FREARATFELRELEHTLIE S 552
BLhMBRRFEE2 Ay
SEREERICT B
El T~ T - |
P F % 5 1 NSC 95-2416-H-002-053-
HoFHRF 9HE0BT0IpIE0T 3P
o E B MR NET RS LFEFL Y
FEALE A AR
3 W BU O T Tﬁb_lfr,g:rﬂ 4—’?’\1191’1—“7:3—%]‘_*‘
LSy 4 - Emm s 2 EEL CRER P
RS FEE
B SR AP ETORAN

B 96087 19 p

TRRRRPE LR A S AP L

(& &40)
B MRS 22Ty
A study on mining inter-transaction association rules

LI R T O #ea %

% st 1 NSC 95-2416-H-002-053

fEHE: 9% & 8 ¢ 1 px 96 & 7 1 31 P
PEAEA SR

e
PEFEAORIHE IR CERL CREL CHP AR R

YRR P OFE R MR Oxgwe

A AR S T O RB R
g

EENC RGN 60 =5 U -

LA xR R LAY @2 -
m@W%éfg’wﬁﬁ’ﬂﬁﬁxﬁvg—g

[IR% & FFP TR HEL i

RIS R A AR LR A RAAEHNE AARTEIYEE IF A2
RV ""lgfr"" B4

D*kiﬂ‘ﬁwﬁﬁﬁﬁﬁ (- #(J- #2472 B 434

RETE R FTRAERE TP
Poox 3 R 4+37 &# ~ 82 -4 op

1. Introduction

Association rule mining is an important problem in the data mining field [1, 2, 4, 5, 8, 10, 11, 12, 13, 15, 16,
20, 22, 25, 26]. Traditional association analysis is intra-transactional because it focuses on association
relationships among itemsets within a transaction. For example, an intra-transaction association rule might be:
“If the stock prices of Microsoft and IBM go up, the price of Intel is likely to go up on the same day.” However,
intra-transactional approaches cannot capture a rule like: “If the stock prices of Microsoft and IBM go up, the
price of Intel is likely to go up two days later.” Inter-transaction association rule mining [6, 7, 14, 17, 18, 23, 24]
extends the association rules to describe association relationships among itemsets across several transactions.

Many algorithms for mining inter-transaction association rules have been proposed. Lu et al. [17] and Feng
et al. [6] applied inter-transaction association rule mining algorithms to the prediction of trends in
meteorological and stock market data. Lu et al. [17, 18] proposed the EH-Apriori algorithm, which uses the
Apriori algorithm to discover frequent inter-transaction itemsets. To enhance their algorithm’s efficiency, the
authors used a hashing technique to reduce the number of candidate itemsets of length two. Feng et al. [7] used
templates to reduce the number of rules. More recently, Tung et al. [23, 24] developed an algorithm, called FITI
(First Intra Then Inter), which discovers frequent intra-transaction itemsets and uses them to generate frequent
inter-transaction itemsets.

All the algorithms for mining inter-transaction association rules developed thus far have been based on
Apriori-like breadth-first search (BFS) approaches that search for frequent itemsets level by level. At each level,
a database must be scanned once to determine the support for each candidate itemset. It has been shown that
Apriori-like approaches [19, 22] perform well in finding frequent intra-transaction itemsets when the itemsets
are short. However, when mining long frequent itemsets, or using very small support thresholds, the
performance of such algorithms often deteriorates dramatically. The reason is that a frequent itemset of length k
implies the presence of 2“-2 additional frequent sub itemsets, each of which must be examined. Moreover, since
Apriori-like approaches may generate a large number of candidate patterns at each level, they are prone to
memory shortage during the mining process. We observe that Apriori-like methods for finding frequent
inter-transaction itemsets have the same drawbacks as those for finding frequent intra-transaction itemsets.

Therefore, in this paper, we propose an efficient method for mining a complete set of frequent
inter-transaction itemsets (patterns). The method consists of two phases. First, we find all frequent items. For
each frequent item found, we construct a dat-list that records the item information required for finding the
frequent inter-transaction patterns. Then, we devise a data structure, called an ITP-tree, to store the discovered
frequent inter-transaction patterns. In the second phase, we propose an algorithm, called ITP-miner, to
efficiently find all frequent inter-transaction patterns in a depth-first search manner. By using the ITP-tree and
dat-lists to mine the frequent inter-transaction patterns, the ITP-Miner algorithm requires only one database
scan and can localize joining, pruning, and support counting to a small number of dat-lists. Therefore, it is more
efficient than the FITI algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe the problem of mining
frequent inter-transaction patterns. Section 3 introduces our proposed algorithm, ITP-Miner, for mining
frequent inter-transaction patterns. We explain the basic concept of the algorithm and give an example to
illustrate how it works. Section 4 describes the performance evaluation. Finally, we present the conclusions in
Section 5.

2. Problem Description
In this section, we introduce the notations and describe the problem of mining frequent inter-transaction
patterns.
Definition 1. Let | be a set of data items, and N be a set of non-negative integers called domain attributes. A
transaction database consists of a set of transactions, where a transaction is in the form of <t, s>, teN and scl; t
is called a dimensional attribute (or dat), and s is called an itemset.
Table 1. A transaction database.

dat itemset
1 {a,b}
2 {a,c,d}
3 {a}
4 {a,b,c,d}
5 {a,b,d}
6 {a,d}

The dimensional attribute describes the properties associated with the data items, such as time and location.
As it is an ordinal, it can be divided into intervals of equal length. For example, time can be divided into days,
weeks, etc. These intervals can be represented by non-negative integers 0, 1, 2, and so on. An itemset is denoted
by {us, Uy, ..., U}, where u; is an item, 1 <i <Kk; and items in an itemset are listed in alphabetical order, i.e., we
write {a,c,d} instead of {c,a,d}. Table 1 shows a transaction database containing 6 transactions.
Definition 2. An itemset s={u;, U, ..., Ux} at the dimensional attribute t is called an extended itemset and
denoted by A s={us(t), ux(t), ..., u(t)}.

