Information and Computatiobh66, 35-60 (2001) ®
doi:10.1006/inco.2000.3015, available online at http:/iwww.idealibrary.cold D E ,}l

On Fairness Notions in Distributed Systems
Il. Equivalence-Completions and Their Hierarchies™

Yuh-Jzer Jouny

Department of Information Management, National Taiwan University, Taipei 106, Taiwan
E-mail: joung@ccms.ntu.edu.tw

Received October 4, 1996

This is the second part of a two-part paper in which we discuss the implementabiféirrafss
notionsin distributed systems where asynchronous processes interact via multiparty interactions. We
focus here on equivalence-robust fairness notions where equivalence computations are either all fair or
all unfair. Francezt al. (1992,Formal Aspects Compu4, 582-591) propose a notion cbmpletion
to transform a non-equivalence-robust fairness notion to an equivalence-robust one while maintain-
ing several properties of the source. However, a completion may not pretesug feasibility—a
necessary and sufficient condition for a completion to be implementable. In this paper, we study
the system requirement for a completion to be strongly feasible and determine the strongest imple-
mentable completion for every given fairness notion. Moreover, for most systems we obtain a fairness
notion, which we refer to as SG such that SG is the strongest fairness notion that is both imple-
mentable and equivalence-robust. We also provide a comprehensive comparisoh afd&everal
well-known fairness notions and their minimal and maximal completions. Finally, we show that if
equivalence-robustness is dropped, then in general it is impossible to define a fairness notion that is
implementable and stronger than all other implementable fairness notions, unless the system consists
of only one interaction. This implies plenty of leeway in the design of fairness notions suitable for
various applications. © 2001 Academic Press

INTRODUCTION

This is the second part of a two-part paper in which we discuss the implementabifayjriodss
notionsin distributed systems where asynchronous processes interact via multiparty interactio
Part | [5] we have presented a necessary and sufficient criterion for determining the implementab
fairness notions. We focus here on equivalence-robust fairness notions where equivalent compt
are either all fair or all unfair.

1. EQUIVALENCE-ROBUSTNESS AND COMPLETIONS

Intuitively, equivalence-robustness ensures that different observations of the same partial-orde
putation obtain the same property of the system [6]. It thus serves as a natural bridge over tt
betweeninterleaving semanticand partial-order semanticswhich is highly desirable in distributed
languages [3]. Furthermore, as we have shown in Part I, under strong feasibility equivalence-robt
suffices to guarantee the implementability of a fairness notion.

As it turns out, however, several important fairness notions are strongly feasible but ar
equivalence-robust. For example, consider the notiostroing interaction fairnes¢SIF), which re-
quires an interaction that is infinitely often enabled to be executed infinitely often. Assume a Eyst
with three interactionsg;,, X13, andxy4 depicted in Fig. 1, where,, involves p; andp,, X;3 involves p;
andps, andx,4 involves p, and ps. SIF is strongly feasible for the system because a nonblocking sct
uler satisfying SIF can be constructed by always choosing as the continuation the enabled inte
that is executed the least often; tie is broken arbitrarily. Then the computatiop; psX13 P2 PaXoa)®

*A preliminary version of this paper appeared as Y.-J. Joung, 1996, On strong feasibilities of equivalence-Comipleti
“Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing,” Philadelphia, PA, pp. 156—-165
research was supported by the National Science Council, Taipei, Taiwan, Grants NSC 85-2213-E-002-059 and NSC 86-
002-053, and by the 1997 Research Award of College of Management, National Taiwan University.

T The author is currently visiting Laboratory for Computer Science, Massachusetts Institute of Technology (1999-200

35

0890-5401/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

36 YUH-JZER JOUNG

13

FIG. 1. A system of four processqs, p2, p3, andps and three interactions;», X13, andxza.

satisfies SIF, but its equivalent computatign= (p1 p3P2X13PsX24)® does not because, is now
enabled in every state immediately afferis ready but it is never executed.

Francezet al. [3] propose a notion o€ompletionto transform a non-equivalence-robust fairne
notion to an equivalence-robust one while maintaining most properties of the source. To unde
completions, consider Fig. 2. In this figure, ri§) denotes the set of all possible computations of
systemlS, while C(IS) denotes the set of computations allowed by a fairness n@tidach partition
represents an equivalence class induced by the equivalence relation considered above by pe
independent actions. Of these equivalence claségs,are said to beurely fair because they are
contained inC(IS), while Y;’s arepurely unfairbecause they do not intersécflS). The classe&y’s
aremixedas they contain both fair and unfair computations. A completion has to resolve the fail
of the mixed classes. Thus, the minimal completion (i.e., the strongest completion) can be obtail
treating all mixed classes as unfair, whereas the maximal completion (i.e., the weakest completic
be obtained by treating all mixed classes as fair. A semantic comparison of the two can be found
In general, fewer liveness properties can be assumed for programs using the weakest completiol
the strongest completion has exactly the opposite characteristics.

Unfortunately, a completion may not necessarily preserve strong feasibility, meaning that it mé
even be implementable. To see this, consider again the system shown in Fig. 1. The computatio

T = (P1P3X13P2 PaX24)”

is inevitableto all strongly feasible fairness notionsIf, meaning that they must consideras fair.
This is because at any point of the computation at most one interaction is enabled. Thus accordin
strong feasibility criterion, when only one interaction is enabled, there must be a continuation allc
the interaction to be executed. (Otherwise the system could be deadlocked if, say;wisegnabled,
the scheduling algorithm chooses to wait for more interactions to be enabledmylaled p, instead
are busy doing their local actions forever.) So any completion of SIF, e.g., the minimal completior
excludes the equivalence classwmivould not be strongly feasible.

In this paper we determine, for any given fairness nofipthe strongest strongly feasible completio
of C. Recall that strong feasibility is sufficient and necessary to guarantee the implementability
completion. So we are looking for a strongest implementable completi@n©ftir results show that if
no interaction contains an interaction (an interactiotontains yif x # y and the set of participants
of y is a subset ok),! then the strongest implementable completioCaxists; otherwise, in genera
no such completion is possible.

Furthermore, there exists a fairness notion, which we refer to ds 8@h that when interactions
are not allowed to contain interactions, S the strongest implementable fairness notion satisfyi
equivalence-robustness. In other words, all other implementable and equivalence-robust fairness
must be weaker than SGand all other equivalence-robust fairness notions that are stronger thtan
or incomparable with SG must not be implementable. We also compare™S@h several existing
fairness notions. The results indicate that'SiG equivalent to SIE and SPE and is stronger than
WIF and WPF, where SIF, SPF, and WPF are the maximal completions of SIF, SPF, and WF
respectively. In particular, when interactions are CSP-like bipartied,iS@lso equivalent to SPF. Sc
SPF is the strongest equivalence-robust property one can observe from a CSP-like program exe
in any asynchronous environmeg@onversely, if interactions can contain interactions, then in gen:
the strongest implementable and equivalence-robust fairness notion does not exist.

1 Note that althouglix containsy, the establishment of doesnot depend on the establishmentxfin the literature, some
languages (e.g., IP and Script) allow participants of an interaetiorestablish a “subinteraction” within So the subinteraction
can be established only wherhas been established.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 37

run(IS)

Zg C(HS) 77

Y,

FIG. 2. The fairness-equivalence partitioning [3].

Finally, we show that if equivalence-robustness is not required, then no system can have a str
implementable fairness notion, unless the system consists of only one interaction. So, in gene
any implementable fairness noti@h there exists another implementable fairness nafiosuch that
C' is either strictly stronger tha@ or is incomparable witlC. This implies plenty of leeway in the
design of fairness notions suitable for various applications.

The rest of the paper is organized as follows. Section 2 provides some preliminaries. Sec
considers the implementability of completions. Section 4 presents a comprehensive analysis of
commonly used fairness notions and their minimal and maximal completions. The impossibility
of a strongest implementable fairness notion is the subject of Section 5. Section 6 concludes.

2. PRELIMINARIES

We shall follow the same notations as those given in Part I. In addition, we shaéqsg to
denote the equivalence classxfi.e., the set of runs that are equivalenttavioreover, for notational
simplicity we shall use a sét in a run to denote an arbitrary sequence of ready transitions, one by «
process irP, where each ready transition is of the fopn {x € || pi € Px}. For example, assume tha
P, = {P1. p2} and Py,, = {p2, ps}. ThenPy,,X12Px,, X3 represents a partial run in whigh and p,
become ready (in arbitrary order), they exeoute and therp, and ps become ready (again, in arbitrary
order) and executeys. Likewise, (P, U Px,;)X12Px,,X23 represents a partial run in whigh, p, and
ps become readyp; and p, executex;, and become ready again, and therand p; executexps.

In addition to the definitions given in Part I, the following are used in this artical.

Derinimion 2.1, A fairness notiort; for IS is strongerthanC, (or, alternativelyC, is weakerthan
C1) if C4(IS) < Cy(IS). C, is strictly strongerthanC; if C1(IS) < C,(IS). C; andC, areincomparable
if C1(IS) € Cx(IS) andCy(IS) £ C41(IS); they areequivalentf C1(IS) = Cy(IS).

Derinimion 2.2, [1]. Afairness notioft is equivalence-robugor IS iff V€ C(IS), eq(wr) < C(IS).
The following is a restatement of strongly feasibility.

Derinimion 2.3. Afairness notioff is strongly feasibléor IS iff there exists a nonblocking schedule
Ssuch that (S, A) € C(IS) for every adversanA.

An immediate consequence of these definitions is the following.
Lemma 2.1. LetIS = (P, I, M).

1. If I #£ @, then for any strongly feasible fairness noti@nC(IS) # @.
2. If C;is strongly feasible fofS and C1(IS) € C,(IS), thenC; is also strongly feasible fdiS.

3. It may be the case that botty andC, are strongly feasible fokS, but C; N C, is not where
the notionC; N C; is defined byC;(IS) N C,(IS).

