form (1) such that for somei, zi 6= x, π must not belong to
C(IS) because no adversary versusScan generateπ . So every equivalence classeq(π) ⊆ Ex̄ is either
C-mixed or is purelyC-unfair.

Recall from Lemma 2.1 that ifC1 is strongly feasible andC1(IS) ⊆ C2(IS), thenC2 must also be
strongly feasible. From the above description ofC, it can be seen that there exists a strongly feasible
fairness notionC′ for IS satisfying the following two conditions:

• ∀π ∈ run(IS)− (Ex ∪ Ex̄), π ∈ C′(IS), and

• ∀π ∈ Ex ∪ Ex̄, eq(π) ∩ C′(IS) 6= ∅ andeq(π) ∩ C′(IS) 6= ∅.
For example,C′ can be obtained by extending the aboveC to include every run in run(IS)− (Ex∪Ex̄)

and including one run from every purelyC-unfair class ofEx̄.
Now, since each equivalence classeq(π) ⊆ Ex ∪ Ex̄ is C′-mixed, every completion̂C of C′ must

decide the fairness ofeq(π). Moreover, ifĈ′ is strongly feasible, then̂C′ cannot treat all theeq(π)’s in
Ex ∪ Ex̄ as unfair; otherwise, no nonblocking scheduler can generate a fair run if it faces the following
adversary. Initially, the adversary schedules the sequence of partial runp1 p2(Py − {p1, p2}); subse-
quently, whichever interaction is chosen by the scheduler, the adversary in response simply schedules
the processes of the interaction to be ready again.

We can define two completionŝC′x which treats all equivalence classes inEx as fair and those in
Ex̄ as unfair, and̂C′x̄, which is defined in the other way. We argue that both are strongly feasible. To
see this, consider first a nonblocking schedulerSx which selects an arbitrary enabled interaction for
executioin, except thatx must be chosen whenever it is enabled. Then for every runπ generated bySx,
if π is equivalent to some run of form (1), then all of thezi ’s must be instances ofx. This is because at
any point inπ only the processes inPy can be ready. So for everyzi , Pzi ⊆ Py. By condition (2),x is
enabled wheneverzi is. SinceSx prefersx to any other interaction containingx, zi = x. SoSx cannot
generate any run inEx̄. Therefore,Ĉ′x is strongly feasible becauseSx generates only runs in̂C′x.

For the strong feasibility of̂C′x̄ consider a nonblocking schedulerS̄x which selects an arbitrary enabled
interaction for execution, except thaty must be chosen whenevery is enabled. Since every run inEx

contains a state in whichy is enabled, no adversry versusS̄x can generate a run inEx. So every run
generated byS̄x satisfiesĈ′x̄. Hence,Ĉ′x̄ is also strongly feasible.

Observe that the two completionŝC′x and Ĉ′x̄ are incomparable. So neither of them can be the
strongest implementable completion ofC′. Moreover, recall that for every strongly feasible comp-
letionĈ′ ofC′, Ĉ′(IS) must contain some equivalence classes inEx∪Ex̄. So ifĈ′ contains all equivalence
classes inEx ∪ Ex̄, thenĈ′ must be weaker than̂C′x andĈ′x̄; and if Ĉ′(IS) contains only part of them,
thenĈ′ must be incomparable with eitherĈ′x or Ĉ′x̄. Therefore,C′ does not have a strongest strongly
feasible completion.

In the above proof, we have assumed that|Py| ≥ 2. If |Py| = 1, thenPx = Py. Since|P| > 1, either
there exists an interactionu involving more than one process, or there exists two interactionsu1, u2

such that|Pu1| = |Pu2| = 1 andPu1 6= Pu2. In the former case, we can modify form (1) to

p1 p2(Pu − {p1, p2})v1 · · · vk Pyz1Pz1z2Pz2z3Pz3 . . . ,

wherep1 and p2 are two arbitrary process inPu andv1, . . . , vk are instances of interactions such that
no interaction is enabled immediately aftervk. In the latter case, we instead consider the form

p1u′1 p2u′2Pyz1Pz1z2Pz2z3Pz3 . . . ,

where Pu1 = {p1} and Pu2 = {p2}. In either case, we can defineEx and Ex̄ analogously and show
that there exists a strongly feasible fairness notionC′ such that all its strongly feasible completions
intersect (a) bothEx and Ex̄, (b) only Ex, or (c) only Ex̄ SoC′ does not have a strongest strongly
feasible completion. j

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 43

Note that in Theorem 3.7, ifP consists of only one process, then for anyπ ∈ run(IS), the equivalence
classeq(π) consists ofπ itself. So for any fairness notionC, there is only one completion, i.e.,C itself.
Therefore, it holds trivially that ifC is strongly feasible forIS, thenC is the strongest strongly feasible
completion ofC.

We now show tht if some interaction contains an interaction, then there may not exist a strongest
fairness notion forIS that is both strongly feasible and equivalence-robust.

THEOREM 3.8. Let IS = (P, I,M∀) be an interaction system satisfying the following condition:

∃x, y ∈ I, x 6= y, Px ⊆ Py, and ∀z ∈ I, Pz ⊆ Py ⇒ Px ⊆ Pz.

Then, there does not exist a fairness notionC such that(1)C is strongly feasible and equivalence-robust
and(2)C is the strongest fairness notion forIS that satisfies Condition(1).

Proof. The proof is similar to that of Theorem 3.7, except that we do not need processesp1 and
p2 to make some equivalence classes of run(IS) consist of more than one run. LetEx andEx̄ be two
subsets of runIS defined by

Ex = {π | π is equivalent to some run of the formPy(x Px)ω},
Ex̄ = {π | π is equivalent to some run of the formPyz1Pz1z2Pz2 . . .where∃i, zi 6= x}.

Then, using an argument similar to Theorem 3.7, we can show that any strongly feasible and equivalence-
robust fairness notionC for ISmust intersect eitherEx or Ex̄. Furthermore, there are two incomparable
fairness notions (which are strongly feasible and equivalence-robust)Cx andCx̄ such that the following
two conditions are satisfied: (1)Ex ⊆ Cx(IS) andCx(IS) ∩ Ex̄ = ∅ and (2) Ex̄ ⊆ Cx̄(IS) and
Cx̄(IS) ∩ Ex = ∅. All other strongly feasible and equivalence-robust fairness notions forIS must be
either weaker thanCx andCx̄ or incomparable with one of them. Therefore, the strongest strongly
feasible and equivalence-robust fairness notion forIS does not exist. j

Note that like Theorem 3.4, both Theorems 3.7 and 3.8 hold as well if interactions are strictly bipartied.
To illustrate Theorem 3.8, letIS = ({p}, {x, y},M∀), wherePx = Py = {p}. Let Fx = {(px)ω}

andFx = {(py)ω}. Then both are strongly feasible and equivalence-robust (and so are implementable).
However, the two fairness notions are incomparable. Note that each fairness notion has only one
completion, i.e., itself. So each has a strongest implementable completion.

3.4. A Patch

The readers may have noticed that Theorem 3.8 alone is not enough to determine whether there exists
a strongest implementable and equivalence-robust fairness notion for allIS = (P, I,M∀) where some
interaction contains an interaction. This is because Theorem 3.8 concerns only the case where
some interactiony ∈ I contains a minimal interactionx (where an interactionu is minimal if for
every interactionv contained inu, Pu = Pv) such that for all other minimal interactionsw contained in
y, Pw = Px. Clearly,y may contain two minimal interactionsx andz such that neither of them contains
the other. As we shall see, these systems do have a strongest implementable and equivalence-robust
fairness notion, which is, by no surprise, SG+.

LEMMA 3.9. Let IS = (P, I,M∀) and assume that

∀x, y ∈ I, x 6= y, Px ⊆ Py ⇒ ∃z, w ∈ I, Pz ⊆ Py, Pw ⊆ Py, Pz 6⊆ Pw, and Pw 6⊆ Pz.