Before mining inter-transaction association rules, we need to find the frequent inter-transaction itemsets

2

that span several transactions. Since an inter-transaction itemset can span many intervals, discovering all such
itemsets would require a lot of resources, but a user may only be interested in rules that span a certain number
of intervals. Therefore, to avoid wasting resources by mining unwanted rules, we introduce a parameter called
maxspan. When mining for inter-transaction association rules, we only mine rules whose span is equal to or less
than the maxspan intervals.

Definition 3. Let Ayao, Ay, ..., A on be extended itemsets, where to< ;< ...<t,, and t,-tois not greater
than a user-specified ‘maximuim span threshold maxspan. Then, let o=Noop U Atl o1 U ... U A . om, Where
U is an operator that combines multiple extended itemsets into single unit, « is called an intér-transaction
itemset (or a pattern) and tpis called the reference point. An item in the inter-transaction itemset is called an
extended item. Since « takes tpas the reference point, we say that « starts from t,. Note that the reference point
of an inter-transaction itemset is defined as the smallest dimensional attribute of the extended itemsets in the
inter-transaction itemset.

For example, let us consider the database as shown in Table 1, where {a(1), b(1)} is the extended itemset
for the first transaction. Let maxspan = 1. The first two transactions form an inter-transaction itemset, {a(0),
b(0), a(1), c(1), d(1)}, where we take the dimensional attribute of the first transaction as the reference point.
Definition 4. Let u(i) and v(j) be two extended items. If (i = jand u=v), we can say that u(i) = v(j). Also, if (i =
jand u<v) or (i <j), we say that u(i) < v(j).

Definition 5. Let a = {Uo(0), Us(i1), Ua(iz), ..., Un(in)} and B = {vo(0), Vi(j1), V2(j2), .-, Va(jn)} be two patterns,
where n>1. We say that a = £if ui(i;)= vi(ji) for 0<i<n, where ip=]p=0. We also say that & < S, 1T 1) up(0) < vp(0);
or 2) there exists k (>0) such that u;(i;) = vi(ji) for 0<|<k<n and Ug+1(ik+1) < Vi1 (k)

Definition 6. Let o = {ug(0), us(iz), Uz(i2), ..., Un(in)} and £ ={Vvo(0), vi(j1), V2(j2), ---, Vm(Jm)} be two patterns,
where 1<n<m. « is a subset of 3 if we find n extended items Via(jt), Vie(ik2)s ..., Vin(jkn) in B such that
Uo(0)=vo(0), Us(i1)=Vi1(ji1), U2(i2)=Via(j2), ..., and un(in)=Vin(jkn). We can also say that S contains c.

For example, both {b(0), a(1), c(3)} and {a(0), d(1)} are subsets of {a(0), b(0), a(1), d(1), b(3), c(3)}.
Definition 7. In a transaction database D, the number of transactions is denoted by |D|. Let « be a pattern, and
T, be all inter-transaction itemsets in D, where every inter-transaction itemset in T, contains «. The count of «,
count(ea), is denoted by |T,| and the support of «, sup(«), is denoted by count(«)/|D|. If sup(«) is not less than
the user-specified minimum support threshold minsup, « is called a frequent inter-transaction pattern (or
frequent pattern for short).

Definition 8. The number of extended items in a pattern is called the length of the pattern. A pattern of length k
is called a k-pattern.

For example, the length of {a(0), a(1), d(1), b(3), c(3)} is equal to 5.

Definition 9. An inter-transaction association rule is written in the form of o — £, where both « and U g are
frequent patterns, o N S =¢, conf(a — p) is not less than the user-specified minimum confidence, and the confidence
of the rule is defined as sup(a U p)/sup(«).

Suppose that minsup=50% and maxspan=1. Let us consider the database D shown in Table 1, where the
database contains six transactions (i.e., |D|=6). To compute the support of {a(0), b(0), d(1)}, we first form an
inter-transaction itemset {a(0), b(0), a(1), c(1), d(1)} by using the first two transactions and find that it contains
{a(0), b(0), d(2)}. Thus, count({a(0), b(0), d(1)})=1. Next, we form an inter-transaction itemset {a(0), b(0),
c(0), d(0), a(1), b(1), d(2)} by using the fourth and fifth transactions, and find that it contains {a(0), b(0), d(1)}.
Thus, the count of {a(0), b(0), d(1)} is increased by one. Finally, we form an inter-transaction itemset {a(0),
b(0), d(0), a(1), d(1)} by using the last two transactions and find that it contains {a(0), b(0), d(1)}. Thus, the
count of {a(0), b(0), d(1)} is increased by one. That is, count({a(0), b(0), d(1)})=3, and sup({a(0), b(0),
d(1)})=3/6=0.5. Consequently, {a(0), b(0), d(1)} is a frequent pattern. Similarly, we find that sup({a(0), b(0)})=
0.5. That is, {a(0), b(0)} is also a frequent pattern. Therefore, we have an inter-transaction association rule
{a(0), b(0)}—{d(1)} with the confidence = 0.5/0.5 = 100%.

The objective of mining frequent inter-transaction patterns is to find a complete set of frequent patterns in a
transaction database with respect to user-specified minsup and maxspan thresholds.

3. The ITP-Miner Algorithm

We now introduce the ITP-Miner algorithm. In Section 3.1 we describe a data structure, called a dat-list,
and a search tree, called an ITP-tree. We then explain the main concept of our proposed algorithm in Section
3.2, and describe it in detail in Section 3.3. Finally, we give an example to demonstrate how the algorithm
works in Section 3.4.

