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1. Introduction 
Association rule mining is an important problem in the data mining field [1, 2, 4, 5, 8, 10, 11, 12, 13, 15, 16, 

20, 22, 25, 26]. Traditional association analysis is intra-transactional because it focuses on association 
relationships among itemsets within a transaction. For example, an intra-transaction association rule might be: 
“If the stock prices of Microsoft and IBM go up, the price of Intel is likely to go up on the same day.” However, 
intra-transactional approaches cannot capture a rule like: “If the stock prices of Microsoft and IBM go up, the 
price of Intel is likely to go up two days later.” Inter-transaction association rule mining [6, 7, 14, 17, 18, 23, 24] 
extends the association rules to describe association relationships among itemsets across several transactions. 

Many algorithms for mining inter-transaction association rules have been proposed. Lu et al. [17] and Feng 
et al. [6] applied inter-transaction association rule mining algorithms to the prediction of trends in 
meteorological and stock market data. Lu et al. [17, 18] proposed the EH-Apriori algorithm, which uses the 
Apriori algorithm to discover frequent inter-transaction itemsets. To enhance their algorithm’s efficiency, the 
authors used a hashing technique to reduce the number of candidate itemsets of length two. Feng et al. [7] used 
templates to reduce the number of rules. More recently, Tung et al. [23, 24] developed an algorithm, called FITI 
(First Intra Then Inter), which discovers frequent intra-transaction itemsets and uses them to generate frequent 
inter-transaction itemsets.  

All the algorithms for mining inter-transaction association rules developed thus far have been based on 
Apriori-like breadth-first search (BFS) approaches that search for frequent itemsets level by level. At each level, 
a database must be scanned once to determine the support for each candidate itemset. It has been shown that 
Apriori-like approaches [19, 22] perform well in finding frequent intra-transaction itemsets when the itemsets 
are short. However, when mining long frequent itemsets, or using very small support thresholds, the 
performance of such algorithms often deteriorates dramatically. The reason is that a frequent itemset of length k 
implies the presence of 2k-2 additional frequent sub itemsets, each of which must be examined. Moreover, since 
Apriori-like approaches may generate a large number of candidate patterns at each level, they are prone to 
memory shortage during the mining process. We observe that Apriori-like methods for finding frequent 
inter-transaction itemsets have the same drawbacks as those for finding frequent intra-transaction itemsets. 

Therefore, in this paper, we propose an efficient method for mining a complete set of frequent 
inter-transaction itemsets (patterns). The method consists of two phases. First, we find all frequent items. For 
each frequent item found, we construct a dat-list that records the item information required for finding the 
frequent inter-transaction patterns. Then, we devise a data structure, called an ITP-tree, to store the discovered 
frequent inter-transaction patterns. In the second phase, we propose an algorithm, called ITP-miner, to 
efficiently find all frequent inter-transaction patterns in a depth-first search manner. By using the ITP-tree and 
dat-lists to mine the frequent inter-transaction patterns, the ITP-Miner algorithm requires only one database 
scan and can localize joining, pruning, and support counting to a small number of dat-lists. Therefore, it is more 
efficient than the FITI algorithm. 

The remainder of this paper is organized as follows. In Section 2, we describe the problem of mining 
frequent inter-transaction patterns. Section 3 introduces our proposed algorithm, ITP-Miner, for mining 
frequent inter-transaction patterns. We explain the basic concept of the algorithm and give an example to 
illustrate how it works. Section 4 describes the performance evaluation. Finally, we present the conclusions in 
Section 5. 

 
2. Problem Description 

In this section, we introduce the notations and describe the problem of mining frequent inter-transaction 
patterns.  
Definition 1. Let I be a set of data items, and N be a set of non-negative integers called domain attributes. A 
transaction database consists of a set of transactions, where a transaction is in the form of <t, s>, t∈N and s⊆I; t 
is called a dimensional attribute (or dat), and s is called an itemset. 