Then arunπ ∈ run(IS) is equivalent to a singular run if it satisfies the following conditions:

1. No interaction containing an interaction is ever executed inπ .

2. For every x not containing any interaction, if x is enabled infinitely often, then it is executed
infinitely often.

44 YUH-JZER JOUNG

Proof. Let π ∈ run(IS) be a run given by

π = p1,1.I1,1 . . . p1,n1.I1,n1 x1 p2,1.I2,1 . . . p2,n2.I2,n2 x2 . . . ,

wherex1, x2, . . . are the sequence of interactions executed inπ . Assume thatπ satisfies conditioins
1 and 2. We can use the method described in Lemma 3.3 to transformπ into an equivalent runπ1

by moving eachp1, j .I1, j , 1 ≤ j ≤ n1, to the end ofx1, where p1, j .I1, j satisfies the following two
conditions: (a)p1, j /∈ Px1 and (b) at some point inπ (after the ready transitionp1, j .I1, j) some interaction
y involving p1, j is enabled. By condition 1 of the lemmaπ1 is singular up tox1.

Like Lemma 3.3, the transformation can be done ad infinitum. Letπ∞ denote the resulting run. Unlike
Lemma 3.3, however, some ready transitionpk, j .Ik, j in betweenxk−1 andxk may be kept moving forever
in the rest of the transformation fromπk toπ∞. (If no ready transition is moved indefinitely thenπ ≡ π∞
andπ∞ is singular; hence we are done.) If this happens, then by the transformation some interactiony
involving processpk, j is enabled infinitely often but fromxk onwardy is never executed. Note that by the
conditions of the lemma,y must contain two interactionsw andz such thatPw− Pz 6= ∅, Pz− Pw 6= ∅,
and neither of them contains an interaction. Since bothw andz are enabled whenevery is enabled,w
andz are enabled infinitely often throughoutπ . Since they do not contain any interaction, by condition
2 they are executed infinitely often inπ .

We can then modify the transformation such that starting fromπk the ready transitionpk, j .Ik, j will
not be moved in the rest of the transformation. Without loss of generality assume that no other ready
transition is kept moving forever in the new transformation. (If there is one, then we can use the same
method to freeze that transition too.) Letπ ′∞ be the resulting run. It is clear thatπ ≡ π ′∞ because no
ready transition is kept moving forever.

We claim thatπ ′∞ is singular. By the transformation, it suffices to show thaty will never be enabled
even if we stop movingpk, j .Ik, j from xk onward. For this, suppose otherwisey is enabled in some state
s in π ′∞. Sow andz are also enabled ins. Recall thatw andz are executed infinitely often inπ (and
thus inπ ′∞). Let u be the first interaction that is executed afters. By condition 1,Pu cannot containPw
andPz. So eitherPw − Pu 6= ∅ (whenu 6= w) or Pz − Pu 6= ∅ (whenu 6= z). Since bothw andz are
executed infinitely often, by the transformation either the ready transitions by the processes inPw − Pu

or the ready transitions by the processes inPz− Pu will be moved afters. Hence,y cannot be enabled
in s; contradiction. The lemma is thus proven.j

To illustrate Lemma 3.9, assume thatIS = ({p1, p2, p3}, {x2, x3, x23, x123},M∀), where Px2 =
{p2}, Px3 = {p3}, Px23 = {p2, p3}, andPx123 = {p1, p2, p3} (see Fig. 3c). Then the run

π = p1 p2 p3(x2 p2x2 p2x3 p3)ω

can be transformed into

ρ = p1(p2x2 p2x2 p3x3)ω

which is singular and is equivalent toπ .

THEOREM 3.10. Let IS = (P, I,M∀) and assume that

∀x, y ∈ I, x 6= y, Px ⊆ Py ⇒ ∃z, w ∈ I, Pz ⊆ Py, Pw ⊆ Py, Pz 6⊆ Pw, and Pw 6⊆ Pz

Then, SG+ is the strongest strongly feasible and equivalence-robust fairness notion forIS.

Proof. By Lemma 2.3, for every strongly feasible and equivalence-robust fairness notionC, SG+(IS)
⊆ C(IS). As by definition SG+ is equivalence-robust, to prove the theorem it suffices to show that SG+

is strongly feasible forIS. Moreover, by Lemma 3.9, it suffices to show that there exists a nonblocking
scheduler forIS satisfying conditions 1 and 2 of the lemma. Such a scheduler can be easily obtained by
modifying the SIF-scheduler presented in Part I (Fig. 6) so that no interaction containing an interaction
is ever selected for execution.j

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 45

FIG. 3. Instances of interaction systemsIS = (P, I, M∀) which permit some interactions to contain an interaction but have a
strongest implementable and equivalence-robust fairness notion.

Figure 3 illustrates some instances ofIS that have a strongest implementable and equivalence-robust
fairness notion. Theorem 3.10 implies the following corollary (cf. Corollary 3.5).

COROLLARY 3.11. Let IS = (P, I,M∀) and assume that

∀x, y ∈ I, x 6= y, Px ⊆ Py ⇒ ∃z, w ∈ I, Pz ⊆ Py, Pw ⊆ Py, Pz 6⊆ Pw, and Pw 6⊆ Pz.

Then for every strongly feasible fairness notionC, the completionC∗ defined by

C∗(IS) = SG+(IS) ∪ {π ∈ E | E is a purelyC-fair equivalence class inrun(IS)}

is the strongest implementable completion ofC.

4. COMPARISONS OF SG+ WITH OTHER FAIRNESS NOTIONS

In this section we compare SG+with the following well-known fairness notions and their completions:

Strong interaction fairness(SIF): An interaction that is infinitely often enabled is executed infinitely
often.

Strong process fairness(SPF): A process that is infinitely often ready for an enabled interaction
engages in an interaction infinitely often.

Weak process fairness(WPF): A process that is continuously ready for an enabled interaction (not
necessary the same interaction) will eventually engage in an interaction.

Weak interaction fairness(WIF): An interaction that is continuously enabled will eventually be
executed.

The comparison is intended to be comprehensive so that we know how these fairness notions differ
for various systems. In particular, we shall divide the comparison into two subsections—one for systems
involving strictly biparty interactions (`a la CSP and Ada), and the other for those involving multiparty
interactions of arbitrary arity. Recall that SG+ is the strongest implementable and equivalence-robust
fairness notion for systems where interactions cannot contain interactions. In the biparty case, an
interactionx cannot be contained in another interactiony if Px 6= Py. This means that if interaction
names only serve to identify the participants, then SG+ is the strongest implementable and equivalence-
robust fairness notion for biparty interaction systems.3 We shall therefore useIB to denote a set of
biparty interactions such that∀ x ∈ IB, |Px| = 2 and∀ y ∈ IB − {x}, Px 6= Py.

Recall from Lemma 2.2 that the above four fairness notions are all strongly feasible. Their equivalence-
robustness is summarized in Table 1. It is clear that for everyIS the following relation holds [1, 2]:

SIF(IS) ⊆ SPF(IS) ⊆WPF(IS) ⊆WIF(IS).

In particular, depending on the instances ofIS, the fairness notions may be identical or strictly different.
To study the structure of interactions that distinguishes these fairness notions and their minimal and
maximal completions, we shall associateIS with a program of typeM∀.

3 In practice an interaction name usually identifies the set of participants, while the interaction body determines the content
of communication, which can vary dynamically, and in some cases can even involve nondeterministic choices among guarded
commands.

46 YUH-JZER JOUNG

TABLE I

Equivalence-Robustness of Various Fairness Notions [1]

Biparty interactions Multiparty interactions

SIF − −
SPF + −
WPF − −
WIF + +

4.1. Biparty Interaction Systems

We will establish some lemmas that are useful in classifying the relationship between SG+ and SIF,
SPF, WPF, WIF, and their minimal and maximal completions. We begin with the comparison of SIF−,
SIF, and SIF+. By definition of completions, for everyIS we have SIF−(IS) ⊆ SIF(IS) ⊆ SIF+(IS).
Since SIF is not equivalence-robust, there exists someIS that distinguishes SIF−, SIF, and SIF+. The
following lemma shows when they are distinct.

LEMMA 4.1. For everyIS = (P, I, M∀), SIF−(IS) ⊆SIF(IS) ⊆ SIF+(IS). In particular,SIF−(IS)(
SIF(IS)(SIF+(IS) if ∃ x, y, z ∈ I, Px ∩ Py 6⊆ Pz and Px ∩ Pz 6⊆ Py.

Proof. To see the proper subset relation, consider the run

π = ((Px − Pz) ∪ Py)(y Pz z Py)ω.