Proof. The first two follow directly from the definitions. For the third, I8 = ({p1, p2, ps},
{X12, X23}, MV), wherePy,, = {p1, p2} and Py, = {p2, ps}. Let C; be defined as follows: in a state
where bothx;, andx,3 are enabledx;, must be scheduled for execution (ixe.; has a higher priority
thanxysz) andC; be defined asx,3 has a higher priority thary,.” Then, bothC; andC, are strongly

38 YUH-JZER JOUNG

feasible, butC; N C, is not because no scheduler can make a move if the adversary lets the
processes be ready simultaneousin

We have shown in Part | that SIF is strongly feasible. Then by Lemma 2.1, any fairness notio
is weaker than SIF is also strongly feasible. Examples include SPF, WPF, and WIF

Lemma 2.2. The following four fairness notions are all strongly feasitd¢F, SPF, WPF, and WIF.

On the other hand, as we have shown in Part |, both U-fairness and hyperfairness are not s
feasible.

In general, to prove thdt is not strongly feasible fofS, we must show that for every nonblockin
schedulelS, there is an adversa such that (S, A) ¢ C(IS). However, for most systems there exist
an adversary such that every scheduler versus it must generate the same run. So ifthe runis noti
in C(IS), then obviouslyC cannot be strongly feasible. For example, if an adversary always let
most one interaction be enabled, then any nonblocking scheduler versus the adversary must ¢
the same run: whichever interaction is enabled, it must be selected for execution. The resulting rt
calledsingularin Part I, and are inevitable to every strongly feasible fairness notidfs.ofVe shall
use SGIS) to denote the set of singular runsliéf An immediate consequence of the definition is tt
following.

Lemva 2.3. For every strongly feasible fairness noti@h SG(S) < C(IS).

Note that for eveniS, SG({S) # @, unlesslS contains more than one interaction and for eve
interactionx, there exists another interactigrsuch thaty is contained irx. Moreover, if SGIS) # @,
then for every fairness notid@d it is never the case that SI8) < C(IS) and SGIS) < C(IS), whereC
is the complement of defined byC(IS) = run(S) — C(IS). Therefore, ifC is strongly feasible fofS,
thenC must not be strongly feasible. In other words, it is never the case thattatd its complement
are implementable.

CoroLLARY 2.4. LetIS = (P, I, M"). If Ixel,Vyel y+#x= Py, Z Py Then for every fairness
notionC, it is never the case that both andC are implementable fafS.

Recall from Lemma 4.1 of Part | that in the presence of equivalence-robustness, strong feasik
sufficient and necessary to determine fairness implementability. As this result will be referenced s
times in the paper, for ease of reference, we restate the lemma below.

Lemva 2.5. If Cis strongly feasible and equivalence-robusti®rthenC is implementable foiS.

Moreover, since ifC is stronger thaf’ thenC(IS) < C'(IS), the fairness implementability criterion
immediately implies the following lemma:

Lemma 2.6. SupposdC is stronger tharC'. If C is implementable fofS, then so isC’; and if C' is
not implementableghen neither isC.

3. STRONG FEASIBILITY OF COMPLETIONS

In this section we consider the implementability of equivalence-robust fairness notions. In parti
we shall focus orcompletions—equivalence-robust fairness notions derived from a non-egivaler
robust one. We shall show that the process of completion may not preserve strong feasibility. Si
the presence of equivalence-robustness strong feasibility suffices to determine fairness implemen
completions are not necessarily implementable.

Furthermore, we shall also show that if no interactioffSofontains an interaction, then there exists
fairness notion, denoted by SGsuch that SG is the strongest implementable and equivalence-rob
fairness notion ofS. On the other hand, iiS contains two interactions, y such thatP, < Py then in
general there does not exist a strongest implementable and equivalence-robust fairness rigtion |

3.1. Definitions

Derinimion 3.1 [3]. 1. An equivalence clagsy) in run(lS) is purely C-fair iff eqz) € C(IS), it
is purely C-unfair iff eq(zr) N C(IS) = ¥, and it isC-mixedotherwise.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 39

2. Afairness notiort is a comletion ofC iff the following three conditions are satisfied:
(i) for every purelyC-fair classeq(r), eqr) € @(]IS)
(i) for every purelyC-unfair claseq(r), eqr) N @(HS) =, and
(iii) for every classC-mixed clas®q(r), eithereqir) < C(IS) or eqir) N C(IS) = 9.

It follows directly that a completio@ must be equivalence-robust. Two extreme completiors of
arise naturally: thenaximalcompletionC™, which treats everg-mixed class as fair, and theinimal
completionC~, which treats ever{’-mixed class as unfair [3]. Moreove,” (IS) € C(IS) € C*(IS)
for everyC. By Lemma 2.1, ifC is strongly feasible then so&". SinceC* is equivalence-robust, by
Lemma 2.5, ifC is strongly feasible the@@™ must be implementable.

Lemma 3.1. If Cis strongly feasible fokS, thenC* must be implementable f&.

On the other hand, since the process of minimal completion may exclude some runs that are ine
toC™, C™ may be unimplementable. In fact(fis not implementable then strong feasibility cannot
preserved b ™. Therefore, unlike maximal completions, minimal completions do not help us obtai
implementable fairness notion from an unimplementable one while pursuing equivalence-robust

Lemma 3.2. If Cisnotimplementable fdfS, then neitheri€™. Moreoverif Cisnotimplementable
thenC™ must not be strongly feasible.

Proof. SinceC™ (IS) € C(IS), by Lemma 2.6, ifC is not implementable then neither@s . Since
C™ is equivalence-robust, by Lemma 2.5, it must not be strongly feasilse.

3.2. Strongly Feasible Completions

As it turns out, the weakest completion (i.e., the maximal completion) of a strongly feasible fai
notion is also strongly feasible, while the strongest completion (i.e., the minimal completion) ma
be. Since strongly feasible completions are implementable, and since stronger completions induc
liveness properties, given a strongly feasible fairness ndficane would wish to know what is the
strongest, strongly feasible completion®@f or does it even exist. To answer this, we first establi
a more important theorem showing the existence of a strongest fiarness notion that is both st
feasible and equivalence-robust. For this, we need the following lemma.

Lemva 3.3. LetlS = (P, I, M) and assume thatx,y € I, x # y = Py € Py. The everyr €
run(S) satisfying SIF is equivalent to a singular run.

Proof. Letx e run(lS) be a run given by

7= Ppr1der.. . Pung-long X1 P2al21. .. Pony-lon, X2 -,

wherexy, Xo, ... are the sequence of interactions executed.idAssume thatr satisfies SIF. Consider
X1. Suppose that we transforminto another runr, by the following procedure: Foreagh j .11, 1 <
j < nq,if(1) prj ¢ Px, and(2) at some pointim (after the ready transitiopy j.11 ;) some interaction
yinvolving py j is enabled, then move the actipp; .1, ; afterx;. Clearly,r = 7;. Due to the restriction
imposed on the structure &, no subset oP,, is involved in any other interaction. So in at most
one interaction is enabled at any point updo

Similarly, we can transformr; into another runr, by applying the above procedure to the reac
transitions occurring betweeq andx, so thatr; = 7o, and insr, at most one interaction is enabled &
any point up tax,. We claim that if we apply the procedure repeatedly for the rest'sfthen we will
obtain a runt, such thatr = 7., andn, is singular. To see this, observe that for any finjteee have
7T =m =--- = m, and ins; at most one interaction is enabled at any point ug tSo it suffices to
show that the equivalence relation betweeandr; is preserved when— o0o.?

2 Note that, in general, equivalence relation nmg be preserved through an infinite number of such transformations. |
example, consider = pi(pz psx)®, and assume th&, = {p1, p2} andPx = {pz, ps}. Letmi = (p2psx)' p1(p2psx)”. Then,
for each finitei, 7;_1 = 7;. However,m», = (p2p3X)®, which is not equivalent ta; for any finitei.

40 YUH-JZER JOUNG

Suppose otherwise that the equivalence relation does not hold. Then, it must be the case th:
ready transitionpy j.lx j in betweerx,_; andx, of runmy has to be moved during the transformatic
from m_; to m for everyl > k, resulting in the extinction ofy .lx,; when the transformation is
performed an infinite number of times. However, recall thapdf.1, ; has to be moved in thkth
transformation (i.e., fromr,_1) to y, then (1)pi; ¢ Py, and (2) later at some point in._1 (and thus
in r) some interactiory involving py j is enabled. Since in the remaining transformatipps. I\ ;
is continually moved, none of the interactiong Xi41, . . . involves processy j, and there exists an
infinitely number of points inr such that at each point some interaction involvimg is enabled, but
from x, onwardpy j never participates in any interaction. Baloes not satisfy SPF, and thusdoes
not satisfy SIF. This contradicts the assumption thaatisfies SIF. Therefore, the equivalence relati
betweenr andrn, is preserved during the transformations frano 7,,. m

Recall from Lemma 2.3 that for every strongly feasible fairness ndip8G(S) < C(IS), where
SG(S) is the set of singular runs @$. Define fairness notion SGto be the maximal completion of
SG, i.e,,

SG'as)= | J edm).
7eSG(S)

Then, for evenyC that is both strongly feasible and equivalence-robust; (@& < C(IS). Moreover,
by Lemma 3.3, SIHS) € SG'(IS). Since SIF is strongly feasible, by Lemma 2.1'Si§ also strongly
feasible. Hence, by Lemma 2.5 $@& implementable. The following theorem can thus be establish

TheorRem 3.4. LetIS = (P, 1, M) and assume thatx,y € I, x ¢ y = P € Py. Then,SG' is
strongly feasible and equivalence-robust iy and for every other strongly feasible and equivalenc
robust fairness notiof, SG"(IS) < C(IS).

To illustrate SG, consider the following example taken from [1]:

py:: by :=true;
* [b1; p2!'0 — by := falsg
p2:: by :=true;
*[by; p1?x — by = false
O by; p3 ?Xx — skid;
ps!0
p3:: b3 :=true;
* [b3; p2!10 — Skip
Obs; p2 ?y — bg ;= falsg
In this system,p; and p, may interact, andx, and ps may interact. In particularp, and ps may
establish two possible interactions, one to deliver a value fparto p, and the other in the opposite
direction. Although the two interactions contain each other, the program does not allow them
enabled simultaneously. So Theorem 3.4 can be applied to the system so that 8@ strongest
implementable and equivalence-robust fairness notion for the system. From the program, it can t
that the system may not terminate@sandps may repeatedly establish an interaction forever. Howev

any run of the system satisfying S@nust terminate.
From Theorem 3.4, we can derive the following corollary.