Table 1. A transaction database. 
dat itemset
1 {a,b}
2 {a,c,d}
3 {a}
4 {a,b,c,d}
5 {a,b,d}
6 {a,d}

The dimensional attribute describes the properties associated with the data items, such as time and location. 
As it is an ordinal, it can be divided into intervals of equal length. For example, time can be divided into days, 
weeks, etc. These intervals can be represented by non-negative integers 0, 1, 2, and so on. An itemset is denoted 
by {u1, u2, …, uk}, where ui is an item, 1 ≤ i ≤ k; and items in an itemset are listed in alphabetical order, i.e., we 
write {a,c,d} instead of {c,a,d}. Table 1 shows a transaction database containing 6 transactions. 
Definition 2. An itemset s={u1, u2, …, uk} at the dimensional attribute t is called an extended itemset and 
denoted by Δts={u1(t), u2(t), …, uk(t)}. 

Before mining inter-transaction association rules, we need to find the frequent inter-transaction itemsets 
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that span several transactions. Since an inter-transaction itemset can span many intervals, discovering all such 
itemsets would require a lot of resources, but a user may only be interested in rules that span a certain number 
of intervals. Therefore, to avoid wasting resources by mining unwanted rules, we introduce a parameter called 
maxspan. When mining for inter-transaction association rules, we only mine rules whose span is equal to or less 
than the maxspan intervals.  
Definition 3. Let Δt0α0, Δt1α1, …, Δtnαn be extended itemsets, where t0< t1< …< tn, and tn-t0 is not greater 
than a user-specified maximum span threshold maxspan. Then, let α=Δ0α0∪Δt1- t0α1∪…∪Δtn- t0αn, where 
∪ is an operator that combines multiple extended itemsets into single unit, α is called an inter-transaction 
itemset (or a pattern) and t0 is called the reference point. An item in the inter-transaction itemset is called an 
extended item. Since α takes t0 as the reference point, we say that α starts from t0. Note that the reference point 
of an inter-transaction itemset is defined as the smallest dimensional attribute of the extended itemsets in the 
inter-transaction itemset. 

For example, let us consider the database as shown in Table 1, where {a(1), b(1)} is the extended itemset 
for the first transaction. Let maxspan = 1. The first two transactions form an inter-transaction itemset, {a(0), 
b(0), a(1), c(1), d(1)}, where we take the dimensional attribute of the first transaction as the reference point. 
Definition 4. Let u(i) and v(j) be two extended items. If (i = j and u = v), we can say that u(i) = v(j). Also, if (i = 
j and u < v) or (i < j), we say that u(i) < v(j).  
Definition 5. Let α = {u0(0), u1(i1), u2(i2), …, un(in)} and β = {v0(0), v1(j1), v2(j2), …, vn(jn)} be two patterns, 
where n>1. We say that α = β if ui(ii)= vi(ji) for 0<i<n, where i0=j0=0. We also say that α < β, if 1) u0(0) < v0(0); 
or 2) there exists k (>0) such that ui(ii) = vi(ji) for 0<i<k<n, and uk+1(ik+1) < vk+1(jk+1).  
Definition 6. Let α = {u0(0), u1(i1), u2(i2), …, un(in)} and β = {v0(0), v1(j1), v2(j2), …, vm(jm)} be two patterns, 
where 1<n<m. α is a subset of β if we find n extended items vk1(jk1), vk2(jk2), …, vkn(jkn) in β such that 
u0(0)=v0(0), u1(i1)=vk1(jk1), u2(i2)=vk2(jk2), …, and un(in)=vkn(jkn). We can also say that β contains α. 

For example, both {b(0), a(1), c(3)} and {a(0), d(1)} are subsets of {a(0), b(0), a(1), d(1), b(3), c(3)}. 
Definition 7. In a transaction database D, the number of transactions is denoted by |D|. Let α be a pattern, and 
Tα be all inter-transaction itemsets in D, where every inter-transaction itemset in Tα contains α. The count of α, 
count(α), is denoted by |Tα| and the support of α, sup(α), is denoted by count(α)/|D|. If sup(α) is not less than 
the user-specified minimum support threshold minsup, α is called a frequent inter-transaction pattern (or 
frequent pattern for short).  
Definition 8. The number of extended items in a pattern is called the length of the pattern. A pattern of length k 
is called a k-pattern.  