If only y andzare enabled infinitely often inπ , thenπ ∈ SIF(IS). If some other interactionw is enabled
infinitely often, then due to the restriction imposed onIS, w 6= x becausex is never enabled inπ . So
eitherPw ⊆ (Px − Pz) ∪ Py or Pw ⊆ (Px − Py) ∪ Pz. If Pw ⊆ (Px − Pz) ∪ Py, then let

π ′ = ((Px − Pz) ∪ Py)(w Pw y Pz z Py)ω;

otherwise let

π ′ = ((Px − Pz) ∪ Py)(y Pzw Pw z Py)ω.

In either case, ifπ ′ is still not in SIF(IS), then similarly there must be another interactionu such that
either Pu ⊆ (Px − Pz) ∪ Py or Pu ⊆ (Px − Py) ∪ Pz andu is enabled infinitely often but is never
executed. Then we can use the above method to obtain another runπ ′′ such thatu is executed infinitely
often inπ ′′. So without loss of generality assume thatπ ∈ SIF(IS).

Consider the run

ρ = ((Px − Pz) ∪ Py)((Pz− Py) y (Pz ∩ Py) z Py)ω.

It is easy to see thatρ ≡ π . However,ρ does not satisfy SIF becausex is now enabled infinitely often
in ρ but it is never executed. By the definition of minimal completions,π ∈ SIF(IS) − SIF−(IS); and
by the definition of maximal completionsρ ∈ SIF+(IS)− SIF(IS). j

Figures 4b and 4c illustrate some instances ofIS for which SIF−(IS)(SIF(IS)(SIF+(IS).4

LEMMA 4.2. For everyIS = (P, I, M∀), SIF(IS) ⊆ SPF(IS). In particular, SIF(IS)(SPF(IS) if
∃ x, y1, . . . , yn ∈ I such that∀i ≤ n, Pyi ∩ Px 6= ∅ and

⋃
i (Pyi ∩ Px) = Px.

4 It can also be shown that SIF−(IS)(SIF(IS)(SIF+(IS) only if ∃ x, y, z ∈ I, Px ∩ Py 6⊆ Pz andPx ∩ Pz 6⊆ Py. Since we
do not need this result in the main theorems of this section, we omit the proof.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 47

FIG. 4. Instances of interaction systemsIS = (P, I, M∀) for which SIF(IS)(SPF(IS). Moreover, SIF is not equivalence-
robust for (b) and (c).

Proof. It is easy to see that∀ IS, SIF(IS) ⊆ SPF(IS). To see the proper subset condition, consider
the run

π = (Py1 ∪ · · · ∪ Pyn

)(
y1Py1 · · · yn Pyn

)ω
.

Thenπ ∈ SPF(IS) − SIF(IS) because (1)x is enabled infinitely often (x is enabled becausePx ⊆
Py1 ∪ · · · ∪ Pyn) but is never executed (soπ 6∈ SIF(IS)) and (2) every process inπ executes some
interactionyi infinitely often (soπ ∈ SPF(IS)). j

Figure 4 illustrates some instances ofIS for which SIF(IS)(SPF(IS).
We have shown the structure ofIS that makes SIF non-equivalence-robust; that is, SIF−(IS)(

SIF(IS)(SIF+(IS). Given that SIF(IS)(SPF(IS), it is interesting to compare SPF with SIF+. As we
shall see shortly, SIF+, SPF+, and SG+ are all equivalent when interactions cannot contain interactions.
Moreover, since in the biparty case SPF is equivalence-robust, it follows that SPF, SPF+, SIF+, and
SG+ are all equivalent.

LEMMA 4.3. For everyIS = (P, I, M), if ∀x, y ∈ I, x 6= y ⇒ Px 6⊆ Py, thenSIF(IS) ⊆ SG+(IS),
andSPF(IS) ⊆ SG+(IS).

Proof. This follows directly from Lemma 3.3, and note that the proof of Lemma 3.3 can also be
used to show that every runπ ∈ SPF(IS) is equivalent to a singular run.j

LEMMA 4.4. For every IS = (P, I, M), if ∀x, y ∈ I, x 6= y ⇒ Px 6⊆ Py, then SIF+(IS) =
SPF+(IS) = SG+(IS).

Proof. By Lemma 4.3 and the fact that SG+ is equivalence-robust, SIF+(IS) ⊆ SG+(IS) and
SPF+(IS) ⊆ SG+(IS). On the other hand, by Lemmas 2.2 and 2.1, SIF+ and SPF+ are strongly feasible
and equivalence-robust. By Theorem 3.4, SG+(IS) ⊆ SIF+(IS) and SG+(IS) ⊆ SPF+(IS). Hence
SIF+(IS) = SPF+(IS) = SG+(IS). j

We now consider the notion of WPF and its completions.

LEMMA 4.5. For every IS = (P, I, M∀), SPF−(IS) ⊆ WPF−(IS). In particular, SPF−(IS)(
WPF−(IS) if ∃ x, y ∈ I such that(1) Px ∩ Py 6= ∅, and (2) ∃ p ∈ Px − Py such that∀ z ∈ I, Pz ⊆
Px − Py ⇒ p 6∈ Pz.

Proof. Since SPF(IS) ⊆ WPF(IS), SPF−(IS) ⊆ WPF−(IS). To see the proper subset condition,
without loss of generality assume thatx and y are two interactions satisfying conditions (1) and (2)
of the lemma such that for all other interactionsx′ andy′ satisfying the same conditions,|Px ∪ Py| ≤
|Px′ ∪ Py′ |.

Consider the run

π = (Px ∪ Py)(y Py)ω.

Let p be the process satisfying condition (2) of the lemma. Sincep ∈ Px − Py and sincex is enabled
infinitely often,π does not satisfy SPF. Soπ does not satisfy SPF− either. Moreover, if some interaction

48 YUH-JZER JOUNG

z1 is continuously enabled inπ , thenPz1 ⊆ Px − Py. By condition (2) of the lemma,p 6∈ Pz1. Then in
the run

π ′ = (Px ∪ Py)
(
yz1Py Pz1

)ω
z1 is not continuously enabled. Still,π ′ does not satisfy SPF becausep is ready for an enabled interaction
(i.e., x) infinitely often but it never engages in any interaction. Soπ ′ does not satisfy SPF− either. If
some other interactionz2 is still continuously enabled inπ ′, thenPz2 ⊆ Px − Py − Pz1 and p 6∈ Pz2.
The above method can be used again to obtain a runπ ′′ such thatπ ′′ does not satisfy SPF andz2 is not
continuously enabled. As there are only a finite number of interactions inI, without loss of generality
let ρ = (Px ∪ Py)(yz1z2 . . . zk Py Pz1 Pz2 . . . Pzk)

ω be a run that does not satisfy SPF and SPF− and that
does not have an interaction that is continuously enabled. Note that by the construction, for every two
different interactionsa, b executed inρ, Pa ∩ Pb = ∅.

We argue that all runs ineq(ρ) satisfy WPF. To see this, suppose otherwise some runψ in eq(ρ)
violates WPF. Then, given that no interaction is continuously enabled inρ (and thus inψ), there must
exist two interactionsu1 andv1, wherePu1 ∪ Pv1 ⊆ Px ∪ Py, such that (a)Pu1 ∩ Pv1 6= ∅, (b) v1 is
executed infinitely often inψ , and (c) some processq ∈ Pu1 − Pv1 is continuously ready for an enabled
interaction but it never executes any interaction. Moreover, immediately afterv1 is executedq must still
be ready for an enabled interaction. Letu2 be the smallest such interaction so that there is no interaction
a such thatPa(Pu2. Because no interaction is continuously enabled inρ, u2 will subsequently be
disabled due to the execution of some interactionv2. SoPv1∩ Pu2 = ∅ andPv2∩ Pu2 6= ∅. Since any two
different interactions executed inρ are disjoint,Pv1 ∩ Pv2 = ∅. Given thatPu1, Pu2, Pv1, Pv2 ⊆ Px ∪ Py,
we havePu2 ∪ Pv2 (Px ∪ Py.