CoroLLARY 3.5. LetIS = (P, 1, M) and assume thatx,y € |, x # y = Px € Py. Then for every
strongly feasible fairness notidf, the completiorC* defined by

C*(IS) = SG'(IS) U {r € E | E is a purelyC-fair equivalence class irun(IS)}

is the strongest implementable completiorCof

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 41

Proof. SinceC is strongly feasible, by Lemma 2.3, SiS] C C(IS). So every equivalence class it
SGH(IS) must be purel\C-fair or C-mixed. So by definitiorC* is a completion ofC. Moreover, since
SGH(IS) € C*(IS) and since SGis strongly feasible, by Lemma 2.C; is also strongly feasible. By
Lemma 2.5, therefore&* is an implementable completion &f

To show thatC* is the strongest implementable completior(hfiet C be any other implementable
completion ofC. Then, by Theorem 3.4 and by the definition of completidiig]S) < C(IS). Hence,
C* is the strongest strongly feasible completiorCof m

Note that Theorem 3.4 does not depend on the arity of interactions, and so it holds as well if intera
are strictly bipartied. In particular, if every pair of processes share at most one interaction, thén S
the strongest strongly feasible and equivalence-robust fairness notion one can get for biparty inte
systems.

CoroLLARY 3.6. For everylS = (P, I, M) such thatvx € I, |[Px| = 2andVvx,y e I, X #y = Px #
Py, SGt is the strongest fairness notion fif that is both strongly feasible and equivalence-robust.

3.3. Non-Strongly-Feasible Completions

On the other hand, if some interaction contains an interaction, then the strongest strongly feasit
equivalence-robust fairness notion may not exist. Before proving this, we first showlthat #ddition
contains at least two processes, then not all strongly feasible fairness notifhé@fe a strongest
implementable completion. Note that for this we shall consider interaction systems with progral
type M”. It can be seen that even if interactions may contain interactions, if the associated prc
M guarantees that at any time no enabled interacti@ontains an interaction that is also enable
simultaneously, then SGis still the strongest strongly feasible and equivalence-robust fairness nc
for the system.

THeorem3.7. LetIS = (P, I, M") be an interaction system satisfying the following conditions

1. |P| > 1and
2.3X,yel,x#y, Pk S Pj,andvzel,P,C Py = P, C P,.

Then there exists a fairness notidh which is strongly feasible but does not have a strongest stron
feasible completion.

Proof. Letx, y € | be two interactions satisfying condition (2). Consider first gt > 2. let p;
and p, be two arbitrary processes By. Clearly, run{S) contains runs of the form

P1P2(Py — {P1. P2})21P2, 2P, 23P; 1)
Let Ex andEx be two subsets of rulf§) defined by

Ex = {mr | m is equivalent to some run of form (1) wherg z = x}

Ex = {7 | wis equivalent to some run of form (1) whete z # x}.

The two sets are obviously not empty and disjoint. Note that in the presermeanf p,, each runr
in Ex andEyx has at least one equivalent run different frami.e., |eq()| > 2 (because the first ready
transitions of the two processes can be arbitrarily permuted).

Let Sbe a nonblocking scheduler which selects an arbitrary enabled interaction for execution, e

o Ifinitially the adversary schedules the sequence of ready transitippg Py — { p1, p2}), thenx
will always be chosen for execution whenever it is enabled.

o Ifinitially the adversary schedules the sequence of ready transiigmg Py — {p1, p2}), theny
will always be chosen for execution whenever it is enabled.

Define fairness notioft to be the following:

C(IS) = {= | there is an adversar of IS such that (S, A) = = }.

42 YUH-JZER JOUNG

ThenC is strongly feasible becauskgenerates onlf-fair runs. Observe that every run of the forr
P1P2(Py — {p1, P2})(x P)” belongs taC(IS) but its equivalent rurp, p1(Py — {p1, p2})(x P)* does
not. So every equivalence clasgr) € E4 is C-mixed. (In fact, there is only one equivalence cla:
in Ex.) On the other hand, for every of form (1) such that for some z # x, = must not belong to
C(IS) because no adversary verssisan generate. So every equivalence clasgq(r) € Ex is either
C-mixed or is purelyC-unfair.

Recall from Lemma 2.1 that i€ is strongly feasible an@;(IS) € C,(IS), thenC, must also be
strongly feasible. From the above descriptionfit can be seen that there exists a strongly feasil
fairness notior’ for IS satisfying the following two conditions:

e Vrr € run(lS) — (Ex U Eg), m € C'(IS), and
o Vrr € Ex U Ex, eqr) N C/(IS) # ¢ andeq(r) N C'(IS) # 9.

For example(C’ can be obtained by extending the ab@® include every run in rufi) — (Ex U Ex)
and including one run from every pureBrunfair class ofEx. A

Now, since each equivalence clasgr) C Ex U Eg is C'-mixed, every completiof of C" must
decide the fairness @&q(). Moreover, ifC’ is strongly feasible, the@’ cannot treat all theq()'s in
Ex U Ex as unfair; otherwise, no nonblocking scheduler can generate a fair run if it faces the follo
adversary. Initially, the adversary schedules the sequence of partigh paGP, — {p1, p2}); subse-
qguently, whichever interaction is chosen by the scheduler, the adversary in response simply sct
the processes of the interaction to be ready again.

We can define two completlor@’X which treats all equivalence classeshHR as fair and those in
Ex as unfair, anoC’ which is defined in the other way. We argue that both are strongly feasible
see this, consider flrst a nonblocking schedi8emwhich selects an arbitrary enabled interaction f
executioin, except that must be chosen whenever it is enabled. Then for everyrrgenerated bys,,
if 7 is equivalent to some run of form (1), then all of th&s must be instances of This is because at
any point inz only the processes iR, can be ready. So for every, P, < Py. By condition (2),x is
enabled wheneve is. SinceS, prefersx to any other interaction containing z = x. So S cannot
generate any run ifx. Therefore;C’ is strongly feasible becaus: generates only runs (ﬁ’

For the strong feasibility cﬂ:’ consider a nonblocking schedufgrwhich selects an arbltrary enable
interaction for execution, except thatmust be chosen whenevgiis enabled. Since every run By
contains a state in which is enabled, no adversry versfg can generate a run iBy. So every run
generated by satisfiesC;. Hence Cy is also strongly feasible.

Observe that the two completios, and C% are incomparable. So neither of them can be t
strongest implementable completion ©f. Moreover, recall that for every strongly feasible com
letionC’ of C, C’(]IS) must contain some equivalence classdsio Ex. So ifC’ contains all equivalence
classes irEx U Eg, thenC’ must be weaker tha(ﬁ/ and(C/ ; and if C/(HS) contains only part of them,
thenC’ must be incomparable with elth@‘ or (C/ Therefore C’ does not have a strongest strong|
feasible completion.

In the above proof, we have assumed it > 2. If |Py| = 1, thenP, = Py. Since|P| > 1, either
there exists an interactiam involving more than one process, or there exists two interactigns,
such thaiP,,| = |Py,| = 1 andP,, # P,,. In the former case, we can modify form (1) to

PLP2(Py — {P1, P2)v1- - v Pyza P, 2P, 3P, . . .,

wherep; and p, are two arbitrary process iR, anduvy, ..., vk are instances of interactions such th
no interaction is enabled immediately after In the latter case, we instead consider the form

piUy Uy Pyz1 Py 2P, 23 P, . . .,

whereP,, = {p1} and Py, = {p2}. In either case, we can defirg, and Ex analogously and show
that there exists a strongly feasible fairness nofibrsuch that all its strongly feasible completion
intersect (a) bottEx and Ex, (b) only Ey, or (c) only Ex So C’ does not have a strongest strongl
feasible completion. m

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 43

Note that in Theorem 3.7, B consists of only one process, then for ang run([S), the equivalence
classeq(rr) consists ofr itself. So for any fairness notia@, there is only one completion, i.&,itself.
Therefore, it holds trivially that i€C is strongly feasible fokS, thenC is the strongest strongly feasible
completion ofC.

We now show tht if some interaction contains an interaction, then there may not exist a strc
fairness notion fofiS that is both strongly feasible and equivalence-robust.

THEOREM3.8. LetIS = (P, I, M") be an interaction system satisfying the following condition
IX,yel,x#y,PkC Py, and Vzel, P, C Py= P C P,

Then there does not exist a fairness notiBrsuch tha(1) C is strongly feasible and equivalence-robu:
and(2) C is the strongest fairness notion ff$ that satisfies Conditiofi).

Proof. The proof is similar to that of Theorem 3.7, except that we do not need processesl
p2 to make some equivalence classes of iSp¢onsist of more than one run. LB and Ex be two
subsets of rufiS defined by

Ex = {m | wis equivalent to some run of the forfy(x P)“},

Ex = {7 | wis equivalent to some run of the forRyz, P, z,P,, . .. wheredi, z # x}.

Then, using an argument similar to Theorem 3.7, we can show that any strongly feasible and equive
robust fairness notio@ for IS must intersect eithdg, or Ex. Furthermore, there are two incomparab
fairness notions (which are strongly feasible and equivalence-rabusfdCyx such that the following
two conditions are satisfied: (By < Cx(IS) and Cx(IS) N Ex = ¥ and (2) Ex € Ck(IS) and
Cx(IS) N Ex = @. All other strongly feasible and equivalence-robust fairness notionsSfanust be
either weaker thaitx and Cx or incomparable with one of them. Therefore, the strongest stror
feasible and equivalence-robust fairness notio$adoes not exist. m

Note that like Theorem 3.4, both Theorems 3.7 and 3.8 hold as well if interactions are strictly bipa
To illustrate Theorem 3.8, 1&S = ({p}, {x, y}, M"), whereP, = Py = {p}. Let Fx = {(px)*}
andF¢ = {(py)“}. Then both are strongly feasible and equivalence-robust (and so are implement
However, the two fairness notions are incomparable. Note that each fairness notion has on

completion, i.e., itself. So each has a strongest implementable completion.

3.4. A Patch

The readers may have noticed that Theorem 3.8 alone is not enough to determine whether ther
a strongest implementable and equivalence-robust fairness notion 8r-all(P, I, M") where some
interaction contains an interaction. This is because Theorem 3.8 concerns only the case
some interactiory € | contains a minimal interactior (where an interactiom is minimal if for
every interactiorv contained iru, P, = P,) such that for all other minimal interactiomscontained in
y, P, = Px. Clearly,y may contain two minimal interactionsandz such that neither of them contain:
the other. As we shall see, these systems do have a strongest implementable and equivalenc
fairness notion, which is, by no surprise, 8G

Lemma 3.9. LetIS = (P, I, M") and assume that
vx,yelx#y, kcP =>3zwel, ,<P,P,CP,P,ZP,, and R, Z P,.