3.1 The dat-list and ITP-tree

We have devised a data structure, called the dimensional attribute list (dat-list), to store the dimensional
attributes of a frequent pattern during the mining process. Let a<ty,t,,...,t,> be a dat-list, where « is a pattern
and <ty,by,...,t;> is a list of dats in which the inter-transaction itemset starting from t; contains «, 1<i<n. For
example, {a(0), d(1)}<1,3,4,5> is a dat-list containing 4 dats, 1, 3, 4, and 5; i.e., the inter-transaction itemsets
starting from the first, third, fourth, and fifth transactions in the database shown in Table 1 contain the pattern
{a(0), d(1)}. Table 2 shows all dat-lists of the frequent patterns found in the database shown in Table 1, where
minsup = 50% and maxspan = 1. Note that the count of a pattern is equal to the number of dats contained in its
dat-list. For example, the support counts of {a(0), d(1)}<1,3,4,5> and {a(0), b(0), a(1), d(1)}<1,4,5>are 4 and
3, respectively.

3

Next, we introduce a data structure called an ITP-tree, which stores the dat-lists generated during the
mining process.
Definition 10. An ITP-tree is a search tree denoted by T. A node in T represents a dat-list, a<ty,t5,...,t>, where
n>1, «is a frequent pattern, and the extended items in « are listed in increasing order. The parent of node
o<ty,b,...t,> is the dat-list g<t’1,t’;,...,t'n>, where m>n, and gis the pattern obtained by removing the last
extended item from «. The root of T is a null pattern, i.e., {}. Siblings with the same parent are sorted in
increasing order.
Table 2. The dat-lists.
Length Dat-list
1 {a(0)}<1,2,3,4,5,6>, {b(0)}<1,4,5>, {d(0)}<2,4,5,6>
2 |{a(0),b(0)}<1,4,5>, {a(0),d(0)}<2,4,5,6>, {a(0),a(1)}<1,2,3,4,5>,
{a(0),d(1)}<1,3,4,5>, {b(0),a(1)}<1,4,5>, {b(0),d(1)}<1,4,5>,
{d(0),a(1)}<2,4,5>
3 |{a(0),b(0),a(1)}<1,4,5>, {a(0),b(0),d(1)}<1,4,5>, {a(0),d(0),a(1)}<2,4,5>,
a(0),a(1),d(1)}¥<1,3,4,5>, {b(0),a(1),d(1)}<1,4,5>
4 [a(0),b(0),a(1),d(1)}<1,4,5>
Consider the complete ITP-tree shown in Fig. 1, where the database contains only two items, a and b; the
maxspan is equal to 1; and the list of dats associated with each dat-list is omitted. Note that all possible
inter-transaction patterns of the ITP-tree in Fig. 1 can be enumerated in a depth-first search manner.

{ Length-0
{a(O)}/ \{b?O)} Length-1

/
{a(O),bm))l,am),b(l)} {b(O).a(l)}EzJ),b(l)} Length-2
{a(0),b(O),Aa@O),&b(O),b(l)}{a(O),a(l),b(l)} {b(0).a(1).b(1)} Length-3
{a(O),b(lO),a(l),b(l)} Length-4

Fig. 1. An ITP-tree.

3.2 Main concept

First, we consider the generation of a candidate 2-pattern by joining two frequent 1-patterns.
Definition 11. If both aand Bare frequent 1-patterns, « is joinable to 4.

Let t; and t, be the dats in the dat-lists of a={u(0)} and /={v(0)}, respectively. If (u <vand 0 < t-t; <
maxspan) or (u>vand 0 < t-t; < maxspan), then: 1) we generate a candidate 2-pattern {u(0),v(t-t,)} if it has not
been generated already; 2) we add t, to the candidate's dat-list; and 3) we increase the count of {u(0),v(t-t,)} by one.
For each candidate 2-pattern generated, we check that its support is not less than the minsup. If this is the case,
it is a frequent 2-pattern and we store its dat-list in the ITP-tree. Thus, for a frequent 2-pattern {u(0),v(w)}, 0 <
w < maxspan, we store its dat-list as a child of «’s dat-list in the ITP-tree.

Fig. 2 illustrates how we find a frequent 2-pattern by joining the dat-lists of two frequent 1-patterns
{a(0)}<1,2,3,4,5,6> and {b(0)}<2,4,5,6>, where minsup=50% and maxspan=1. Here, we find two frequent
2-patterns, {a(0),b(0)} and {a(0),b(1)}. In Fig 2(a), the dats used to generate pattern {a(0),b(0)} are connected
by black arrows, while the dats used to generate pattern {a(0),b(1)} are connected by dashed arrows. Fig. 2(b)
shows the ITP-tree formed by the dat-lists of the patterns found. Note that there are six dats in
{a(0)}<1,2,3,4,5,6>; however, there are only four in {a(0),b(0)}<2,4,5,6> and {a(0),b(1)}<1,3,4,5>.

O

fO)<t 2, 3 4 5 6 /
l \ \ l - {a(0)}<1,2,3,4,5,6>
{b(O)}< 2, , 5, 6> l\‘

(a) Dat-lists {a(O),b(0)}<2,4,&),§5l>TP_t§g(gO),b(1)}<1,3,4,5>

Fig. 2. Generating 2-patterns by joining two 1-patterns.
Definition 12. Let a = {uo(0), ui(i1), ..., Uka(ik1)} and g = {vo(0), va(j1), ..., Vk1(jk1)} be two frequent
k-patterns, k > 1. « is joinable to g if the first k-1 extended items of « are equal to those of g, and the last
extended item of « is less than that of £. The joined pattern is obtained by appending the last extended item of g
to «; that is, the joined pattern is {ug(0), us(i1), ..., Uk-1(ik-1), Vk-1(jk-1)}-

4

We now consider how to find frequent (k+1)-patterns by joining two joinable k-patterns. Assume there are
two dat-lists of 2-patterns, {a(0), b(0)}<1,4,5> and {a(0), a(1)} <1,2,3,4,5>. Note that the first extended item of
{a(0), b(0)} is equal to that of {a(0), a(1)}. To join both 2-patterns, we match the dats in {a(0), b(0)}<1,4,5>
with the dats in {a(0),a(1)}<1,2,3,4,5>. If a dat in the former is equal to a dat in the latter, the count of the
joined pattern ({a(0),b(0),a(1)}) is increased by one. By matching every dat in {a(0), b(0)}<1,4,5> with its
counterpart in {a(0), a(1)}<1,2,3,4,5>, we find that the count of {a(0),b(0),a(1)} is equal to 3. Thus, it is a
frequent 3-pattern. We store {a(0),b(0),a(1)}<1,4,5> in the ITP-tree as shown in Fig. 3, where <1,4,5> are the
matched dats between <1,4,5> and <1,2,3,4,5>.