However, becauseq is not involved in an interactiona such thatPa(Pu2, it is not involved in any
interactionb such thatPb ⊆ Pu2 − Pv2. Thenu2 andv2 satisfy the lemma conditions onIS; but this
then contradicts our earlier assumption that|Px ∪ Py| ≤ |Pu2 ∪ Pv2|. Therefore, all runs ineq(ρ) satisfy
WPF. Henceρ ∈WPF−(IS)− SPF−(IS). j

Figure 5 depicts some instances ofIS for which SPF−(IS)(WPF−(IS). The following lemma on
the non-equivalence-robustness of WPF is somewhat complex.

LEMMA 4.6. For every IS = (P, I, M∀), WPF−(IS) ⊆ WPF(IS) ⊆ WPF+(IS). In particular,
WPF−(IS)(WPF(IS)(WPF+(IS) if ∃ xi , yi ∈ I, where0 ≤ i ≤ n − 1 and n > 1, and ∃ p ∈ P
such that(1) p ∈ ⋂ Pxi , p 6∈ ⋃ Pyi , (2) ∀ i, Pyi ∩ Pxi 6= ∅, Pyi ∩ Pxi+1 = ∅, and (3) ∀ u ∈ I, Pu ⊆⋃

Pxi −
⋃

Pyi ⇒ ∃ v ∈ I, Pv ∩ Pu 6= ∅, p 6∈ Pv, and ∃ i, Pv ∩ Pxi = ∅. (Note that in the lemma
additions and subtractions on indices of x and y are to be interpreted modulo n).

Proof. To see the proper subset conditions, consider the run

π =
(⋃

Pxi ∪
⋃

Pyi

) (
y0Py0 y1Py1 . . . yn−1Pyn−1

)ω
.

Observe that before each instance ofyj processp is ready for allxi ’s; and sincePyj ∩ Pxj+1 = ∅, after
the instancep is ready for at leastxj+1 (which exists becausen > 1). So p is continuously ready for
an enabled interaction (starting from the point the first interaction is to be executed). Sincep never
executes any interaction,π 6∈WPF(IS). Now consider the run

ρ =
(⋃

Pxi −
⋃

Pyi

) (
Py0 y0Py1 y1 . . . Pyn−1 yn−1

)ω

FIG. 5. Instances of interaction systemsIS = (P, I, M∀) for which SPF−(IS)(WPF−(IS).

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 49

which is obtained fromπ by deferring for eachj the readiness of
⋃

Pyi − Pyj before each instance of
yj until the instance is executed. Since the deferred actions are independent of the instance ofyj , and
since no action is deferred indefinitely,ρ is equivalent toπ . However, since∀ i, Pyi ∩ Pxi 6= ∅, right
after each instance ofyj none of thexi ’s is enabled. So thexi ’s can no longer causep to be continuously
ready for an enabled interaction.

If ρ ∈ WPF(IS) then we are done becauseρ ∈ WPF(IS) −WPF−(IS), while π ∈ WPF+(IS) −
WPF(IS). If ρ 6∈ WPF(IS), then some process is still continuously ready for an enabled interaction
but it never engages in any interaction. Observe that after each instance ofyj only the set of processes⋃

Pxi −
⋃

Pyi are ready for interaction. Moreover, the processes are continuously ready for interaction
throughoutρ. So if some process is continuously ready for an enabled interaction but never engages
in any interaction, then the process must be continuously ready for the same interaction, sayu, and
Pu ⊆

⋃
Pxi −

⋃
Pyi . By condition (3) there exists somev (wherev could beu) and somek such that

Pv ∩ Pu 6= ∅, p 6∈ Pv, andPv ∩ Pxk = ∅.
Let π ′ andρ ′ be two equivalent runs given by

π ′ =
(⋃

Pxi ∪
⋃

Pyi ∪ Pv
) (

y0Py0 y1Py1 . . . yn−1Pyn−1v Pv
)ω

ρ ′ =
(⋃

Pxi −
⋃

Pyi − Pv
) (

Py0 y0Py1 y1 . . . Pyn−1 yn−1Pv v
)ω
.

SincePv ∩ Pxk = ∅, p is still continuously ready for an enabled interaction inπ ′ even ifv is executed
infinitely often. Soπ ′ 6∈WPF(IS). Moreover, sincePu∩ Pv 6= ∅, u is not continuously enabled inρ ′. So
eitherρ ′ ∈WPF(IS), in which case we are done, or there exists anotheru′, Pu′ ⊆

⋃
Pxi −

⋃
Pyi − Pv,

such thatu′ is continuously enabled inρ ′. In the latter case, we can apply the above method again to
obtain two equivalent runsπ ′′ andρ ′′ such thatπ ′′ 6∈ WPF(IS) andu′ (andu) are not continuously
enabled inρ ′′. Given that there are only a finite number of interactions and a finite number of processes
in IS, eventually we will establish the lemma.j

Figure 6 depicts some instances ofIS for which WPF−(IS)(WPF(IS)(WPF+(IS). Note that
the non-equivalence-robustness must be intrigued by at least four interactions. In Fig. 6c, all the six
interactions are needed in makingp1 be continuously ready for an enabled interaction but never engage
in any interaction.

LEMMA 4.7. For everyIS,WPF+(IS) =WIF(IS).

Proof. We shall show that for everyπ ∈ run(IS) it is never the case thateq(π)⊆WIF(IS)−WPF(IS).
Since both WPF+ and WIF are equivalence-robust, and since WPF(IS) ⊆ WPF+(IS) ⊆ WIF(IS), we
therefore have WPF+(IS) =WIF(IS).

Letψ be any run in WIF(IS)−WPF(IS). Then, there must exist a processp such that from some point
onward (sayt0) p is continuously ready for an enabled interaction, butp never executes any interaction
thereafter. Moreover, sinceψ satisfies WIF,p cannot be ready for the same interaction continuously.

FIG. 6. Instances ofIS for which WPF(IS) is not equivalence-robust.

50 YUH-JZER JOUNG

So there exists an infinite number of pointst1, t2 . . . such that (1)p is continuously ready for some
interactionxi at the time betweenti−1 andti (inclusive), (2)xi becomes enabled at some point between
ti−2 andti−1, and is disabled atti , and (3)xi 6= xi+1 for eachi > 0. Suppose thatxi is disabled due to
the execution of some interactionyi . Sincexi+1 remains enabled whileyi is executed,Pxi+1 ∩ Pyi = ∅.
That is, the enabledness ofxi+1 (due to the readiness of some processes inPxi+1) is independent of the
execution ofyi .

Consider the runψ ′ obtained fromψ by deferring, for eachi , the enabledness ofxi+1 until yi is
executed. Then,ψ ≡ ψ ′. Note that the transformation fromψ toψ ′ does not cause any new interaction
to be enabled, nor does it extend the duration of an interaction’s enabledness. So the transformation
cannot cause any new process to be continuously ready for an enabled interaction. However, for each
i , right afteryi is executed inψ ′, p is not ready forxi+1 (and not ready forxi either). If there exist
infinitely manyi ’s such thatp is not ready for any interaction immediately after eachyi is executed,
then p is not continuously ready for an enabled interaction. Otherwise, there exists somei0 such that
for all i ≥ i0 there still exists another interactionx′i+1 which remains enabled right afteryi is executed.
We can also use the above method again to break the overlap of the enabledness ofxi andx′i+1. Since
there is only a finite number of interactions, we can obtain a run equivalent toψ such thatp is not
continuously ready for an enabled interaction.

Similarly, if there is some other processq in ψ ′ (and thus inψ) that is continuously ready for an
enabled interaction, then we can use the same method again to transformψ ′ into ψ ′′ so thatq is not
continuously ready for an enabled interaction. Since there are only a finite number of processes, we can
transformψ into an equivalent run satisfying WPF. Therefore, for every runψ ∈WIF(IS)−WPF(IS),
eq(ψ) ∩WPF(IS) 6= ∅. j

We have finished the comparison of SG+ with the four fairness notions SIF, SPF, WPF, and WIF, and
their minimal/maximal completions. The following theorem summarizes the results.

THEOREM4.8. LetIS = (P, IB,M∀) be a given biparty interaction system. Then the following relation
holds:

SIF−(IS) ⊆ SIF(IS) ⊆ SIF+(IS) = SG+(IS) = SPF−(IS) = SPF(IS) = SPF+(IS)

⊆ WPF−(IS) ⊆WPF(IS) ⊆WPF+(IS) =WIF(IS).