Then arunz € run(S) is equivalent to a singular run if it satisfies the following conditions
1. No interaction containing an interaction is ever executed in

2. For every x not containing any interactipif x is enabled infinitely oftenthen it is executed
infinitely often.

44 YUH-JZER JOUNG

Proof. Letx e run(lS) be a run given by

7 =Pr1der... Punglong X P22z Pan,-lon, X200y

wherexy, Xo, ... are the sequence of interactions executed.issume thatr satisfies conditioins
1 and 2. We can use the method described in Lemma 3.3 to tranafanto an equivalent rumr;
by moving eachpyj.l1j,1 < j < ny, to the end ofx;, wherep, ;.11 ; satisfies the following two
conditions: (a)py,; ¢ Py, and (b) at some pointin (after the ready transitiop ;.14 j) some interaction
y involving py,j is enabled. By condition 1 of the lemma is singular up tox;.

Like Lemma 3.3, the transformation can be done ad infinitumzLgetienote the resulting run. Unlike
Lemma 3.3, however, some ready transitpn . I j in betweerx,_; andx, may be kept moving forever
in the rest of the transformation from to .. (If no ready transition is moved indefinitely then= 7,
andr, is singular; hence we are done.) If this happens, then by the transformation some intgrac
involving procesgy j is enabled infinitely often but from, onwardy is never executed. Note that by th
conditions of the lemmay; must contain two interactions andz such that?, — P, £ @, P, — P, # @,
and neither of them contains an interaction. Since lotndz are enabled whenevegris enabledw
andz are enabled infinitely often throughatt Since they do not contain any interaction, by conditic
2 they are executed infinitely often in

We can then modify the transformation such that starting frrthe ready transitiomy j. I ; will
not be moved in the rest of the transformation. Without loss of generality assume that no other
transition is kept moving forever in the new transformation. (If there is one, then we can use the
method to freeze that transition too.) Le{, be the resulting run. It is clear that= =/ because no
ready transition is kept moving forever.

We claim thatr. is singular. By the transformation, it suffices to show thatill never be enabled
even if we stop movingpy j.lx j from x, onward. For this, suppose otherwises enabled in some state
sin /. Sow andz are also enabled is. Recall thatw andz are executed infinitely often in (and
thus inr/). Letu be the first interaction that is executed akeBy condition 1,P, cannot contairP,,
andP;,. So eitherP,, — P, # @ (whenu # w) or P, — P, # ¢ (whenu # z). Since bothw andz are
executed infinitely often, by the transformation either the ready transitions by the proceBses B,
or the ready transitions by the processeRin- P, will be moved afters. Hence,y cannot be enabled
in s; contradiction. The lemma is thus proverm

To illustrate Lemma 3.9, assume th&t = ({p1, P2, P}, {X2, X3, X23, X123}, MV), where Py, =
{p2}, Px; = {P3}, P,y = {P2, p3}, andPy,, = {p1, P2, p3} (see Fig. 3c). Then the run

T = P1P2P3(X2 P2X2 P2X3P3)”

can be transformed into

p = P1(P2X2 P2X2 PaX3)”

which is singular and is equivalent ta

THEOREM3.10. LetIS = (P, I, M") and assume that
vx,yelx#y, k<P =3zwel,,<P,P,CP,P,ZP,, and R, £ P,

Then SG' is the strongest strongly feasible and equivalence-robust fairness noti@. for

Proof. ByLemma2.3, forevery strongly feasible and equivalence-robust fairness > (IS)
C C(IS). As by definition SG is equivalence-robust, to prove the theorem it suffices to show that ¢
is strongly feasible folS. Moreover, by Lemma 3.9, it suffices to show that there exists a nonblocl
scheduler foffS satisfying conditions 1 and 2 of the lemma. Such a scheduler can be easily obtain
modifying the SIF-scheduler presented in Part | (Fig. 6) so that no interaction containing an inter:
is ever selected for executionm

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 45

G o (n @O

(a) (b) ()

FIG. 3. Instances of interaction systerfs= (P, I, M¥) which permit some interactions to contain an interaction but have
strongest implementable and equivalence-robust fairness notion.

Figure 3 illustrates some instanced®that have a strongest implementable and equivalence-rol
fairness notion. Theorem 3.10 implies the following corollary (cf. Corollary 3.5).

CoroLLARY 3.11. LetIS = (P, I, M") and assume that
VX,yel,x#y,PkCP,=>3zwel,P,CP,P,CP,P,ZP,, and R, Z P,.
Then for every strongly feasible fairness notionthe completiorC* defined by
C*(IS) = SG'(IS) U { € E | E is a purelyC-fair equivalence class irun(IS)}

is the strongest implementable completiorCof

4. COMPARISONS OF SGWITH OTHER FAIRNESS NOTIONS

In this section we compare SGvith the following well-known fairness notions and their completion

Strong interaction fairnesgSIF): An interaction that is infinitely often enabled is executed infinite
often.

Strong process fairne4SPF): A process that is infinitely often ready for an enabled interact
engages in an interaction infinitely often.

Weak process fairneg8VPF): A process that is continuously ready for an enabled interaction |
necessary the same interaction) will eventually engage in an interaction.

Weak interaction fairneséWIF): An interaction that is continuously enabled will eventually &
executed.

The comparison is intended to be comprehensive so that we know how these fairness notion:
for various systems. In particular, we shall divide the comparison into two subsections—one for sy
involving strictly biparty interactionsa(la CSP and Ada), and the other for those involving multipa
interactions of arbitrary arity. Recall that $Gs the strongest implementable and equivalence-rob
fairness notion for systems where interactions cannot contain interactions. In the biparty ca
interactionx cannot be contained in another interactipif Py # Py. This means that if interaction
names only serve to identify the participants, thert $&he strongest implementable and equivalenc
robust fairness notion for biparty interaction systémsVe shall therefore us#® to denote a set of
biparty interactions such thsitx € 1B, |Px| = 2 andvy € IB — {x}, Px # P,.

Recallfrom Lemma 2.2 thatthe above four fairness notions are all strongly feasible. Their equival
robustness is summarized in Table 1. It is clear that for el&tire following relation holds [1, 2]:

SIF(IS) C SPF(S) € WPF(S) € WIF(IS).

In particular, depending on the instance&$fthe fairness notions may be identical or strictly differer
To study the structure of interactions that distinguishes these fairness notions and their minim
maximal completions, we shall associ&$ewith a program of typé”.

3In practice an interaction name usually identifies the set of participants, while the interaction body determines the «
of communication, which can vary dynamically, and in some cases can even involve nondeterministic choices among ¢
commands.

46 YUH-JZER JOUNG

TABLE |

Equivalence-Robustness of Various Fairness Notions [1]

Biparty interactions Multiparty interactions

SIF
SPF
WPF
WIF

+

+ 1+

4.1. Biparty Interaction Systems

We will establish some lemmas that are useful in classifying the relationship betweear8iGSIF,
SPF, WPF, WIF, and their minimal and maximal completions. We begin with the comparisonof
SIF, and SIE. By definition of completions, for everd§ we have SIF(IS) € SIF(S) € SIFF(IS).
Since SIF is not equivalence-robust, there exists skffrtbat distinguishes SIF SIF, and SIF. The
following lemma shows when they are distinct.

Lemva 4.1. ForeverylS = (P, I, M"), SIF(IS) C SIF(IS) C SIFT(IS). In particular, SIF~(IS) C
SIFIS) C SIFF(IS) if ax,y,ze |, kNP, Z P,and RN P, Z P,.

Proof. To see the proper subset relation, consider the run
7 =(P«—P)UPR)(YPzR)".

If only y andz are enabled infinitely often im, thenm € SIF(S). If some other interactiow is enabled
infinitely often, then due to the restriction imposediSpw # x because is never enabled inr. So
eitherP, € (Px — P)UPyorP, C (P — Py)UP,. If P, € (P« — P;) U Py, then let

7' =((Px—P)UP)(wP,yP,zR)";
otherwise let
7' =((Px— P)UP)(yPwP,zR)“.

In either case, ifr’ is still not in SIF(S), then similarly there must be another interactiosuch that
eitherP, € (Px — P,) U Py or By € (Px — Py) U P; andu is enabled infinitely often but is neve
executed. Then we can use the above method to obtain anothef suth that is executed infinitely
often in”. So without loss of generality assume that SIF(IS).

Consider the run

p=((Pk—Pyu Py)((Pz - Py) y(P,N Py) z Py)w~

It is easy to see that = 7. However,p does not satisfy SIF becausés now enabled infinitely often
in p but it is never executed. By the definition of minimal completions; SIF(S) — SIF(IS); and
by the definition of maximal completionse SIF*(IS) — SIF(@S). =

Figures 4b and 4c illustrate some instance&Sdbr which SIF (IS) C SIF(S) C SIFF(IS).*

Lemva 4.2. For everyIS = (P, I, M), SIF[IS) € SPF{S). In particular, SIF(S) C SPF(S) if
X, Y1,..., ¥Ya € I such thatvi <n, P, N Py # @ and|; (Py, N Py) = Py

41t can also be shown that SIFIS) C SIF(IS) C SIFF(IS) only if 3x,y,z€ |, Pc N Py & P;andPx N P; £ Py. Since we
do not need this result in the main theorems of this section, we omit the proof.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 47

d N A

L) ° yz o) [»D

a 6'% yl v Y2
(a) y(lb) ()

FIG. 4. Instances of interaction systerfs = (P, I, M") for which SIF(S) C SPF(S). Moreover, SIF is not equivalence-
robust for (b) and (c).

Proof. Itis easy to see thatIS, SIF(S) € SPF{S). To see the proper subset condition, consid
the run

m= (P, U---UP,)(Y1Py, -+ YaPy,)".

Thennz € SPF{S) — SIF(S) because (1x is enabled infinitely oftenx is enabled because, <
Py, U---U Py) but is never executed (so ¢ SIF(S)) and (2) every process im executes some
interactiony; infinitely often (sor € SPF(S)). =

Figure 4 illustrates some instanced8ffor which SIF(S) C SPF{S).