{

{a(0)}<1,2,3,4,5,6>

/N

{a(0),b(0)}<1, 4,5> {a(0),b(0)}<1,4,5> {a(0),a(1)}<1,2,3,4,5>

{a(0),a(1)}<1,2,34,5> {a(0),b(0),a(1)}<1,4,5>
Fig. 3. Generating a 3-pattern by joining two frequent 2-patterns.

The ITP-miner algorithm generates the frequent patterns in a depth-first search manner. We use the frequent
patterns obtained at this level (frequent k-pattern) to generate the frequent patterns at the next level (frequent
(k+1)-pattern). To do so, we first define the joinable and extended groups for a frequent k-pattern. A frequent k-pattern,
a, only needs to join the patterns in its joinable group to generate the frequent (k+1)-pattern extended from c.
Generating the frequent (k+1)-pattern in this manner can localize joining, pruning, and support counting to a small
number of dat-lists.

Definition 13. Let « be a frequent k-pattern, where k>1. The joinable group of « is J(a) = {1, @, ..., an},
where « is joinable to «;, which is a frequent k-pattern, 1 <i < n. Also, the extended group of ais E(a) = {f1,
2, ..., Pm}, Where every S is a frequent (k+1)-pattern extended from ¢, 1< j<m. Since £ is extended from ¢, its
dat-list will be a child of ’s dat-list in the ITP-tree.

Lemma 1. Let « be a frequent k-pattern; and S be a frequent (k+1)-pattern that is extended from «, where k>1.
Then, we have: 1) E()={8|6=(«join y), @is frequent, and ycJ(x)}; and 2) J(B)={ 6|6 is greater than S, and &
cE(a)}.

We can use Lemma 1 to generate frequent patterns and store their dat-lists in the ITP-tree, where the frequent
patterns are generated in a depth-first search manner. The generation of frequent patterns consists of two steps. Let « be
a frequent k-pattern. First, « is joined to each yin J(«), after which we can find all the frequent (k+1)-pattern patterns
extended from ¢, referred to as E(a). Next, for each frequent (k+1)-pattern gin E(«), J() is the set containing the
patterns in E(«) that are greater than £. We can therefore join Sto every yin J(f) to find all the frequent (k+2)-patterns
extended from g, referred to as E(f). Let « = fand k=k+1. We perform the second step recursively in a depth-first
search manner until no more frequent patterns can be generated. This is the main concept of our proposed method.

First Step {a(0)}<1,2,3,4,5,6> Length-1
¥ v ~a
a {a(O) b(O)} {a(0), d(O)} {a(O) a(1)} {a(O) d(l)}} J(a) Length-2
2,3,4,5> | <1,3.4,5>
M T~
{a(0). Dy (0)} {2(0) b(0).a(1} {2(0)bO).AM} | ¢ Length-3
<4,53 <1,4,5> <1,4,5>
Second Step l
{a(0).b(0).a(1)} | |{a(0),b(0).d(1)} Length-3
P [<1,4,5>] [<1,4,5>] I g
y
0),b(0),a(1),d(1 Length-4
| Sqposman) gy :

Fig. 4. Generating frequent patterns in an ITP-tree.
5

Let us consider the example shown in Fig 4, where « = {a(0), b(O)} and £ ={a(0),b(0),a(1)}. From the figure, we
know that J(a) = {{a(0).d(0)}, {a(0).a(L)}, {a(0).d(L)}}; E(e) = {{a0).b(0)a()}, {a(0)b(0).dL)}}; B =
{{a(0),b(0),d(1)}}; and E(B) = {{a(0),b(0),a(1),d(1)}}. The figure shows that E(c) can be obtained by joining « with
every pattern in J(«), while E(f) can be obtained by joining g with every pattern in J(5).

3.3 The ITP-Miner algorithm

The ITP-Miner algorithm is comprised of three functions: Join2, DFS, and JoinK. The algorithm and its
functions are shown in Figs. 5, 6, 7, and 8, respectively. The Join2 function is used to find frequent 2-patterns
by joining two frequent 1-patterns, while the JoinK function is used to find frequent (k+1)-pattern by joining
two frequent k-patterns.

Algorithm: ITP-Miner

Input: transaction database D, minimum support minsup, maximum span maxspan.

Output: all frequent inter-transaction patterns FP.

Method:

1 Scan D to find all frequent 1-patterns and their dat-lists. Construct a hash table, H2, and insert the dat-lists
into the ITP-tree T;

2 for each frequent 1-pattern « do

3 Insert « into FP;

4 for each frequent 1-pattern yin J(a) do call Join2(«, y, T, minsup, maxspan, |D|) to get E();

5

6

7

for each frequent 2-pattern f<E(a) do call DFS(g, FP, T, minsup, maxspan, |D|);
end for
Output FP.

Fig. 5. The ITP-Miner algorithm

In Step 1 of Fig.5, the database is scanned to find all frequent 1-patterns and their dat-lists, after which a
hash table, H2, is constructed and the dat-lists are inserted into the ITP-tree, T. In Step 4, two frequent
1-patterns, « and y, are joined to generate frequent 2-patterns and obtain E(«). Note that the joinable group of a
frequent 1-pattern is equal to the set containing all frequent 1-patterns. In Step 5, for each frequent 2-pattern £,
the DFS function is applied recursively in a depth-first search manner to find all frequent inter-transaction
patterns.