For example, the length of {a(0), a(1), d(1), b(3), c(3)} is equal to 5. 
Definition 9. An inter-transaction association rule is written in the form of α → β, where both α and α∪β are 
frequent patterns, α ∩ β =φ, conf(α → β) is not less than the user-specified minimum confidence, and the confidence 
of the rule is defined as sup(α∪β)/sup(α). 

Suppose that minsup=50% and maxspan=1. Let us consider the database D shown in Table 1, where the 
database contains six transactions (i.e., |D|=6). To compute the support of {a(0), b(0), d(1)}, we first form an 
inter-transaction itemset {a(0), b(0), a(1), c(1), d(1)} by using the first two transactions and find that it contains 
{a(0), b(0), d(1)}. Thus, count({a(0), b(0), d(1)})=1. Next, we form an inter-transaction itemset {a(0), b(0), 
c(0), d(0), a(1), b(1), d(1)} by using the fourth and fifth transactions, and find that it contains {a(0), b(0), d(1)}.  
Thus, the count of {a(0), b(0), d(1)} is increased by one. Finally, we form an inter-transaction itemset {a(0), 
b(0), d(0), a(1), d(1)} by using the last two transactions and find that it contains {a(0), b(0), d(1)}.  Thus, the 
count of {a(0), b(0), d(1)} is increased by one. That is, count({a(0), b(0), d(1)})=3, and sup({a(0), b(0), 
d(1)})=3/6=0.5. Consequently, {a(0), b(0), d(1)} is a frequent pattern. Similarly, we find that sup({a(0), b(0)})= 
0.5. That is, {a(0), b(0)} is also a frequent pattern. Therefore, we have an inter-transaction association rule 
{a(0), b(0)}→{d(1)} with the confidence = 0.5/0.5 = 100%. 

The objective of mining frequent inter-transaction patterns is to find a complete set of frequent patterns in a 
transaction database with respect to user-specified minsup and maxspan thresholds. 

 
3. The ITP-Miner Algorithm 

We now introduce the ITP-Miner algorithm. In Section 3.1 we describe a data structure, called a dat-list, 
and a search tree, called an ITP-tree. We then explain the main concept of our proposed algorithm in Section 
3.2, and describe it in detail in Section 3.3. Finally, we give an example to demonstrate how the algorithm 
works in Section 3.4. 

 
3.1 The dat-list and ITP-tree 

We have devised a data structure, called the dimensional attribute list (dat-list), to store the dimensional 
attributes of a frequent pattern during the mining process. Let α<t1,t2,...,tn> be a dat-list, where α is a pattern 
and <t1,t2,...,tn> is a list of dats in which the inter-transaction itemset starting from ti contains α, 1<i<n. For 
example, {a(0), d(1)}<1,3,4,5> is a dat-list containing 4 dats, 1, 3, 4, and 5; i.e., the inter-transaction itemsets 
starting from the first, third, fourth, and fifth transactions in the database shown in Table 1 contain the pattern 
{a(0), d(1)}. Table 2 shows all dat-lists of the frequent patterns found in the database shown in Table 1, where 
minsup = 50% and maxspan = 1. Note that the count of a pattern is equal to the number of dats contained in its 
dat-list. For example, the support counts of {a(0), d(1)}<1,3,4,5> and {a(0), b(0), a(1), d(1)}<1,4,5> are 4 and 
3, respectively. 
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Next, we introduce a data structure called an ITP-tree, which stores the dat-lists generated during the 
mining process. 
Definition 10. An ITP-tree is a search tree denoted by T. A node in T represents a dat-list, α<t1,t2,...,tn>, where 
n>1, α is a frequent pattern, and the extended items in α are listed in increasing order. The parent of node 
α<t1,t2,...,tn> is the dat-list β<t’1,t’2,...,t’m>, where m>n, and β is the pattern obtained by removing the last 
extended item from α. The root of T is a null pattern, i.e., {}. Siblings with the same parent are sorted in 
increasing order. 