We have shown the structure @ that makes SIF non-equivalence-robust; that is,”8I¥) C
SIF(IS) C SIFF(IS). Given that SIFS) C SPF{S), it is interesting to compare SPF with $IFAs we
shall see shortly, SIF, SPF, and SG are all equivalent when interactions cannot contain interactio
Moreover, since in the biparty case SPF is equivalence-robust, it follows that SPF, SIFF, and
SG' are all equivalent.

Lemma 4.3. For everylS = (P, I, M), if VX, y € |, X # y = P« € Py, thenSIF({S) < SG*(IS),
andSPF{S) C SG*(IS).

Proof. This follows directly from Lemma 3.3, and note that the proof of Lemma 3.3 can alsc
used to show that every run e SPF{S) is equivalent to a singular run.m

Lemva 4.4, For everyIS = (P I, M), if Vx,y € I, x # y = Px ¢ Py, thenSIF*(IS) =
SPF (IS) = SG'(IS).

Proof. By Lemma 4.3 and the fact that $As equivalence-robust, SIFIS) < SGH(IS) and
SPF(IS) € SG(IS). On the other hand, by Lemmas 2.2 and 2.1,'SiRd SPF are strongly feasible
and equivalence-robust. By Theorem 3.4,"%(S) € SIFF(IS) and SG(IS) € SPF (IS). Hence
SIFH(IS) = SPF (IS) = SG'(IS). =

We now consider the notion of WPF and its completions.

Lemma 4.5. For everyIS = (P, 1, M"), SPF(IS) € WPF (IS). In particular, SPF(IS) C
WPF (IS) if 3x,y € | such that(1) P, N Py # @, and(2) 3 p € P, — Py such thatvz € I, P, C
Pk —Py=p¢gP.

Proof. Since SPHE) € WPF(S), SPF (IS) € WPF(IS). To see the proper subset conditior
without loss of generality assume thatandy are two interactions satisfying conditions (1) and (-
of the lemma such that for all other interactiodsandy’ satisfying the same conditiony U Py| <
|Pe U Pyl

Consider the run

m = (P U Py)(YR)“.

Let p be the process satisfying condition (2) of the lemma. Simee Py — Py and sincex is enabled
infinitely often,r does not satisfy SPF. Sodoes not satisfy SPFeither. Moreover, if some interactior

48 YUH-JZER JOUNG

z1 is continuously enabled im, thenP,, C P, — Py. By condition (2) of the lemmap & P,. Then in
the run

7' = (PyUPy)(yzPyP,)”

Z1 is not continuously enabled. Stilt; does not satisfy SPF becaysis ready for an enabled interactiol
(i.e., x) infinitely often but it never engages in any interaction.;8aloes not satisfy SPFeither. If
some other interactior is still continuously enabled in’, thenP,, € Px — Py — P, andp & P,.
The above method can be used again to obtain afwuch thatr” does not satisfy SPF ard is not
continuously enabled. As there are only a finite number of interactiohsiithout loss of generality
letp = (PxUPy)(Yz1zo...zPyP, P, ... P,)® be arun that does not satisfy SPF and SBRd that
does not have an interaction that is continuously enabled. Note that by the construction, for eve
different interactions, b executed irp, P, N P, = @.

We argue that all runs irqp) satisfy WPF. To see this, suppose otherwise somejrum e p)
violates WPF. Then, given that no interaction is continuously enablgdamd thus iny), there must
exist two interactionsi; andv,, whereP,, U P,, € Px U Py, such that (aPy,, N Py, # @, (b) v1 is
executed infinitely often iy, and (c) some procesgse P,, — P,, is continuously ready for an enable
interaction but it never executes any interaction. Moreover, immediatelyafieexecuted| must still
be ready for an enabled interaction. ugtbe the smallest such interaction so that there is no interac
a such thatP, C P,,. Because no interaction is continuously enableg,im, will subsequently be
disabled due to the execution of some interactiorsoP,, N Py, = ¥ andP,, N P, # ¥. Since any two
different interactions executed inare disjoint,P,, N P,, = @. Given thatP,,, P,, Py, P,, € PxUP,
we haveP,, U P,, C P, U P.

However, because is not involved in an interactioa such thatP, C P,,, it is not involved in any
interactionb such thatP, < P,, — P,,. Thenu, andv, satisfy the lemma conditions di$; but this
then contradicts our earlier assumption &tu Py| < |P,, U P,,|. Therefore, all runs ieq(p) satisfy
WPF. Hencep € WPF (IS) — SPF (IS). =

Figure 5 depicts some instanceslSffor which SPF (IS) C WPF(IS). The following lemma on
the non-equivalence-robustness of WPF is somewhat complex.

Lemma 4.6. For everyIS = (P, 1, MY), WPF (IS) € WPF({S) € WPF"(IS). In particular,
WPF (IS) C WPF(@S) C WPF(IS) if 3x;,y; € |, where0 <i <n—landn> 1,andip e P
suchthat(l) pe NP, P € UPy, @QVi,P, NPy #0, Py NP, =90 and@)Vu e |, P, C
UPs —UPy =3vel,R,NPR, #0, p¢ P, and3i, P, N P, = @. (Note that in the lemma
additions and subtractions on indices of x and y are to be interpreted modulo n).

Proof. To see the proper subset conditions, consider the run

= (U P U Pyi) (YoPyoY1Pys - - Yn1Pyos)”.

Observe that before each instancg/pprocessp is ready for allx;’'s; and sincePy, N Py, = ¢, after
the instancep is ready for at least;j,1 (which exists because > 1). Sop is continuously ready for
an enabled interaction (starting from the point the first interaction is to be executed). (Bieer
executes any interaction, ¢ WPF(S). Now consider the run

p= (U Py — U P)’i) (PyoyoPylyl e Pyn_lynfl)w

(a) (b) (c)

FIG.5. Instances of interaction systetf= (P, I, M") for which SPF (IS) C WPF(IS).

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 49

which is obtained fronx by deferring for eaclj the readiness df) P, — Py, before each instance of
y; until the instance is executed. Since the deferred actions are independent of the insigne@af
since no action is deferred indefinitely,is equivalent tar. However, sinc&/i, Py, N Py # ¢, right
after each instance gf none of thex’s is enabled. So the s can no longer causeto be continuously
ready for an enabled interaction.

If p € WPF(S) then we are done becauges WPF(S) — WPF (IS), while 7 ¢ WPF"(IS) —
WPF(S). If o ¢ WPF(S), then some process is still continuously ready for an enabled interac
but it never engages in any interaction. Observe that after each instapcerdf the set of processes
U Py — U Py, are ready for interaction. Moreover, the processes are continuously ready for interz
throughoutp. So if some process is continuously ready for an enabled interaction but never en
in any interaction, then the process must be continuously ready for the same interactionaedy
Pu € U Py — U Py,. By condition (3) there exists somgwherev could beu) and some such that
PNP,#0,pé&P,andP, N Py = 7.

Letz" andp’ be two equivalent runs given by

7 = (U Pxi U U PYi U PU) (yOPyoylPY1 s ynflpynflv P”)w
o = (U Pq — U Py — Pv) (PyoYoPy Y1 - - Py, Yo 1Py v)”.

SinceP, N Py, = ¢, pis still continuously ready for an enabled interactionrireven ifv is executed
infinitely often. Sar’ ¢ WPF(S). Moreover, sincd>, N P, # @, u is not continuously enabled j#i. So
eitherp’ € WPF(S), in which case we are done, or there exists anathd?, < |J P, — J Py, — Py,
such thatl’ is continuously enabled ip’. In the latter case, we can apply the above method agai
obtain two equivalent runs” and p” such thatr” ¢ WPF(S) andu’ (andu) are not continuously
enabled inp”. Given that there are only a finite number of interactions and a finite number of proce
in IS, eventually we will establish the lemmam

Figure 6 depicts some instances I&f for which WPF (IS) C WPF(IS) C WPF(IS). Note that
the non-equivalence-robustness must be intrigued by at least four interactions. In Fig. 6c¢, all t
interactions are needed in makipgbe continuously ready for an enabled interaction but never eng
in any interaction.

Lemma 4.7. For everylS, WPF™(IS) = WIF(S).

Proof. We shall show thatfor every € run(IS) itis never the case that{r) € WIF(IS) — WPF(S).
Since both WPFE and WIF are equivalence-robust, and since WBFC WPF' (IS) € WIF(IS), we
therefore have WPKIS) = WIF(IS).

Letyr be any run in WIFS) — WPF(S). Then, there must exist a procgssuch that from some point
onward (sayy) p is continuously ready for an enabled interaction, paever executes any interactior
thereafter. Moreover, singg satisfies WIF,p cannot be ready for the same interaction continuous

T147

FIG. 6. Instances ofS for which WPF(S) is not equivalence-robust.

50 YUH-JZER JOUNG

So there exists an infinite number of poidst, ... such that (1)p is continuously ready for some
interactionx; at the time betweety_; andt; (inclusive), (2)x; becomes enabled at some point betwe
ti_» andtj_;, and is disabled dt, and (3)x; # Xj;1 for eachi > 0. Suppose that is disabled due to
the execution of some interactign Sincex; 11 remains enabled whilg is executedPy,,, N Py, = .
That is, the enablednessxf.; (due to the readiness of some processdiin) is independent of the
execution ofy;.

Consider the run/’ obtained fromy by deferring, for each, the enabledness of . ; until y; is
executed. Then) = '. Note that the transformation frogh to v/ does not cause any new interactio
to be enabled, nor does it extend the duration of an interaction’s enabledness. So the transfor
cannot cause any new process to be continuously ready for an enabled interaction. However, f
i, right aftery; is executed iny’, p is not ready forxi,; (and not ready fox; either). If there exist
infinitely manyi’s such thatp is not ready for any interaction immediately after eaglis executed,
then p is not continuously ready for an enabled interaction. Otherwise, there existsigeoeh that
foralli > io there still exists another interactiaf), , which remains enabled right aftgris executed.
We can also use the above method again to break the overlap of the enablednessdof, ,. Since
there is only a finite number of interactions, we can obtain a run equivalgfitdoch thatp is not
continuously ready for an enabled interaction.