When running the ITP-Miner algorithm, we use the following pruning strategies to reduce the search space
and speed up the mining process.

Function: Join2(«, y T, minsup, maxspan, |D|)
Input: two frequent 1-patterns a ={u(0)} and »={v(0)}, the ITP-tree T, minimum support minsup, maximum
span maxspan, and the number of transactions in the database |D|.
Output: the ITP-tree T.
1 if there exists w, 0 <w < maxspan, such that H2[((u * (maxspan+1) + w) * N1 + v) mod Hashsize] > minsup
*|D| then

2 for each dat t,e o’s dat-list do

3 for each dat t,e s dat-list do

4 if (u<vand 0 <t,t, <maxspan) or (u>vand 0 < t-t, < maxspan) then
5 Generate a candidate 2-pattern {u(0),v(t,-t,)} if it has not been generated already;
6 Add t,to its dat-list;

7 end if

8 end for

9 end for

10 for each candidate 2-pattern generated do

11 if it is frequent then

12 Insert its dat-listinto T to be a child of «’s dat-list;

13 end if

14 end for

15 end if;

Fig. 6. The Join2 Function

Function: DFS(S, FP, T, minsup, maxspan, |D|)

Input: a frequent pattern g, all frequent inter-transaction patterns FP, the ITP-tree T, minimum support minsup,
maximum span maxspan, and the number of transactions in the database |D.

Output: the ITP-tree T.

Insert ginto FP;

2 for each pattern y €J(p), call JoinK(g, » T, minsup, maxspan, |D|) to get E(/);

3 for each pattern O<E(/), call DFS(6, FP, T, minsup, maxspan, |D|);

4 Remove £'s dat-list from T;

[EN

Fig. 7. The DFS Function.
(1) Infrequent 2- pattern pruning. In Step 1 of the algorithm (Fig. 5), if we generate n 1-patterns in Step 1,
we will perform n? join operations in Step 4. Since many 2-patterns are infrequent, it is wasteful to perform

6

S0 many operations. To resolve the problem, we use a hashing approach [24] to check if a pair of 1-patterns
can generate a frequent 2-pattern before joining them. In Step 1, therefore, we construct a hash table, H2,
when searching for 1-patterns and dat-lists. Every bucket of H2 aggregates the counts of all length-2
candidates hashed to it. Given a candidate 2-pattern generated by items u’ and v’ with dats t, and t,,
respectively, its hash value g is computed by g=((u” * (maxspan+1) + (t, — t,)) * N1 + v’) mod Hashsize,
where 0<t,-t,.<maxspan, N1 is the number of distinct items in the database, and Hashsize is the size of the
hash table. The count of H2[g] is then incremented by one. In Step 1 of Fig. 6, before joining two
1-patterns, i.e., a={u(0)} and y={v(0)}, we compute all possible hash values for both patterns by using h =
((u* (maxspan+1) + w) * N1 + v) mod Hashsize, where 0 < w < maxspan. If H2[h] is less than minsup*|D|
for each possible hash value, h, we do not need to join « and yto generate a 2-pattern.

(2) Infrequent k-pattern pruning. Before joining two k-patterns when k > 1, we use the hash table H2 to
filter out the join operations. In Step 1 of Fig. 8, before joining two k- patterns B={uo(0),u(iy),...,uk-1(ik- 1)}
and 7 ={vo(0),v1(j1),---,\Vi-1(k-1) }, we know that Ajoining y will yield
{uo(0), ul(rl), U1 (k1) , V- 1(Jk1)} Since {Uk-1(ik-1),Vk-1(jk-1)} is a subset of the joined pattern, it can be
transformed into a 2-pattern, {Ux1(0),Vk-1(jk-1-ik-1)}, by taking ix., as the reference point. Thus, we can
compute its hash value using h = ((ux.1 * (maxspan+1) + (jk-1-ik-1)) * N1 + vi.1) mod Hashsize. If H2[h] is
less than minsup*|D|, we do not need to join fand yto generate a (k+1)-pattern.

(3) Unmatched dat pruning. In the ITP-Miner algorithm, we join two joinable k-patterns to generate frequent
(k+1)-patterns and construct a dat-list for each of the latter. In Step 6 of Fig. 6 and Step 4 of Fig. 8, when
we construct the dat-list for a pattern, we only add the matched dats of both k-patterns to the dat-list of the
newly generated (k+1)-pattern.

Function: JoinK(g, », T, minsup, maxspan, |D|)

Input: two frequent k-patterns £ ={uo(0),u1(i1),...,Uk-1(ik-1)} and y={vo(0),v1(j1),....Vk-1(jk-1)}, the ITP-tree T,

minimum support minsup, maximum span maxspan, and the number of transactions in the database |D|.

Output: the ITP-tree T.

1 if H2[((uk-1 * (maxspan+1) + (jk1 - ik1)) * N1 + vi.1) mod Hashsize] > minsup * |D], then

2 Let = {Uo(O) U1(I1) + Uk- 1(Ik 1) Vk- 1(Jk 1)}

3 for each dat xe f's dat- list do

4 Check if any dat ye /s dat-list such that y = x. If yes, increase &'s count by one and add x to &'s
dat-list;

5 end for

6 if @is frequent then

7 Insert its dat-list into T to be a child of £’s dat-list;

8 end if

9 endif;

Fig. 8. The JoinK Function.