In particular, there exists anIS for which all the stronger-than relations“⊆” become strict.

Figure 7a depicts the relationship between these fairness notions. In this figureA→ B meansA is
stronger thanB. The relation “→” is transitive. Note that since SG+ is the strongest implementable and

FIG. 7. The hierarchy of various fairness notions when interactions cannot contain interactions. The fairness notions in
boldface are implementable, while the others are not.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 51

equivalence-robust fairness notion, all fairness notions weaker than SG+ are also implementable, and
all equivalence-robust fairness notions stronger than SG+, e.g., SIF−, are unimplementable. Moreover,
although SIF is not equivalence-robust, as we have seen in Part I, it is also unimplementable.

EXAMPLE. Consider the Producers–Consumers problem, in which there are two producersproducer1
andproducer2 and two consumersconsumer1 andconsumer2. The data produced by a producer can be
consumed by either of the consumers. The following is a CSP program for the problem, wherei = 1, 2:

produceri :: compute(data);
* [consumer1 ! data−→ compute(data)
2 consumer2 ! data−→ compute(data)]

consumeri :: * [producer1 ?data−→ digest(data)
2 producer2 ?data−→ digest(data)]

There are four biparty interactions in this program, each of which involves a producer and a consumer.
They have the structure shown in Fig. 6a. So by our results in this section, the stronger-than relations
(i.e., the arrow→) in Fig. 7a are all strict; that is, for this problem

SIF−(IS)(SIF(IS)(SG+(IS)(WPF−(IS)(WPF(IS)(WIF(IS).

Therefore, any implementation of CSP’s input/output guards which guarantees only WIF cannot prevent
the following behavior, which continuously blocksproducer1 from sending its data to either consumer
and so does not satisfy WPF (although it does satisfy WIF):

all processes are ready (for communication/interaction), and then the repeat of the following forever
producer2 sends data toconsumer1
producer2 and consumer1 ready
producer2 sends data toconsumer2
producer2 and consumer2 ready
. . .

Similarly, the following behavior which satisfies WIF and WPF but does not satisfy WPF− and SPF is
also possible:

all processes are ready, and then the repeat of the following forever
producer2 sends data toconsumer1
producer2 ready
producer2 sends data toconsumer2
producer2 ready
consumer1 andconsumer2 ready
. . .

In the absence ofconsumer1 (say, it terminates prematurely), the following scenario which satisfies
WIF, WPF, and WPF− but not SPF is also possible:

all processes are ready, and then the repeat of the following forever
producer2 sends data toconsumer2
producer2 andconsumer2 ready
. . .

Since in the biparty case SPF (which is equivalent to SG+) is implementable, a good implementation
should be able to avoid all the above unfair scenarios. On the other hand, since SPF is also the strongest
implementable and equivalence-robust fairness notion, the strongest equivalence-robust property one
can observe from the program executing in any asynchronous environment is that no process is forever
blocked from communicating with its partners if it has infinitely many such opportunities.

52 YUH-JZER JOUNG

4.2. Multiparty Interaction Systems

We now consider multiparty interactions of arbitrary arity. Recall that in Theorem 4.8 the following
relations hold as well even if interactions are multipartied (but cannot contain interactions):

1. SIF−(IS) ⊆ SIF(IS) ⊆ SIF+(IS) = SG+(IS) = SPF+(IS)

2. SIF(IS) ⊆ SPF(IS)

3. SPF−(IS) ⊆WPF−(IS) ⊆WPF(IS) ⊆WPF+(IS) =WIF(IS)

4. SPF+(IS) ⊆WPF+(IS).

Since SPF becomes non-equivalence-robust in the multiparty case, we need to resolve the relationship
between its completions and the other fairness notions.

LEMMA 4.9. For everyIS = (P, I, M∀), SPF−(IS) ⊆ SPF(IS) ⊆ SPF+(IS). In particular, SPF−

(IS) (SPF(IS)(SPF+(IS) if ∃ x, y, z ∈ I, ∃ p1, p2, p3 ∈ Px such that(1) p1 ∈ Px − Py − Pz, p2 ∈
Pz−Py and p3 ∈ Py−Pz and(2)∀u ∈ I, p1 ∈ Pu ⇒ (Pu 6⊆ (Px−Pz)∪Py) and(Pu 6⊆ (Px−Py)∪Pz).

Proof. To see the proper subset conditions, it suffices to find a runπ ∈ SPF(IS) such that some run
equivalent toπ does not satisfy SPF. Consider the run

π = ((Px − Pz) ∪ Py)(y PzzPy)ω.

Due to the two conditionsp2 ∈ Px ∩ Pz− Py andp3 ∈ Px ∩ Py − Pz, x is never enabled inπ . So if no
other interaction is enabled infinitely often but is never executed, thenπ ∈ SPF(IS). Moreover, the run

ρ = ((Px − Pz) ∪ Py)((Pz− Py) y (Pz ∩ Py) zPy)ω

is equivalent toπ but x is now enabled just before each instance ofy is to be executed. Sop1, which
belongs toPx, is now ready for an enabled interaction infinitely often. Sincep1 never executes any
interaction,ρ 6∈ SPF(IS).

If π 6∈ SPF(IS), then some interactionw is enabled infinitely often but some processq in Pw never
executes any interaction. Then eitherPw ⊆ (Px−Py)∪Pz or Pw ⊆ (Px−Pz)∪Py. Due to condition (2)
imposed onIS, p1 6∈ Pw. Assume thatPw ⊆ (Px − Py) ∪ Pz. (The other case can be proved similarly.)
Then in the run

π ′ = ((Px − Pz) ∪ Py)(y PzwPwzPy)ω

q has executedw infinitely often. So eitherπ ′ ∈ SPF(IS), or similarly there exists another interactionu,
u 6= w, such thatu is enabled infinitely often but some process inPu never executes any interaction. In
the former case, we can find a runρ ′ similar toρ such thatρ ′ ≡ π ′ butρ ′ does not satisfy SPF because
p1 is infinitely often ready for an enabled interaction (i.e.,x) but it never engages in any interaction.
In the latter case, given thatI andP are finite, we can use the above method repeatedly to find two
equivalent runs such that one satisfies SPF while the other does not.j

Figure 8 illustrates some instances ofIS for which SPF is not equivalence-robust. Note that all of
them consists of a multiparty interaction involving more than two processes.

FIG. 8. Instances of interaction systems for which SPF is not equivalence-robust.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 53

LEMMA 4.10. For everyIS = (P, I, M∀), SIF−(IS) ⊆ SPF−(IS). In particular, SIF−(IS)(SPF−(IS)
if ∃ x, y1, . . . , yn ∈ I such that∀i ≤ n, Pyi ∩ Px 6= ∅ and

⋃
i (Pyi ∩ Px) = Px.

Proof. Since SIF(IS) ⊆ SPF(IS), SIF−(IS) ⊆ SPF−(IS). To see the proper subset condition, recall
the following run in Lemma 4.2,

π = (Py1 ∪ · · · ∪ Pyn

)(
y1Py1 · · · yn Pyn

)ω
,

which is in SPF(IS) − SIF(IS). So π 6∈ SIF−(IS) either. Since every process inπ executes some
interactionyi infinitely often,eq(π) ⊆ SPF−(IS). Soπ ∈ SPF−(IS)− SIF−(IS). j

Figure 4 also illustrates some instances ofIS for which SIF−(IS)(SPF−(IS).

LEMMA 4.11. There exists a systemIS = (P, I, M∀), where∀x, y ∈ I, x 6= y⇒ Px 6⊆ Py, such that

SIF(IS) 6⊆ SPF−(IS) and SPF−(IS) 6⊆ SIF(IS).

Proof. Let IS be the interaction system withP andI shown in Fig. 9. Consider the run

π1 = p5(p1 p3x13p2 p4x24)
ω.

Thenπ1 ∈ SIF(IS). However,π1 6∈ SPF−(IS) because its equivalent run

π2 = p5(p1 p3 p2 p4x13x24)
ω

does not satisfy SPF due to the fact thatp5 is now ready for an enabled interaction (i.e.,x345) infinitely
often but it never executes any interaction. So SIF(IS) 6⊆ SPF−(IS).