Similarly, if there is some other procegsn ¢’ (and thus im/) that is continuously ready for ar
enabled interaction, then we can use the same method again to transfanto " so thatq is not
continuously ready for an enabled interaction. Since there are only a finite number of processes,
transformys into an equivalent run satisfying WPF. Therefore, for everyyua WIF(IS) — WPF(S),
eqy) NWPF(S) #¢. =

We have finished the comparison of S@ith the four fairness notions SIF, SPF, WPF, and WIF, a
their minimal/maximal completions. The following theorem summarizes the results.

THeorem4.8. LetlS = (P, 18, M") be a given biparty interaction system. Then the following relati
holds

SIF(IS) < SIF@S) € SIFF(IS) = SG'(IS) = SPF (IS) = SPF{S) = SPF (IS)
C WPF (IS) € WPF(S) € WPF'(IS) = WIF(IS).
In particular, there exists affS for which all the stronger-than relatiorfs=” become strict.

Figure 7a depicts the relationship between these fairness notions. In thisfigtrd8 meansA is
stronger tharB. The relation “>” is transitive. Note that since SGs the strongest implementable an

WIF~ = WIF" = WIF = WPF"

WIF~ = WIFt = WIF = WPF™*

WPF / \

SG* = SIF* = SPF™ WPF

wer- P

SPF WPF~
SG* = SIFt = SPF~ = SPF = SPF™* |\l
SPF~
SIF \ /
SIF~
SIF~
(a) Biparty Interactions (b) Multiparty Interactions

FIG. 7. The hierarchy of various fairness notions when interactions cannot contain interactions. The fairness not
boldface are implementable, while the others are not.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 51

equivalence-robust fairness notion, all fairness notions weaker thara8Galso implementable, anc
all equivalence-robust fairness notions stronger thah,2Gy., SIF, are unimplementable. Moreover
although SIF is not equivalence-robust, as we have seen in Part I, it is also unimplementable.

ExampLE. Consider the Producers—Consumers problem, in which there are two propiacikrser
andproducep and two consumersonsumey andconsumer. The data produced by a producer can |
consumed by either of the consumers. The following is a CSP program for the problem| whére:

producey :: computédata);
*[consumey ! data—> computédata)
O consumes! data—> computédata) |

consumer:: * [producey ? data— digesfdata)
O produces ? data— digesfdata)]

There are four biparty interactions in this program, each of which involves a producer and a cons
They have the structure shown in Fig. 6a. So by our results in this section, the stronger-than re
(i.e., the arrow—) in Fig. 7a are all strict; that is, for this problem

SIF(IS) C SIF[S) € SGH(IS) € WPF(IS) C WPF(S) € WIF(IS).

Therefore, any implementation of CSP’s input/output guards which guarantees only WIF cannot p
the following behavior, which continuously blockgoduces from sending its data to either consume
and so does not satisfy WPF (although it does satisfy WIF):

all processes are ready (for communication/interaction), and then the repeat of the following f
producep sends data toonsumey
producer and consumer ready
produces, sends data toonsumer
producer and consumes ready

Similarly, the following behavior which satisfies WIF and WPF but does not satisfy VWAPH SPF is
also possible:

all processes are ready, and then the repeat of the following forever
produces, sends data toonsumey

producey, ready

producep sends data toonsumey

producey, ready

consumey andconsumer ready

In the absence ofonsumer (say, it terminates prematurely), the following scenario which satisf
WIF, WPF, and WPF but not SPF is also possible:

all processes are ready, and then the repeat of the following forever
producep sends data toonsumey
producep andconsumer ready

Since in the biparty case SPF (which is equivalent td B&implementable, a good implementatio
should be able to avoid all the above unfair scenarios. On the other hand, since SPF is also the st
implementable and equivalence-robust fairness notion, the strongest equivalence-robust prope
can observe from the program executing in any asynchronous environment is that no process is
blocked from communicating with its partners if it has infinitely many such opportunities.

52 YUH-JZER JOUNG

4.2. Multiparty Interaction Systems

We now consider multiparty interactions of arbitrary arity. Recall that in Theorem 4.8 the follov
relations hold as well even if interactions are multipartied (but cannot contain interactions):

1. SIF(IS) C SIF(S) C SIFF(IS) = SG*(IS) = SPF(IS)

2. SIF(S) C SPF(S)

3. SPF(IS) € WPF(IS) € WPF(S) € WPF(IS) = WIF(IS)
4. SPF(IS) € WPF!(IS).

Since SPF becomes non-equivalence-robust in the multiparty case, we need to resolve the relal
between its completions and the other fairness notions.

Lemma 4.9. For everyIS = (P, I, MY), SPF (IS) € SPF{S) € SPF(IS). In particular, SPF
(IS) C SPF{S) C SPF(IS)if 3x,y,ze€ 1,3 p1, p2, p3s € Pxsuchthat(l) pr e Pk — Py — P, po €
P,—Pyand g € Py—P;and(2)Vu e l, p1 € Py = (Pu € (Px—P)UPy)and(P, € (Px—Py)UP,).

Proof. To see the proper subset conditions, it suffices to find arrenSPF({S) such that some run
equivalent tar does not satisfy SPF. Consider the run

m = ((Px — P) U Py)(yPzR)".

Due to the two conditiong, € P, N P, — Py andpz € PN Py — P,, X is never enabled in. So if no
other interaction is enabled infinitely often but is never executed,ther8PF{S). Moreover, the run

P = ((Px - Pz) U Py)((Pz - Py) Y(Pz N Py) ZF)y)m

is equivalent tor but x is now enabled just before each instance @ to be executed. Sp;, which
belongs toPy, is now ready for an enabled interaction infinitely often. Sipgenever executes any
interaction,p ¢ SPF(S).

If 7 ¢ SPF(S), then some interactiow is enabled infinitely often but some process P, never
executes any interaction. Then eittigr < (P, — Py)U P, or P, C (Px— P,)U Py. Due to condition (2)
imposed oriS, p; ¢ P,. Assume thaP,, € (Px — Py) U P,. (The other case can be proved similarly
Then in the run

g has executed infinitely often. So eitherr’ € SPF(S), or similarly there exists another interaction
u £ w, such that is enabled infinitely often but some proces$innever executes any interaction. i
the former case, we can find a rghsimilar to p such thafp’ = 7’ but p’ does not satisfy SPF becaus
p; is infinitely often ready for an enabled interaction (ix).but it never engages in any interactior
In the latter case, given thatandP are finite, we can use the above method repeatedly to find
equivalent runs such that one satisfies SPF while the other doesmot.

Figure 8 illustrates some instanceslSffor which SPF is not equivalence-robust. Note that all
them consists of a multiparty interaction involving more than two processes.

z

(a) (b) ()

FIG. 8. Instances of interaction systems for which SPF is not equivalence-robust.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 53

Lemuma 4.10. ForevenyiS = (P, I, M"), SIF(IS) € SPF (IS). In particular, SIF~(IS) C SPF (IS)

Proof. Since SIF[S) C SPF(S), SIF (IS) € SPF (IS). To see the proper subset condition, rece
the following run in Lemma 4.2,

m= (P, U---UP,)(Y1Py, -+ YaPy,)".

which is in SPFS) — SIF(S). Sonr ¢ SIF (IS) either. Since every process in executes some
interactiony; infinitely often,eqx) € SPF (IS). Sor € SPF (IS) — SIF (IS). =

Figure 4 also illustrates some instanceg®for which SIF (IS) C SPF (IS).

Lemma 4.11. There exists a systeffi = (P, I, M"), whereVx,y e |, x £y = P, Py, such that

SIFCS) ¢ SPF(IS) and SPF (IS) SIF(S).

Proof. LetIS be the interaction system withandl shown in Fig. 9. Consider the run

1 = Ps(P1PaX13P2 PaX2sa)”.

Thenm; € SIF(S). However,z; ¢ SPF (IS) because its equivalent run

72 = Ps(P1P3 P2 PaX13X24)”

does not satisfy SPF due to the fact thais now ready for an enabled interaction (ixey4s) infinitely
often but it never executes any interaction. So B¢ SPF (IS).
On the other hand, the run

P = (P1P3P2PaX13X24)”

and all of its equivalent runs satisfy SPF, and so they also satisfy 3Riwvever,po ¢ SIF(S) because
X12 is enabled infinitely often but is never executed. So SBF) Z SIF(IS). m

Lemva 4.12. There exists a systeifi = (P, |, M"), whereVx,y e I, x £y = P Py, such that

1. SGH(IS) ¢ WPF(S) andWPF(S) ¢ SGH(IS) and
2. SGH(IS) ¢ WPF(IS) andWPF(IS) ¢ SG(IS).

Proof. LetIS be the interaction system withandl shown in Fig. 10. Consider the two runs
71 = Ps(P1P3X13P2 PaX24Pe PsXes P7 PoX70)”

2 = PsP1P3P2 P4 Ps Ps P7 Po(X13P1 P3X24 P2 PaXes Ps PeX79P7 Pa)”.

FIG. 9. Aninteraction system for which SIE) Z SPF (IS) and SPF (IS) € SIF(S).

54 YUH-JZER JOUNG

FIG. 10. Aninteraction system for which WPEY) ¢ SG(IS) and SG (IS) ¢ WPF(S).

Observe thatr; is singular andr; = m,. Som, € SGH(IS). However,m, ¢ WPF(S) becauseps is
continuously ready for an enabled interaction pgtnever executes any interaction. So"gS) ¢
WPF(S). Moreover,r, does not satisfy WPFeither. So SG(IS) ¢ WPF (IS).

On the other hand, the run

p = Pa(PLP2X12)”

satisfies WPF. Moreover, all of its equivalent runs also satisfy WPF but none of them is singul:
p € WPF (IS) andp ¢ SG'(IS). Hence WPHIS) ¢ SG'(IS), and WPF (IS) Z SG'(IS). m

It can be seen that for Lemma 4.12 to hadldnust contain interactions involving more than tw
processes. (Recall that in the biparty case @8) € WPF (IS) € WPF(S).)

Lemma 4.13. There exists a systeffi = (P, I, M), whereVx,y e I, X #y = P & Py, such that

1. SPF(S) ¢ WPF(IS) andWPF(IS) ¢ SPF{S) and
2. SIF(IS) ¢ WPF~(IS) andWPF(IS) SIF(S).

Proof. The example presented in Lemma 4.12 can be used to establish the lemma; we or
details. =

We now summarize the results in the following theorem. A pictorial representation of the compsa
is given in Fig. 7b. Recall that the stronger-than relatien™is transitive. So two fairness notions ar
incomparable if there is no path connecting them.