3.4 An example

Let us consider the example as shown in Table 1, where minsup=50% and maxspan=1. The frequent
inter-transaction patterns and their dat-lists generated during the mining processes are shown in Fig. 9. During
the database is scanned, we compute the count for each 1-pattern. The counts of patterns {a(0)}, {b(0)}, {c(0)}, and
{d(0)}, are equal to 6, 3, 2, and 4, respectively. Since the minsup is 50%, a pattern is frequent if its count is not less than
3. Consequently, {a(O)}<1 2,3, 4 ,5,6>, {b(0)}<1,4,5>, and {d(0)}<2,4,5,6> are inserted into the ITP-tree as shown
in Fig. 9. Note that, since we have three frequent 1-patterns: {a(0)}, {b(O)}, and {d(0)}, there are three joinable

groups: J{a(0)p={{a(0)}.{b(0)}{d(0)}}, J{b(O}H={{a(0)}{b(0)}, {d(0)}}, and J({d(0)})=

{{a(0)}.{b(0)}{d(0)}}.
{3 Length-0
{a(0)}<1,2,3,4,5,6> {b(O)}<i,4,5>\A {d(O)}<2,4§: Length-1
{a(O) b(O)} {a(O) d(O)} {a(0).a(1)} {a(0).d(1)} {b(O) a(1)} {b(0), d(l)} {d(0).a(1)} Length-2
1,45 56> <1,2345> <1345> <145> <14, <2,4,5>

{a(0),b(0),a(1)} {a(0).b(0),d(1)} {a(0),d(0).a(1)} {a(0),a(1),d(1)} {b(0).a(1).d(1)} Length-3

<1,4,5> <1,4,5> <2,4,5> <1,3,4,5> <1,4,5>
{a(0),¥(0),a(1),d(l)} Length-4

<1,4,5>
Fig. 9. The ITP-tree for the database shown in Table 1.

We now describe how to join {a(0)} to every pattern in J({a(0)}) to find frequent 2-patterns. The dat-lists of
{a(0)} and {b(0)} share three dats, <1,4,5>; therefore, by joining them we obtain a frequent 2-pattern {a(0),b(0)}
with a list of dats, <1,4,5>. Srmrlarly, by joining {a(0)}<1,2,3,4,5,6> and {d(0)}<2,4,5,6>, we obtain
{a(0),d(0)}<2,4,5,6>. I\/Ioreover {a(0),a(1)}<1,2,3,4,5> can bhe generated since {a(0)}’s dat-list contains five dats

7

<1,2,3,4,5>, each of which is one less than {a(0)}’s dats <2,3,4,5,6>; {a(0),d(1)}<1,3,4,5> can be generated in the
same manner. Consequently, E({a(0)})={{a(0),b(0)}, {a(O) d(O)} {a(O) a(l)}, {a(O) d(l)}} as shown in Fig. 9.
Note that according to the “unmatched dat pruning” strategy, we only add the matched dats of both 1-patterns to
the dat-list of the newly generated 2-pattern.

Since we have E({a(0)}), we can join every 2-pattern Zin E({a(0)}) to every 2-pattern in J(f) to get frequent
3-patterns. Consider the pattern {a(0),b(0)}. We know that the patterns joinable to {a(0),b(0)} are those in
E({a(0)}) that are larger than {a(0),b(0)}. In other words, J({a(0),b(0)})={{a(0),d(0)},{a(0),a(1)}.{a(0),d(1)}}.
In this stage, the join operation is performed by matchlng the dat-lists of two joinable patterns, so we join
{a(0),b(0)}<1,4,5> and {a(0),a(1)}<1,2,3,4,5> to get {a(0),b(0),a(1)}<1,4,5>; and join {a(0),b(0)}<1,4,5> and
{a(0),d(1)}<1,3,4,5> to get {a(0),b(0), d(l)}}<14 5>, Therefore we get E({a(O) b(0)}) = {{a(0), b(O) a(l)},
{a(0),b(0), d(1)}} as shown in Fig. 9. After obtaining E({a(0),b(0)}), we join every 3-pattern £ in E({a(0),b(0)})
and every 3-pattern in J() to find frequent 4-patterns. According to the “infrequent k-pattern pruning” strategy,
for joining {a(0),b(0),a(1)} and {a(0),b(0),d(1)}, the last extended item of the former and that of the latter can
be combined to form a 2-pattern, {a(1),d(1)}, which is a subset of the joined pattern, {a(0),b(0),a(1),d(1)}.
Pattern {a(1),d(1)} can be transformed into {a(0),d(0)} by taking dat=1 as the reference point. We join
{a(0),b(0),a(1)}<1,4,5> and {a(0),b(0),d(1)}<1,45> to find frequent 4-patterns, and obtain
{a(0),b(0),a(1), d(l)}<1 45> as shown in Fig. 9. The other two 3-patterns, {a(0),d(0),a(1)} and
{a(0),a(1),d(1)}, can be obtained in the same way.

A similar procedure can be applied to the nodes containing {b(0)} and {d(0)} by calling the DFS function
recursively. Fig. 9 shows the complete set of frequent patterns and their dat-lists. Starting from the node
containing {b(0)}, the patterns found include {b(0)}, {b(0),a(2)}, {b(0),d(2)}, and {b(0),a(1),d(1)}. Meanwhile,
starting from the node containing {d(0)}, the patterns found include {d(0)}, and {d(0),a(1)}. The mining
process is terminated once the node containing {d(0),a(1)} has been processed, since no more frequent patterns
can be generated.

4. Performance Evaluation

We evaluated the performance of the ITP-Miner algorithm on two synthetic datasets. The datasets were
generated with different parameters synthetically. We compared the ITP-Miner algorithm with the FITI
algorithm [24]. All experiments were performed on an IBM Compatible PC with an Intel Pentium IV CPU
2.8GHz, 1G-byte main memory running on Microsoft Windows XP. Both algorithms were implemented using
Microsoft Visual C++ 6.0.

4.1 Generation of synthetic data
We use the same method as that in [24] to generate synthetic transactions. The process involves two steps:
first, we generate potential frequent itemsets, after which we generate transactions in the database from those
itemsets. The parameters used to generate synthetic data are shown in Table 3.
Table 3. Parameters.