On the other hand, the run

ρ = (p1 p3 p2 p4x13x24)
ω

and all of its equivalent runs satisfy SPF, and so they also satisfy SPF−. However,ρ 6∈ SIF(IS) because
x12 is enabled infinitely often but is never executed. So SPF−(IS) 6⊆ SIF(IS). j

LEMMA 4.12. There exists a systemIS = (P, I, M∀), where∀x, y ∈ I, x 6= y⇒ Px 6⊆ Py, such that

1. SG+(IS) 6⊆WPF(IS) andWPF(IS) 6⊆ SG+(IS) and

2. SG+(IS) 6⊆WPF−(IS) andWPF−(IS) 6⊆ SG+(IS).

Proof. Let IS be the interaction system withP andI shown in Fig. 10. Consider the two runs

π1 = p5(p1 p3x13p2 p4x24p6 p8x68p7 p9x79)
ω

π2 = p5 p1 p3 p2 p4 p6 p8 p7 p9(x13p1 p3x24p2 p4x68p6 p8x79p7 p9)ω.

FIG. 9. An interaction system for which SIF(IS) 6⊆ SPF−(IS) and SPF−(IS) 6⊆ SIF(IS).

54 YUH-JZER JOUNG

FIG. 10. An interaction system for which WPF(IS) 6⊆ SG+(IS) and SG+(IS) 6⊆WPF(IS).

Observe thatπ1 is singular andπ1 ≡ π2. Soπ2 ∈ SG+(IS). However,π2 6∈ WPF(IS) becausep5 is
continuously ready for an enabled interaction butp5 never executes any interaction. So SG+(IS) 6⊆
WPF(IS). Moreover,π2 does not satisfy WPF− either. So SG+(IS) 6⊆WPF−(IS).

On the other hand, the run

ρ = p3(p1 p2x12)
ω

satisfies WPF. Moreover, all of its equivalent runs also satisfy WPF but none of them is singular. So
ρ ∈WPF−(IS) andρ 6∈ SG+(IS). Hence WPF(IS) 6⊆ SG+(IS), and WPF−(IS) 6⊆ SG+(IS). j

It can be seen that for Lemma 4.12 to hold,I must contain interactions involving more than two
processes. (Recall that in the biparty case SG+(IS) ⊆WPF−(IS) ⊆WPF(IS).)

LEMMA 4.13. There exists a systemIS = (P, I, M∀), where∀x, y ∈ I, x 6= y⇒ Px 6⊆ Py, such that

1. SPF(IS) 6⊆WPF−(IS) andWPF−(IS) 6⊆ SPF(IS) and

2. SIF(IS) 6⊆WPF−(IS) andWPF−(IS) 6⊆ SIF(IS).

Proof. The example presented in Lemma 4.12 can be used to establish the lemma; we omit the
details. j

We now summarize the results in the following theorem. A pictorial representation of the comparison
is given in Fig. 7b. Recall that the stronger-than relation “→” is transitive. So two fairness notions are
incomparable if there is no path connecting them.

THEOREM 4.14. Let IS = (P, I, M∀) be a given multiparty interaction system such that∀x, y ∈ I,
x 6= y⇒ Px 6⊆ Py. Then the following relations hold:

1. SIF−(IS) ⊆ SIF(IS) ⊆ SPF(IS) ⊆ SG+(IS) = SIF+(IS) = SPF+(IS) ⊆WIF(IS) =WPF+(IS)

2. SIF−(IS) ⊆ SPF−(IS) ⊆WPF−(IS) ⊆WPF(IS) ⊆WIF(IS)

3. SPF−(IS) ⊆ SPF(IS) ⊆WPF(IS).

In particular, there exists anIS for which all the above stronger-than relations“⊆” become strict. On
the other hand, there exists someIS such that the following relations hold:

1. SIF(IS) is incomparable withSPF−(IS)

2. SG+(IS) is incomparable withWPF(IS)

3. SIF(IS),SPF(IS), andSG+(IS) are incomparable withWPF−(IS).

Note that although WPF is incomparable with SG+, it is implementable for all interaction systems
(see Part I). This, however, does not contradict Theorem 3.4 (that SG+ is the strongest implementable
and equivalence-robust fairness notion) because WPF is not equivalence-robust. In fact, as we shall
see in Section 5, there exists an implementable (but not equivalence-robust) fairness notion that is no

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 55

weaker than SG+, but there is no strongest implementable fairness notion for virtually all interaction
systems.

Moreover, WPF− is also incomparable with SG+. Since WPF− is equivalence-robust, by Theorem 3.4,
WPF−must not be strongly feasible. Indeed, WPF− does exclude some singular runs from some systems;
see Lemma 4.12. Also noteworthy is that SPF becomes unimplementable in the multiparty case. By
Lemma 2.6, SPF− is unimplementable too.

EXAMPLE. Consider the Dining Philosophers problem. We can define a multiparty interaction
eatingsessioni involving thei th philosopher and its two neighboring chopsticks, where 0≤ i ≤ 4.

The philosopher processes and the chopstick processes execute the following program:

philosopheri :: * [hungry; eatingsessioni −→ thinking]

chopsticki :: * [eatingsessioni −→ cleanchopstick
2 eatingsessioni−1mod5−→ cleanchopstick]

The interactions have the structure shown in Fig. 11, wherepi and cj representphilosopheri and
chopstickj , respectively. The following is a possible scenario of the processes:

all processes are ready, and then the repeat of the following forever
philosopher3, chopstick3, chopstick4 establisheatingsession3
philosopher3, chopstick3, chopstick4 ready
philosopher1, chopstick1, chopstick2 establisheatingsession1
philosopher1, chopstick1, chopstick2 ready
. . .

This scenario satisfies WIF, and so is possible if the underlying implementation of the multiparty
interactions guarantees only WIF. It can also be seen that the scenario does not satisfy SPF+. Since
by our results SPF+ is implementable, we know that such a scenario can be avoided by an appropriate
implementation.

On the other hand, since SPF+ is the strongest implementable and equivalence-robust fairness notion,
the following scenario which satisfies SPF+ but not SPF cannot be excluded by any implementation
ensuring equivalence-robust properties:

all processes are ready, and then the repeat of the following forever
philosopher3, chopstick3, chopstick4 establisheatingsession3
philosopher3, chopstick3, chopstick4 ready
philosopher1, chopstick1, chopstick2 establisheatingsession1
philosopher1, chopstick1, chopstick2 ready
philosopher0, chopstick0, chopstick1 establisheatingsession0
philosopher0, chopstick0, chopstick1 ready
. . .

It is interesting to note that in this scenario two non-neighboring philosophers (i.e.,philosopher2 and
philosopher4) are blocked from enteringeatingsession. So for this problem no implementation of the
multiparty interactions can guarantee that at most one philosopher is starving.

FIG. 11. The interaction structure of the Dining Philosophers problem.

56 YUH-JZER JOUNG

4.3. When Interactions May Contain Interactions

If I contains two interactionsx, y such thatPx ⊆ Py, then in the biparty case the following relation
(Lemma 4.4) no longer holds:

SG+(IS) = SIF+(IS) = SPF+(IS).

Instead, the three fairness notions have the new relationship

SG+(IS)(SIF+(IS)(SPF+(IS).

To see this, observe first that in general SG+(IS) ⊆ SIF+(IS) ⊆ SPF+(IS) because every singular run
satisfies SIF and SPF as well. For the proper subset relation, the run

π = Py · (y Pyx Px)ω

belongs to SIF+(IS)− SG+(IS) (assuming no interaction is contained inx), while

ρ = Py · (y Py)ω

belongs to SPF+(IS)− SIF+(IS).
Moreover, in the above exampleπ also belongs to SIF(IS)− SG+(IS) and SIF−(IS)− SG+(IS). So

SIF and SIF− are no stronger than SG+. But recall that when interactions cannot contain interactions,
SIF and SIF− are stronger than SG+. Hence, in general, SG+ is incomparable with SIF and SIF−.
Figure 12a summarizes the relationship of the fairness notions for biparty interactions.