THeorem 4.14. LetIS = (P, I, M") be a given multiparty interaction system such thaty < I,
X # Yy = Px € Py. Then the following relations hold

1. SIF(IS) C SIF(S) € SPF{S) € SG'(IS) = SIFT(IS) = SPF (IS) € WIF(IS) = WPF"(IS)

2. SIF (IS) € SPF (IS) € WPF (IS) € WPF(S) € WIF(IS)

3. SPF (IS) C SPF(S) € WPF(S).
In particular, there exists afiS for which all the above stronger-than relatiohs” become strict. On
the other handthere exists somiS such that the following relations hald

1. SIF(S) is incomparable wittfSPF (IS)

2. SG(IS) is incomparable withWPF(S)

3. SIF(S), SPF(S), andSG' (IS) are incomparable withWPF (IS).

Note that although WPF is incomparable with'S@ is implementable for all interaction system
(see Part I). This, however, does not contradict Theorem 3.4 (thatisStRe strongest implementable

and equivalence-robust fairness notion) because WPF is not equivalence-robust. In fact, as w
see in Section 5, there exists an implementable (but not equivalence-robust) fairness notion th:

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 55

weaker than SG, but there is no strongest implementable fairness notion for virtually all interac
systems.

Moreover, WPF is also incomparable with SGSince WPF is equivalence-robust, by Theorem 3.4
WPF ™ mustnot be strongly feasible. Indeed, WRfoes exclude some singular runs from some systel
see Lemma 4.12. Also noteworthy is that SPF becomes unimplementable in the multiparty ca
Lemma 2.6, SPFis unimplementable too.

ExampLe. Consider the Dining Philosophers problem. We can define a multiparty interac
eatingsessioninvolving theith philosopher and its two neighboring chopsticks, whereiO< 4.

The philosopher processes and the chopstick processes execute the following program:
philosopher :: * [hungry, eating session— thinking]

chopstick:: * [eatingsession—> cleanchopstick
O eating session 1 megs —> cleanchopstick]

The interactions have the structure shown in Fig. 11, wherandc; represeniphilosophey and
chopstick, respectively. The following is a possible scenario of the processes:

all processes are ready, and then the repeat of the following forever
philosopheg, chopstick, chopstick establisheating sessiop
philosopheg, chopstick, chopstick ready

philosophey, chopstick, chopstick establisheating session
philosophey, chopstick, chopstick ready

This scenario satisfies WIF, and so is possible if the underlying implementation of the multij
interactions guarantees only WIF. It can also be seen that the scenario does not satisf{piGeF
by our results SPFis implementable, we know that such a scenario can be avoided by an approj
implementation.

On the other hand, since SPF the strongest implementable and equivalence-robust fairness no
the following scenario which satisfies SPBut not SPF cannot be excluded by any implementati
ensuring equivalence-robust properties:

all processes are ready, and then the repeat of the following forever
philosopheg, chopstick, chopstick establisheating sessiop
philosopheg, chopstick, chopstick ready

philosophey, chopstick, chopstick establisheating session
philosophey, chopstick, chopstick ready

philosopheg, chopstick, chopstick establisheating sessiop
philosopheg, chopstick, chopstick ready

Itis interesting to note that in this scenario two non-neighboring philosopherpliimsophes and
philosophey) are blocked from enteringating sessionSo for this problem no implementation of the
multiparty interactions can guarantee that at most one philosopher is starving.

FIG. 11. The interaction structure of the Dining Philosophers problem.

56 YUH-JZER JOUNG

4.3. When Interactions May Contain Interactions

If | contains two interactions, y such thatP, € Py, then in the biparty case the following relatiol
(Lemma 4.4) no longer holds:

SG'(IS) = SIFt(IS) = SPF (IS).
Instead, the three fairness notions have the new relationship
SGH(IS) C SIFF(IS) C SPF (IS).

To see this, observe first that in general'§I5) C SIFT(IS) € SPF (IS) because every singular rur
satisfies SIF and SPF as well. For the proper subset relation, the run

7 =Py (YRXP)”
belongs to SIE(IS) — SGH(IS) (assuming no interaction is containedxy) while

p=Py-(YR)”

belongs to SPHIS) — SIFH(IS).

Moreover, in the above examptealso belongs to SIES) — SG'(IS) and SIF (IS) — SG'(IS). So
SIF and SIF are no stronger than SGBut recall that when interactions cannot contain interactio
SIF and SIF are stronger than SG Hence, in general, SGis incomparable with SIF and SIF
Figure 12a summarizes the relationship of the fairness notions for biparty interactions.

Note that SG becomes unimplementable. In fact, S& not even strongly feasible. (Recall b
Lemmas 3.1 and 2.3 that if SGvere strongly feasible, then SGvould be the strongest implementabl
and equivalence-robust fairness notion, thus contradicting Theorem 3.8.) This is because if a -
contains two interactionsandy such thatP, < Py, then every time whegis enabledx is enabled too

(assuming a program of typé”). So all nonblocking schedulers for the system will inevitably gener

WIF~ = WIF' = WIF = WPF™'

WPF
WPF- WIF~ = WIF = WIF = WPF*
SPF~ = SPF = SPF+ SPF+ WPF
SIF* SIF* SPF WPF~
/ SIF SIF SPF-
SG+ SG+ /
SIF- SIF~
a) Biparty Interactions ultiparty Interactions
(a) Biparty I i (b) Multiparty I

FIG.12. The hierarchy of various fairness notions—the general case where interactions may contain interactions. The
notions in boldface are implementable, while the others are not.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 57

some runs which cannot be equivalent to a singular run. Furthermore, althouglhsSke strongest
implementable and equivalence-robust fairness notion shown in Fig. 12a, by Theorem 3.8 we
that there exists another implementable and equivalence-robust fairness notion which is no weak
SIF*.

When interactions are multipartied, the relationship of the fairness notions is shown in Fig.
Recall that in this case SPHS) € SPF{S) € SPF(IS). SG" is incomparable with SPF anc
SPF, but is stronger than SPE The fact that SG is incomparable with SPF and SPEan be
observed by the similar reason behind the incomparability betweenv@@us SIF and SIF The
fact that SG is stronger than SPFis because SGis stronger than SIF, which is stronger than
SPF.

Moreover, SIF is incomparable with SPF and SPHo see this, lex, y € | be two interactions such
that P, C Py. Then run @, y)* belongs to SPHES) — SIFF(IS) and SPF(IS) — SIF"(IS). So SPF and
SPF are no stronger than StEHowever, we have seen instances that SPF and @RFstronger than
SIF" when interactions cannot contain interactions. So, in general, SPF anda&®comparable
with SIF'.

Finally, although SG in general is classified as unimplementable when some interactiontains
an interactiorx, from Theorems 3.8 and 3.10 we know that the unimplementability holds only in
case where all other interactions containediif any, containx. Moreover, in the cases where G
is implementable, although SGs identical to SIF (and SPF) when interactions can not contair
interactions (see Lemma 4.4), S@ay be strictly stronger than StEvhen interactions can contair
interactions. For example, 185 = (P = {p1, p2}, | = {X1, X2, X12}, M") be a system shown in Fig. 3a
where Py, = {p1}, Py, = {p2}, and Py, = {p1, p2}. Then the run Pix1 p2Xx2 p1 P2x12)® belongs to
SIFF(IS) — SGH(IS).

4.4. Further Remarks

In the comparison of SGand existing fairness notions, we have divided the results into two catego
one for systems that support only biparty interactions and the other for systems that allow mult
interactions of arbitrary arity. This classification is based on the fact that some popular languages/r
(e.g., CSP, Ada, and CCS) facilitate only biparty interactions. For each category, we have fi
divided the results into two subcategories, depending on whether interactions may contain intera
We have seen examples which do not need interactions to contain an interaction (see Sectic
and 4.2). As shown in Theorem 3.4 and Lemma 4.4, disallowing interactions to contain intera
ensures a strongest implementable and equivalent-robust fairness notion for the system, namel
which is identical to the maximal completions of SIF and SPF (regardless of biparty or multiy
interactions). Therefore, all other equivalent-robust fairness notions are either weaker than86&
unimplementable.

On some applications, however, one may find it useful to allow interactions to contain interac
For example, a procegs may choose to establish an interactiomvith g andr, or an interactiory
with only g. In the biparty case, a procegsmay choose to interact with from a set of different
interactions so as to perform different actions. If one will, one could eliminate the need for conta
interactions within an interaction by defining only one interaction for the largest set of particip
and let different subsets of participants establish different actions within the interaction. In the ¢
biparty example, we may define a single interactiongandq. Once the interaction is establishec
the two processes may negotiate with each other to decide which action to perform. Similarly,
multiparty example we may replaceandy with an interactionw involving p, q, andr. However,

r would become a “dummy” participant if onlp andq interact withinw. Sincer must always be
involved inw, the new setting is more restrictive pandq may interact regardless pfin the original
setting.

Perhaps the need for containing interactions within an interaction becomes more evident whe
wishes to allow a choice between local actions and interactions. For example, consider a varian
Producers—Consumers problem presented in Section 4.1, where each datum computed by a
can be overwritten by a more up-to-date one if the target consumer is not yet ready for the data,
old data can be “recycled” by a consumer if the producer cannot generate new data in time. Ass
only one producer and one consumer, then the following is a CSP program for the problem:

58 YUH-JZER JOUNG

producer:: computédata);
*[consumet data—> skip
O computédata) — skip]
consumer: * [producer? data—> skip
O digestdata) —> skip]

In this example each process, when ready for interaction with the other process, has a choice to
a local action. As noted in the definition of our abstract model (see Section 2.1 of Part 1), such &
action can be modeled by an interaction involving solely the process. Therefore, the system |
interaction structure shown in Fig. 3a. Note that although some interaction contain interactior
Theorem 3.10, SGis still the strongest equivalent-robust fairness notion that can be implemente
the system. However, observe that the run

(producer compute consumer digést

is a possible computation of the system (wheseputeanddigestdenote the local interactions by the
processes) where the two processes repeatedly execute their local interactions forever. Since tt
singular, we see that no implementable equivalent-robust fairness notion can be enforced to ens
the two processes will ever establish an interaction. It has been argued that nonuniform choice b
local actions and interactions should be avoided to prestettering—repetitions of a configuration in
a computation [1]. From the above example we see that any attempt to impose an implemental
equivalent-robust fairness notion to prevent stuttering is doomed to fail.