Table 2. The dat-lists. 
Length Dat-list

1 {a(0)}<1,2,3,4,5,6>, {b(0)}<1,4,5>, {d(0)}<2,4,5,6>
2 {a(0),b(0)}<1,4,5>, {a(0),d(0)}<2,4,5,6>, {a(0),a(1)}<1,2,3,4,5>, 

{a(0),d(1)}<1,3,4,5>, {b(0),a(1)}<1,4,5>, {b(0),d(1)}<1,4,5>, 
{d(0),a(1)}<2,4,5> 

3 {a(0),b(0),a(1)}<1,4,5>, {a(0),b(0),d(1)}<1,4,5>, {a(0),d(0),a(1)}<2,4,5>, 
{a(0),a(1),d(1)}<1,3,4,5>, {b(0),a(1),d(1)}<1,4,5>

4 {a(0),b(0),a(1),d(1)}<1,4,5>
Consider the complete ITP-tree shown in Fig. 1, where the database contains only two items, a and b; the 

maxspan is equal to 1; and the list of dats associated with each dat-list is omitted. Note that all possible 
inter-transaction patterns of the ITP-tree in Fig. 1 can be enumerated in a depth-first search manner. 

            {}      Length-0 

 

     {a(0)}            {b(0)}    Length-1 

  

{a(0),b(0)}  {a(0),a(1)}  {a(0),b(1)} {b(0),a(1)} {b(0),b(1)}   Length-2 

 

{a(0),b(0),a(1)} {a(0),b(0),b(1)}{a(0),a(1),b(1)}   {b(0),a(1),b(1)}    Length-3 

 

{a(0),b(0),a(1),b(1)}           Length-4 

Fig. 1. An ITP-tree. 
 
3.2 Main concept 

First, we consider the generation of a candidate 2-pattern by joining two frequent 1-patterns. 
Definition 11.  If both α and β are frequent 1-patterns, α is joinable to β.  

Let t1  and t2  be the dats in the dat-lists of α={u(0)} and β={v(0)}, respectively. If (u < v and 0 < t2-t1 < 
maxspan) or (u > v and 0 < t2-t1 < maxspan), then: 1) we generate a candidate 2-pattern {u(0),v(t2-t1)} if it has not 
been generated already; 2) we add t1 to the candidate's dat-list; and 3) we increase the count of {u(0),v(t2-t1)} by one. 
For each candidate 2-pattern generated, we check that its support is not less than the minsup. If this is the case, 
it is a frequent 2-pattern and we store its dat-list in the ITP-tree. Thus, for a frequent 2-pattern {u(0),v(w)}, 0 < 
w < maxspan, we store its dat-list as a child of α’s dat-list in the ITP-tree. 

Fig. 2 illustrates how we find a frequent 2-pattern by joining the dat-lists of two frequent 1-patterns 
{a(0)}<1,2,3,4,5,6> and {b(0)}<2,4,5,6>, where minsup=50% and maxspan=1. Here, we find two frequent 
2-patterns, {a(0),b(0)} and {a(0),b(1)}. In Fig 2(a), the dats used to generate pattern {a(0),b(0)} are connected 
by black arrows, while the dats used to generate pattern {a(0),b(1)} are connected by dashed arrows. Fig. 2(b) 
shows the ITP-tree formed by the dat-lists of the patterns found. Note that there are six dats in 
{a(0)}<1,2,3,4,5,6>; however, there are only four in {a(0),b(0)}<2,4,5,6> and {a(0),b(1)}<1,3,4,5>. 

 

{a(0)}<1,  2,  3,  4,  5,  6>    

 

{b(0)}<   2,      4,  5,  6>      

(a) Dat-lists            (b) ITP-tree 
Fig. 2. Generating 2-patterns by joining two 1-patterns. 

Definition 12.  Let α = {u0(0), u1(i1), …, uk-1(ik-1)} and β = {v0(0), v1(j1), …, vk-1(jk-1)} be two frequent 
k-patterns, k > 1. α is joinable to β if the first k-1 extended items of α are equal to those of β, and the last 
extended item of α is less than that of β. The joined pattern is obtained by appending the last extended item of β 
to α; that is, the joined pattern is {u0(0), u1(i1), …, uk-1(ik-1), vk-1(jk-1)}. 