Note that SG+ becomes unimplementable. In fact, SG+ is not even strongly feasible. (Recall by
Lemmas 3.1 and 2.3 that if SG+ were strongly feasible, then SG+ would be the strongest implementable
and equivalence-robust fairness notion, thus contradicting Theorem 3.8.) This is because if a system
contains two interactionsx andy such thatPx ⊆ Py, then every time wheny is enabled,x is enabled too
(assuming a program of typeM∀). So all nonblocking schedulers for the system will inevitably generate

FIG. 12. The hierarchy of various fairness notions—the general case where interactions may contain interactions. The fairness
notions in boldface are implementable, while the others are not.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 57

some runs which cannot be equivalent to a singular run. Furthermore, although SIF+ is the strongest
implementable and equivalence-robust fairness notion shown in Fig. 12a, by Theorem 3.8 we know
that there exists another implementable and equivalence-robust fairness notion which is no weaker than
SIF+.

When interactions are multipartied, the relationship of the fairness notions is shown in Fig. 12b.
Recall that in this case SPF−(IS) ⊆ SPF(IS) ⊆ SPF+(IS). SG+ is incomparable with SPF and
SPF−, but is stronger than SPF+. The fact that SG+ is incomparable with SPF and SPF− can be
observed by the similar reason behind the incomparability between SG+ versus SIF and SIF−. The
fact that SG+ is stronger than SPF+ is because SG+ is stronger than SIF+, which is stronger than
SPF+.

Moreover, SIF+ is incomparable with SPF and SPF−. To see this, letx, y ∈ I be two interactions such
that Px (Py. Then run (Pyy)ω belongs to SPF(IS)− SIF+(IS) and SPF−(IS)− SIF+(IS). So SPF and
SPF− are no stronger than SIF+. However, we have seen instances that SPF and SPF− are stronger than
SIF+ when interactions cannot contain interactions. So, in general, SPF and SPF− are incomparable
with SIF+.

Finally, although SG+ in general is classified as unimplementable when some interactiony contains
an interactionx, from Theorems 3.8 and 3.10 we know that the unimplementability holds only in the
case where all other interactions contained iny, if any, containx. Moreover, in the cases where SG+

is implementable, although SG+ is identical to SIF+ (and SPF+) when interactions can not contain
interactions (see Lemma 4.4), SG+ may be strictly stronger than SIF+ when interactions can contain
interactions. For example, letIS = (P = {p1, p2}, I = {x1, x2, x12},M∀) be a system shown in Fig. 3a,
where Px1 = {p1}, Px2 = {p2}, and Px12 = {p1, p2}. Then the run (p1x1 p2x2 p1 p2x12)ω belongs to
SIF+(IS)− SG+(IS).

4.4. Further Remarks

In the comparison of SG+ and existing fairness notions, we have divided the results into two categories:
one for systems that support only biparty interactions and the other for systems that allow multiparty
interactions of arbitrary arity. This classification is based on the fact that some popular languages/models
(e.g., CSP, Ada, and CCS) facilitate only biparty interactions. For each category, we have further
divided the results into two subcategories, depending on whether interactions may contain interactions.
We have seen examples which do not need interactions to contain an interaction (see Sections 4.1
and 4.2). As shown in Theorem 3.4 and Lemma 4.4, disallowing interactions to contain interactions
ensures a strongest implementable and equivalent-robust fairness notion for the system, namely, SG+,
which is identical to the maximal completions of SIF and SPF (regardless of biparty or multiparty
interactions). Therefore, all other equivalent-robust fairness notions are either weaker than SG+ or are
unimplementable.

On some applications, however, one may find it useful to allow interactions to contain interactions.
For example, a processp may choose to establish an interactionx with q andr , or an interactiony
with only q. In the biparty case, a processp may choose to interact withq from a set of different
interactions so as to perform different actions. If one will, one could eliminate the need for containing
interactions within an interaction by defining only one interaction for the largest set of participants
and let different subsets of participants establish different actions within the interaction. In the above
biparty example, we may define a single interaction forp andq. Once the interaction is established,
the two processes may negotiate with each other to decide which action to perform. Similarly, in the
multiparty example we may replacex and y with an interactionw involving p,q, andr . However,
r would become a “dummy” participant if onlyp andq interact withinw. Sincer must always be
involved inw, the new setting is more restrictive asp andq may interact regardless ofr in the original
setting.

Perhaps the need for containing interactions within an interaction becomes more evident when one
wishes to allow a choice between local actions and interactions. For example, consider a variant of the
Producers–Consumers problem presented in Section 4.1, where each datum computed by a producer
can be overwritten by a more up-to-date one if the target consumer is not yet ready for the data, and an
old data can be “recycled” by a consumer if the producer cannot generate new data in time. Assuming
only one producer and one consumer, then the following is a CSP program for the problem:

58 YUH-JZER JOUNG

producer:: compute(data);
* [consumer! data−→ skip
2 compute(data) −→ skip]

consumer:: * [producer?data−→ skip
2 digest(data) −→ skip]

In this example each process, when ready for interaction with the other process, has a choice to perform
a local action. As noted in the definition of our abstract model (see Section 2.1 of Part I), such a local
action can be modeled by an interaction involving solely the process. Therefore, the system has an
interaction structure shown in Fig. 3a. Note that although some interaction contain interactions, by
Theorem 3.10, SG+ is still the strongest equivalent-robust fairness notion that can be implemented for
the system. However, observe that the run

(producer compute consumer digest)ω

is a possible computation of the system (wherecomputeanddigestdenote the local interactions by the
processes) where the two processes repeatedly execute their local interactions forever. Since the run is
singular, we see that no implementable equivalent-robust fairness notion can be enforced to ensure that
the two processes will ever establish an interaction. It has been argued that nonuniform choice between
local actions and interactions should be avoided to preventstuttering—repetitions of a configuration in
a computation [1]. From the above example we see that any attempt to impose an implementable and
equivalent-robust fairness notion to prevent stuttering is doomed to fail.

Finally, although in this section we have only considered SG+, SIF, SPF, WPF, and WIF, and their
completions, based on our studies other fairness notions can be included in the fairness hierarchies as
well. For example, U-fairness is incomparable with SIF+ in the hierarchies of Fig. 12. The fact that
SIF+(IS) 6⊆ U(IS) for someIS can be seen by the fact that SIF and U-fairness are incomparable, and
that U-fairness is equivalent-robust [4]. The other direction can be illustrated by a system consists of
two processesp1 and p2 and two interactionsx andy, wherePx = Py = {p1, p2}, such that the run
(p1 p2 x p1.{x} p2.{x} x)ω belongs to U(IS) − SIF+(IS). Moreover, it can also be shown that SIF− is
stronger than U-fairness, as any run that violates U-fairness must be equivalent to a run violating SIF.

5. THE IMPOSSIBILITY OF A STRONGEST IMPLEMENTABLE FAIRNESS NOTION

We now determine the possibility/impossibility of a strongest implementable (but not necessarily
equivalence-robust) fairness notion for various interaction systems. For this, it is useful to recall the
fairness implementability criterion and the definition of indistinguishableness relation introduced in
Part I. We have shown in Theorem 3.4 that if no interaction contains an interaction, then SG+ is the
strongest fairness notion forIS that is both implementable and equivalence-robust. However, as we
shall see shortly, SG+ is not the strongest implementable fairness notion forIS, unlessI consists of only
one interaction. Note that when interactions may contain interactions, SG+, in general, is not strongly
feasible and so is not implementable (see Section 4.3).

Since stronger fairness notions provide more liveness properties, one would wish to define a fair-
ness notion as strong as possible while ensuring the implementability of the notion. Recall that every
nonblocking schedulerS for IS must be able to generate all runs in SG(IS). According to the fair-
ness implementability criterion and Lemma 2.3, for every implementable fairness notionC and every
π ∈ SG(IS), C(IS) must containindistinct(π). Thus, a potential candidate for the strongest imple-
mentable fairness notion is SGINDISTINCT(IS), defined by

SG INDISTINCT(IS) =
⋃

π∈SG(IS)

indistinct(π).

However, it turns out that SGINDISTINCT(IS) is not even strongly feasible. This holds even if inter-
actions are bipartied and cannot contain interactions. In fact, as shown in the following two theorems,
for everyIS the strongest implementable fairness notion does not exist, unlessIS consists of only one
interaction.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 59

THEOREM5.1. LetIS = (P, I, M∀) and assume|I| > 1. Then for every implementable fairness notion
C, there exists another implementable fairness notionC′ such thatC(IS) 6⊆ C′(IS).