Finally, although in this section we have only considered S&IF, SPF, WPF, and WIF, and thei
completions, based on our studies other fairness notions can be included in the fairness hierar
well. For example, U-fairness is incomparable with Sif the hierarchies of Fig. 12. The fact tha
SIF(IS) ¢ U(IS) for somelS can be seen by the fact that SIF and U-fairness are incomparable
that U-fairness is equivalent-robust [4]. The other direction can be illustrated by a system cons
two processeg; and p, and two interactionx andy, whereP, = Py = {p1, p2}, such that the run
(p1p2 X pr.{X} p2.{x} x)® belongs to U[S) — SIF'(IS). Moreover, it can also be shown that SIE
stronger than U-fairness, as any run that violates U-fairness must be equivalent to a run violatin

5. THE IMPOSSIBILITY OF A STRONGEST IMPLEMENTABLE FAIRNESS NOTION

We now determine the possibility/impossibility of a strongest implementable (but not neces:
equivalence-robust) fairness notion for various interaction systems. For this, it is useful to rec:
fairness implementability criterion and the definition of indistinguishableness relation introduct
Part I. We have shown in Theorem 3.4 that if no interaction contains an interaction, tHeis 8@
strongest fairness notion fd@f that is both implementable and equivalence-robust. However, as
shall see shortly, SGis notthe strongest implementable fairness notiorifunlesd consists of only
one interaction. Note that when interactions may contain interactions, i@@eneral, is not strongly
feasible and so is not implementable (see Section 4.3).

Since stronger fairness notions provide more liveness properties, one would wish to define
ness notion as strong as possible while ensuring the implementability of the notion. Recall that
nonblocking schedule$ for IS must be able to generate all runs in $§(According to the fair-
ness implementability criterion and Lemma 2.3, for every implementable fairness fibtod every
€ SG(S), C(IS) must containindistinci(rr). Thus, a potential candidate for the strongest impl
mentable fairness notion is SIBIDISTINCT(IS), defined by

SGINDISTINCT(IS) = | J indistinc(x).
7eSG(S)

However, it turns out that SGNDISTINCT(IS) is not even strongly feasible. This holds even if inte
actions are bipartied and cannot contain interactions. In fact, as shown in the following two thec
for everyIsS the strongest implementable fairness notion does not exist, UiSlesmsists of only one
interaction.

EQUIVALENCE-COMPLETIONS AND HIERARCHIES 59

THEOREM5.1. LetIS = (P, I, M¥) and assumd| > 1. Then for every implementable fairness notic
C, there exists another implementable fairness nofibsuch thatC(IS) ¢ C'(IS).

Proof. Letx, y be any two distinct interactions inLet R, and Rz be defined by

R« = {7 € run(S) | = begins with the formRy, — Px) - Py X}
Rg = {m € run(IS) | = begins with the forml, U P, — P,,) - P, w for somew # x andP,,
P U Py}

Clearly, bothR, and Ry are not empty.

Assume tha€ is an implementable fairness notion S By the fairness implementability criterion,
there exists a nonblocking schedu&such that for every run generated by, indistinc{(rr) < C(IS).
We argue that that eith€(IS) N Ry # @ or C(IS) N Ry # . To see this, consider an adversary whic
begins by letting the processesiaU Py be ready. I1Sin response schedulzgor execution, then some
runinindistincyr (S, A)) begins with the form, — Py) - Pxx, and sandistinc(r (S, A))NRy # @. Since
indistinci(r (S, A)) € C(IS), C(IS) N R« # @. Similarly, if Sinstead schedules a different interactior
thenC(IS) N Rx # 9.

Suppose thaf(IS) intersects bothR, and Rxz. Consider the following schedul&:

S; behaves like the nonblocking scheduler for SIF presented in Part I. In particuas é@nabled initially, therx is
chosen for execution first.

We claim that for every rum generated byg,, indistinc(r) N Ry = @. This is because if the first
interaction executed im is x, thenindistinci(r) N Ry = @ (because all runs imdistinc{(z) havex
as their first interaction). If the first interactionisfor somew # x andP,, € Px U Py, thenx must
not be enabled before the instanceuofs to be executed, for otherwisk would instead choose as
the first interaction. S&; — P, # @. Sox begins withQ - w for someQ such that some proces:s
(say p) in P, — P, does not belong t&. Then no run inindistinct(wr) can begin with the form
(PxU Py — P,) - P,w because the relation of indistinguishableness does not @loveady transition
to be moved ahead of any ready transitiofdnSoindistinc{rz) N Ry = 4.

Define fairness notiofty to be

Ck(IS) = { ¥ € indistinc{(r) | ® can be generated ;}.

Then,Cy is also implementable, arid (IS) N Ry = @. SOC(IS) € Ck(IS).

Note that sinceCx does not intersedgry, if C(IS) intersects onlyRg, then clearlyC(IS) £ Ck(IS).
Finally, if C(LS) intersects onlyRy, then since the role of andw is essentially symmetric, we can us
a similar argument to show that there exists another implementable fairness @gfish such that
Cx(IS) N Ry = @. SOC(IS) € CIS). m

THeoREM5.2. LetIS = (P, I, M"). If || = 1, then there is only one implementable fairness nqtic
i.e., run{S) which equalsSG* (IS).

Proof. Straightforward. m

Note that Theorem 5.1 does not depend on whether interactions are bipartied or multipartie
does it depend on whether interactions may contain interactions. It holds as larangsins more than
one interaction. Therefore, for evel§ for which SG' is implementable, there exists an implementak
fairness notion which is no weaker than SG

6. CONCLUSIONS

We have determined the system structure for which the strongest implementable completio
given fairness notion exists. Moreover, for systems in which interactions do not contain interac
we have obtained a fairness notion S@hich is the strongest implementable and equivalence-rok
fairness notion one can get for these systems. We have also presented a comprehensive comp:

60 YUH-JZER JOUNG

SG' with several commonly used fairness notions and their minimal and maximal completions
results show that SGis identical to the maximal completions of SPF and SIF and is stronger t
WIF. Since WIF is generally accepted as the only fairness criterion by many multiparty intera
implementations, our results indicate that we could exclude more “unfair” computations from f
implementations (see the examples in Sections 4.1 and 4.2). Moreover, when interactions are C
bipartied, S@ is also equivalent to SPF. Therefore, SPF is the strongest equivalence-robust pr
one can observe from a CSP-like program executing in any asynchronous environment. Finally, w
shown that in the absence of equivalence-robustness, it is in general impossible to define a st
implementable fairness notion, unless there is only one interaction in the system. This implies |
of leeway in the design of fairness notions suitable for various applications.

In studying the relationships between various fairness notions and their minimal and maximal
pletions, we often assumed a program of tyypewhen we need to distinguish two fairness notion
whereM" allows a process, whenever it is ready for interaction, to be readyflfimteractions of which
it is a participant. The choice dfl” also allows us to observe the structure of interactions that n
distinguish two fairness notions. Based on this analysis, one may also analyze how the relationst
affected by the semantics bf for any givenIS = (P, I, M), whereM is not limited to typeM". In this
case, the relationships are determined not only by the structdrieudfalso by the condition whethel
the semantics df1 allows the interactions to be enabled as required so as to distinguish two fail
notions.

The notion ofliveness enhancemeist introduced in [1] as another fairness criterion. It requir
a fairness notion to allow some system to gain some liveness property which the system wol
have without the additional fairness requirement. Program termination is typically used to evalua
criterion. By the example presented after Theorem 3.4, we see tHais2(Bso liveness enhancing.

Although we have not explicitly presented any scheduling algorithm to implemetit %6 can
easily obtain one by using the method proposed in Part I. The method transforms a nonbilc
scheduler to a coordinator process running concurrently with the existing processes of the syst
communicating with the existing processes, the coordinator determines, for each ready proces:
and which interaction to execute. Note that the scheduling is essentially centralized as all intere
are established by the coordinator. It is therefore worth explorifidla distributedsolution for the
problem, meaning that nonconflicting interactions can be established by different coordinators
would then indicate that SGis the strongest equivalence-robust fairness notion that can be distribus
implemented (provided that no interaction contains an interaction).

ACKNOWLEDGMENTS

The author thanks Reino Kurki-Suonio for providing references on completions and some initial thoughts on the paper
anonymous referees for their thorough reading of the manuscript and valuable comments and suggestions.

REFERENCES

1. Apt, K. R., Francez, N., and Katz, S. (1988), Appraising fairness in languages for distributed prograbistniy. Comput.
2(4), 226-241.

2. Back, R. J. R., and Kurki-Suonio, R. (1988), Serializability in distributed systems with handshakiRgyceedings of the
15th International Colloquium on Automata, Languages and Programming, Tampere, Finland,” Lecture Notes in Col
Science, Vol. 317, pp. 52—-66, Springer-Verlag, Berlin.

3. Francez, N., Back, R. J. R., and Kurki-Suonio, R. (1992), On equivalence-completions of fairness assuroptiahfspects
Comput4, 582-591.

4. Francez, N., and Forman, I. R. (1996). “Interacting Processes: A Multiparty Approach to Coordinated Distributed Prec
ming,” Addison—Wesley, Reading, MA.

5. Joung, Y.-J. (2001), On fairness notions in distributed systems. I. A characterization of implementafality, Comput.
166, 35-60.

6. Reisig, W. (1984), Partial order semantics vs. interleaving semantics for CSP-like languages and its impact onlrfain
“Lecture Notes in Computer Science” (J. Paredaens, Ed.), Vol. 172, Springer-Verlag, Berlin.

	INTRODUCTION
	1. EQUIVALENCE-ROBUSTNESS AND COMPLETIONS
	FIG. 1.
	FIG. 2.

	2. PRELIMINARIES
	3. STRONG FEASIBILITY OF COMPLETIONS
	FIG. 3.

	4. COMPARISONS OF SG+ WITH OTHER FAIRNESS NOTIONS
	TABLE I
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	5. THE IMPOSSIBILITY OF A STRONGEST IMPLEMENTABLE FAIRNESS NOTION
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