Parameter Meaning
|D| Total number of transactions
A Average length of the transactions
F Number of potential frequent inter-transaction itemsets
MaxT Maximum length of the transactions
L Length of each potential frequent inter-transaction itemset
MaxI Maximum length of the potential frequent inter-transaction itemsets
S Number of distinct items
M Maxspan

Table 4. Parameter settings for the two synthetic datasets.

Parameter Datasetl Dataset?
D] 10,000 1,000
A 5 100
F 1,000 1,000
MaxT 10 200
L 5 6
Maxl 10 10
S 500 500
M 3 5

The potential frequent inter-transaction itemsets, Liem, may span several transactions. The length of each
itemset follows a Poisson distribution whose mean is equal to L, and the maximum length of an itemset is Maxl.
Every itemset in Liem is associated with a relative distance ranging from 0 to M (maxspan). Hence, we can
generate |D| transactions from Li.n. The length of each transaction is selected from a Poisson distribution whose
mean is equal to A, and the maximum length of any transaction is MaxT.

We generated three synthetic datasets using the parameters shown in Table 4, the first two are similar to the
datasets used in [24]. The first dataset, Datasetl, had 10,000 transactions, with an average of 5 items per

8

transaction. Dataset2, on the other hand, had only 1,000 transactions, but each one contained 100 items on
average.

4.2 Experiments on synthetic data
In this section, we compare the ITP-Miner algorithm with the FITI algorithm by varying one parameter,

while maintaining the other parameters at the default values shown in Table 4.
140
120
100
80
60
40

20
0 ——-

0, 0, 0, 0,
00 O%fffrimum B O10% 06 1% e g M 1%

Fig. 10. Minimum support versus run time, — Fig. 11. Minimum Support versus run time,
Datasetl with maxspan=3. Dataset2 with maxspan=5.

Fig. 10 shows the minimum support versus the run time for Datasetl. The minimum support varies
between 0.04% and 0.1%, and the ITP-Miner algorithm runs 10-50 times faster than the FITI algorithm. Fig.11
illustrates the minimum support versus the run time for Dataset2. In this case, the support varies between 10%
and 15%, and the ITP-Miner algorithm runs 3-8 times faster than the FITI algorithm. The ITP-Miner algorithm
outperforms the FITI algorithm because the latter generates a huge number of candidates when the support is
small. To count the support of candidates, the FITI uses the Apriori algorithm to count the support of
intra-transaction candidates by repeatedly scanning the database. Whenever the FITI algorithm reads a new
transaction from the FIT tables [24], each inter-transaction candidate must be matched with maxspan+1
consecutive transactions. Moreover, support counting of the FITI algorithm is quite time-consuming because it
needs to perform subset matching. In contrast, the ITP-Miner algorithm counts the supports by joining the
dat-lists of joinable patterns, and only needs to scan the database once; thus, it is more efficient than the FITI
algorithm.

Next, we illustrate the impact of the maxspan on the performance of the algorithms for three datasets in
Figs. 12 and 13. As the maxspan increases, more candidates and patterns are generated. Thus, the run-time of
both algorithms increases. We observe that the run-time of the ITP-Miner algorithm increases slowly as the
maxspan increases. For the FITI algorithm, as the maxspan increases, the range of the FIT tables [24] that must
be scanned to count the candidates’ supports increases. In addition, the number of generated candidates
increases rapidly in a breadth-first search manner. Hence, the time required to count the candidates’ supports
increases. In contrast, by joining patterns in the ITP-tree, the ITP-Miner algorithm uses a depth-first search
manner to avoid having to scan the database and count the support for a large number of candidates. Thus, the
ITP-Miner algorithm performs efficiently when the maxspan increases.

100 140
80
60
40
20

0

—%— FITI —*—FITI

—— |TP-Miner

—&— |ITP-Miner

Run time (sec)

L i—8 i

—%—FITI 100 —%—FITI
—&— |ITP-Miner

80 —&— ITP-Miner

Run time (sec)
Run time (sec)
N
o

0 1 2 3 Maff(span 5 6 7 8 0 1 2 3 Magf(span 5 6 7 8
Fig. 12. Maxspan versus run time, Fig.13.Maxspan versus run time,
Dataset1 with minsup=0.05%. Dataset2 with minsup=11%.

In summary, since the ITP-Miner algorithm employs the ITP-tree and dat-lists to mine frequent patterns, it
only requires one database scan and can localize candidate joining, pruning, and support counting to joinable
patterns. As the “infrequent 2-pattern pruning” and “infrequent k-pattern pruning” strategies are used to check if
both patterns are joinable, the ITP-Miner algorithm avoids many unnecessary join operations. It outperforms
the FITI algorithm by one order of magnitude and requires less main memory storage.

5. Conclusions and Future Work

This work has been published in Information Sciences Journal [27]. In this study, we have proposed an efficient
method for mining all frequent inter-transaction patterns. The method consists of two phases. First, we design a
data structure, called a dat-list, to record the dimensional attribute information of a frequent item in a database.
Then, we devise a data structure, called an ITP-tree, to store the frequent patterns found. Second, we propose an
efficient algorithm, called ITP-Miner, to mine the frequent patterns in a depth-first search manner. By using the
ITP-tree and dat-lists to mine frequent patterns, our proposed algorithm only requires one database scan and can
localize joining, pruning, and support counting to a small number of dat-lists. Therefore, our proposed
algorithm is more efficient than the FITI algorithm. The experiment results show that ITP-Miner outperforms
the FITI algorithm by one order of magnitude and requires less main memory storage space.

Although we have shown that the ITP-Miner algorithm can efficiently mine frequent inter-transaction
patterns, there are still some issues to be addressed in future research. First, we may also extend the algorithm

9

from 1-dimensional transaction databases to higher dimension databases. Second, without generalization, too
many patterns may be mined and they may be too detailed. However, by generalizing with a concept hierarchy,
we may be able to obtain patterns or rules that are more abstract and meaningful.