Proof. Let x, y be any two distinct interactions inI. Let Rx andRx̄ be defined by

Rx = {π ∈ run(IS) |π begins with the form (Py − Px) · Px x }
Rx̄ = {π ∈ run(IS) |π begins with the form (Py ∪ Px − Pw) · Pw w for somew 6= x andPw ⊆

Px ∪ Py}

Clearly, bothRx andRx̄ are not empty.
Assume thatC is an implementable fairness notion forIS. By the fairness implementability criterion,

there exists a nonblocking schedulerSsuch that for every runπ generated byS, indistinct(π) ⊆ C(IS).
We argue that that eitherC(IS) ∩ Rx 6= ∅ orC(IS) ∩ Rx̄ 6= ∅. To see this, consider an adversary which
begins by letting the processes inPx∪Py be ready. IfSin response schedulesx for execution, then some
run inindistinct(r (S, A)) begins with the form (Py−Px) · Pxx, and soindistinct(r (S, A))∩Rx 6= ∅. Since
indistinct(r (S, A)) ⊆ C(IS), C(IS) ∩ Rx 6= ∅. Similarly, if S instead schedules a different interaction,
thenC(IS) ∩ Rx̄ 6= ∅.

Suppose thatC(IS) intersects bothRx andRx̄. Consider the following schedulerSx:

Sx behaves like the nonblocking scheduler for SIF presented in Part I. In particular, ifx is enabled initially, thenx is
chosen for execution first.

We claim that for every runπ generated bySx, indistinct(π) ∩ Rx̄ = ∅. This is because if the first
interaction executed inπ is x, thenindistinct(π) ∩ Rx̄ = ∅ (because all runs inindistinct(π) havex
as their first interaction). If the first interaction isw for somew 6= x and Pw ⊆ Px ∪ Py, thenx must
not be enabled before the instance ofw is to be executed, for otherwiseSx would instead choosex as
the first interaction. SoPx − Pw 6= ∅. Soπ begins withQ · w for someQ such that some process
(say p) in Px − Pw does not belong toQ. Then no run inindistinct(π) can begin with the form
(Px ∪ Py− Pw) · Pww because the relation of indistinguishableness does not allowp’s ready transition
to be moved ahead of any ready transition inQ. Soindistinct(π) ∩ Rx̄ = ∅.

Define fairness notionCx to be

Cx(IS) = {ψ ∈ indistinct(π) |π can be generated bySx}.

Then,Cx is also implementable, andCx(IS) ∩ Rx̄ = ∅. SoC(IS) 6⊆ Cx(IS).
Note that sinceCx does not intersectRx̄, if C(IS) intersects onlyRx̄, then clearlyC(IS) 6⊆ Cx(IS).

Finally, if C(IS) intersects onlyRx, then since the role ofx andw is essentially symmetric, we can use
a similar argument to show that there exists another implementable fairness notionCx̄(IS) such that
Cx̄(IS) ∩ Rx = ∅. SoC(IS) 6⊆ Cx̄(IS). j

THEOREM 5.2. Let IS = (P, I, M∀). If |I| = 1, then there is only one implementable fairness notion,
i.e., run(IS) which equalsSG+(IS).

Proof. Straightforward. j

Note that Theorem 5.1 does not depend on whether interactions are bipartied or multipartied, nor
does it depend on whether interactions may contain interactions. It holds as long asI contains more than
one interaction. Therefore, for everyIS for which SG+ is implementable, there exists an implementable
fairness notion which is no weaker than SG+.

6. CONCLUSIONS

We have determined the system structure for which the strongest implementable completion of a
given fairness notion exists. Moreover, for systems in which interactions do not contain interactions,
we have obtained a fairness notion SG+ which is the strongest implementable and equivalence-robust
fairness notion one can get for these systems. We have also presented a comprehensive comparison of

60 YUH-JZER JOUNG

SG+ with several commonly used fairness notions and their minimal and maximal completions. The
results show that SG+ is identical to the maximal completions of SPF and SIF and is stronger than
WIF. Since WIF is generally accepted as the only fairness criterion by many multiparty interaction
implementations, our results indicate that we could exclude more “unfair” computations from these
implementations (see the examples in Sections 4.1 and 4.2). Moreover, when interactions are CSP-like
bipartied, SG+ is also equivalent to SPF. Therefore, SPF is the strongest equivalence-robust property
one can observe from a CSP-like program executing in any asynchronous environment. Finally, we have
shown that in the absence of equivalence-robustness, it is in general impossible to define a strongest
implementable fairness notion, unless there is only one interaction in the system. This implies plenty
of leeway in the design of fairness notions suitable for various applications.

In studying the relationships between various fairness notions and their minimal and maximal com-
pletions, we often assumed a program of typeM∀ when we need to distinguish two fairness notions,
whereM∀ allows a process, whenever it is ready for interaction, to be ready forall interactions of which
it is a participant. The choice ofM∀ also allows us to observe the structure of interactions that may
distinguish two fairness notions. Based on this analysis, one may also analyze how the relationships are
affected by the semantics ofM for any givenIS = (P, I,M), whereM is not limited to typeM∀. In this
case, the relationships are determined not only by the structure ofI but also by the condition whether
the semantics ofM allows the interactions to be enabled as required so as to distinguish two fairness
notions.

The notion ofliveness enhancementis introduced in [1] as another fairness criterion. It requires
a fairness notion to allow some system to gain some liveness property which the system would not
have without the additional fairness requirement. Program termination is typically used to evaluate this
criterion. By the example presented after Theorem 3.4, we see that SG+ is also liveness enhancing.

Although we have not explicitly presented any scheduling algorithm to implement SG+, we can
easily obtain one by using the method proposed in Part I. The method transforms a nonblocking
scheduler to a coordinator process running concurrently with the existing processes of the system. By
communicating with the existing processes, the coordinator determines, for each ready process, when
and which interaction to execute. Note that the scheduling is essentially centralized as all interactions
are established by the coordinator. It is therefore worth exploring afully distributedsolution for the
problem, meaning that nonconflicting interactions can be established by different coordinators. That
would then indicate that SG+ is the strongest equivalence-robust fairness notion that can be distributedly
implemented (provided that no interaction contains an interaction).

ACKNOWLEDGMENTS

The author thanks Reino Kurki-Suonio for providing references on completions and some initial thoughts on the paper and the
anonymous referees for their thorough reading of the manuscript and valuable comments and suggestions.

REFERENCES

1. Apt, K. R., Francez, N., and Katz, S. (1988), Appraising fairness in languages for distributed programming.Distrib. Comput.
2(4), 226–241.

2. Back, R. J. R., and Kurki-Suonio, R. (1988), Serializability in distributed systems with handshaking,in “Proceedings of the
15th International Colloquium on Automata, Languages and Programming, Tampere, Finland,” Lecture Notes in Computer
Science, Vol. 317, pp. 52–66, Springer-Verlag, Berlin.

3. Francez, N., Back, R. J. R., and Kurki-Suonio, R. (1992), On equivalence-completions of fairness assumptions.Formal Aspects
Comput.4, 582–591.

4. Francez, N., and Forman, I. R. (1996). “Interacting Processes: A Multiparty Approach to Coordinated Distributed Program-
ming,” Addison–Wesley, Reading, MA.

5. Joung, Y.-J. (2001), On fairness notions in distributed systems. I. A characterization of implementability,Inform. Comput.
166, 35–60.

6. Reisig, W. (1984), Partial order semantics vs. interleaving semantics for CSP-like languages and its impact on fairness,In
“Lecture Notes in Computer Science” (J. Paredaens, Ed.), Vol. 172, Springer-Verlag, Berlin.

	INTRODUCTION
	1. EQUIVALENCE-ROBUSTNESS AND COMPLETIONS
	FIG. 1.
	FIG. 2.

	2. PRELIMINARIES
	3. STRONG FEASIBILITY OF COMPLETIONS
	FIG. 3.

	4. COMPARISONS OF SG+ WITH OTHER FAIRNESS NOTIONS
	TABLE I
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	5. THE IMPOSSIBILITY OF A STRONGEST IMPLEMENTABLE FAIRNESS NOTION
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