References

[1] Agrawal, R., Imielinski, T., Swami, A., Mining association rules between sets of items in large databases,
In Proceedings of ACM SIGMOD, 1993, pp. 207-216.

[2] Agrawal, R., Srikant, R., Fast algorithms for mining association rules, In Proceedings of International
Conference on Very Large Data Bases, 1994, pp. 487-499.

[3] Bayardo, R.J., Efficiently mining long patterns from databases, In Proceedings of ACM SIGMOD, 1998,
pp. 85-93.

[4] Chen, G., Wei, Q., Fuzzy association rules and the extended mining algorithms, Information Sciences, Vol.
147, No. 1-4, 2002, pp. 201-228.

[5] Chiu, D.K.Y., Wong, A.K.C., Multiple pattern associations for interpreting structural and functional
characteristics of biomolecules, Information Sciences, Vol. 167, No, 1-4, 2004, pp. 23-39.

[6] Feng, L., Dillon T.S., Liu, J., Inter-transactional association rules for multi-dimensional contests for
prediction and their application to studying meteorological data, Data and Knowledge Engineering, Vol.
37, No. 1, 2001, pp. 85-115.

[7] Feng, L., Yu, J.X, Lu, H,, Han, J., A template model for multidimensional inter-transactional association
rules, The VLDB Journal, Vol. 11, No. 2, 2002, pp. 153-175.

[8] Hsu, P.Y., Chen, Y.L., Ling, C.C., Algorithms for mining association rules in bag databases, Information
Sciences, Vol. 166, No. 1-4, 2004, pp. 31-47.

[9] Kohavi, R., Broadley, C., Frasca, B., Mason, L., Zheng, Z., KDD-cup 2000 organizers’ report: peeling the
onion, SIGKDD Explorations, Vol. 2, No. 2, 2000, pp. 86-98.

[10] Lee, AJ.T., Hong, R.W., Ko, W.M., Tsao, W.K., Lin, H.H, Mining spatial association rules in image
databases, Information Sciences, Vol. 177, No. 7, 2007, pp. 1593-1608.

[11] Lee, AJ.T, Lin, W.C., Wang, C.S., Mining association rules with multi-dimensional constraints, The
Journal of Systems and Software, Vol. 79, No. 1, 2006, pp. 79-92.

[12] Lee, AJ.T., Wang, Y.T., Efficient data mining for calling path patterns in GSM networks, Information
Systems, Vol. 28, No. 8, 2003, pp. 929-948.

[13] Lee, G.., Yang, W, Lee, JM., A parallel algorithm for mining multiple partial periodic patterns,
Information Sciences, Vol. 176, No. 24, 2006, pp. 3591-3609.

[14] Li, Q., Feng, L., Wong, A., From intra-transaction to generalized inter-transaction: landscaping
multidimensional contexts in association rule mining, Information Sciences, Vol. 172, No. 3-4, 2005, pp.
361-395.

[15] Littau, D., Boley, D., Streaming data reduction using low-memory factored representations, Information
Sciences, Vol. 176, No. 14, 2006, pp. 2016-2041.

[16] Li, Y. Zhu, S., Wang, X.S., Jajodia, S., Looking into the seeds of time: discovering temporal patterns in
large transaction sets, Information Sciences, Vol. 176, No. 8, 2006, pp. 1003-1031.

[17] Lu, H., Han, J., Feng, L., Stock movement prediction and n-dimensional inter-transaction association
rules, In Proceedings of ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge,
1998, pp. 1-7.

[18] Lu, H., Feng, L., Han, J., Beyond intratransaction association analysis: mining multidimensional
inter-transaction association rules, ACM Transactions on Information Systems, Vol. 18, No. 4, 2000, pp.
423-454.

[19] Savasere, A., Omiecinski, E., Navathe, S., An efficient algorithm for mining association rules in large
databases, In Proceedings of International Conference on Very Large Data Bases, 1995, pp. 432-443.

[20] Shen, Li, Shen, Hong, Cheng Ling, New algorithms for efficient mining of association rules, Information
Sciences, Vol. 118, No. 1-4, 1999, pp. 251-268.

[21] Shenoy, P., Haritsa, J.R., Sudarshan, S., Bhalotia, G.., Bawa, M., Shah, D., Turbo-charging vertical
mining of large databases, In Proceedings of ACM SIGMOD, 2000, pp. 22-33.

[22] Tsay, Y.J., Chiang, J.Y., An efficient cluster and decomposition algorithm for mining association rules,
Information Sciences, Vol. 160, No. 1-4, 2004, pp. 161-171.

[23] Tung, A.K.H., Lu, H., Han, J., Feng, L., Breaking the barrier of transactions: mining inter-transaction
association rules, In Proceedings of ACM International Conference on Knowledge and Data Discovery,
1999, pp. 423-454.

[24] Tung, A.K.H., Lu, H., Han, J., Feng, L., Efficient mining of intertransaction association rules, IEEE
Transactions on Knowledge and Data Engineering, Vol. 15, No. 1, 2003, pp. 43-56.

[25] Wang, C.Y., Tseng, S.S., Hong, T.P., Flexible online association rule mining based on multidimensional
pattern relations, Information Sciences, Vol. 176, No. 12, 2006, pp. 1752-1780.

[26] Yu, J.X., Chong, Z., Lu, H., Zhang, Z., Zhou, A., A false negative approach to mining frequent itemsets
from high speed transactional data streams, Information Sciences, Vol. 176, No. 14, 2006, pp. 1986-2015.

[27] Lee, AJ.T., Wang, C.S., An efficient algorithm for mining frequent inter-transaction patterns, Information

Sciences, Vol. 177, No. 17, pp. 3453-3476, 2007, NSC 95-2416-H-002-053. (SCI, impact factor= 1.003)

10