{} 

{a(0)}<1,2,3,4,5,6> 

{a(0),b(0)}<2,4,5,6> {a(0),b(1)}<1,3,4,5> 
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We now consider how to find frequent (k+1)-patterns by joining two joinable k-patterns. Assume there are 
two dat-lists of 2-patterns, {a(0), b(0)}<1,4,5> and {a(0), a(1)} <1,2,3,4,5>. Note that the first extended item of 
{a(0), b(0)} is equal to that of {a(0), a(1)}. To join both 2-patterns, we match the dats in {a(0), b(0)}<1,4,5> 
with the dats in {a(0),a(1)}<1,2,3,4,5>. If a dat in the former is equal to a dat in the latter, the count of the 
joined pattern ({a(0),b(0),a(1)}) is increased by one. By matching every dat in {a(0), b(0)}<1,4,5> with its 
counterpart in {a(0), a(1)}<1,2,3,4,5>, we find that the count of {a(0),b(0),a(1)} is equal to 3. Thus, it is a 
frequent 3-pattern. We store {a(0),b(0),a(1)}<1,4,5> in the ITP-tree as shown in Fig. 3, where <1,4,5> are the 
matched dats between <1,4,5> and <1,2,3,4,5>. 

 

 

            {a(0)}<1,2,3,4,5,6> 

 

{a(0),b(0)}<1,   4, 5>        {a(0),b(0)}<1,4,5> {a(0),a(1)}<1,2,3,4,5> 

 

{a(0),a(1)}<1,2,3,4,5>    {a(0),b(0),a(1)}<1,4,5> 
Fig. 3. Generating a 3-pattern by joining two frequent 2-patterns. 

The ITP-miner algorithm generates the frequent patterns in a depth-first search manner. We use the frequent 
patterns obtained at this level (frequent k-pattern) to generate the frequent patterns at the next level (frequent 
(k+1)-pattern). To do so, we first define the joinable and extended groups for a frequent k-pattern. A frequent k-pattern, 
α, only needs to join the patterns in its joinable group to generate the frequent (k+1)-pattern extended from α. 
Generating the frequent (k+1)-pattern in this manner can localize joining, pruning, and support counting to a small 
number of dat-lists.  
Definition 13. Let α be a frequent k-pattern, where k>1. The joinable group of α is J(α) = {α1, α2, ..., αn}, 
where α is joinable to α i, which is a frequent k-pattern, 1 < i < n. Also, the extended group of α is E(α) = {β1, β 
2, ..., β m}, where every βj is a frequent (k+1)-pattern extended from α, 1< j<m. Since βj is extended from α, its 
dat-list will be a child of α’s dat-list in the ITP-tree. 
Lemma 1. Let α be a frequent k-pattern; and β be a frequent (k+1)-pattern that is extended from α, where k>1. 
Then, we have: 1) E(α)={θ |θ =(α join γ), θ is frequent, and γ∈J(α)}; and 2) J(β)={θ |θ is greater than β, and θ 
∈E(α)}. 

We can use Lemma 1 to generate frequent patterns and store their dat-lists in the ITP-tree, where the frequent 
patterns are generated in a depth-first search manner. The generation of frequent patterns consists of two steps. Let α be 
a frequent k-pattern. First, α is joined to each γ in J(α), after which we can find all the frequent (k+1)-pattern patterns 
extended from α, referred to as E(α). Next, for each frequent (k+1)-pattern β in E(α), J(β) is the set containing the 
patterns in E(α) that are greater than β. We can therefore join β to every γ in J(β) to find all the frequent (k+2)-patterns 
extended from β, referred to as E(β). Let α = β and k=k+1. We perform the second step recursively in a depth-first 
search manner until no more frequent patterns can be generated. This is the main concept of our proposed method. 

    {a(0)}<1,2,3,4,5,6>            Length-1 

  

{a(0),b(0)} {a(0),d(0)}  {a(0),a(1)}  {a(0),d(1)}    Length-2 
<1,4,5>  <2,4,5,6>  <1,2,3,4,5>  <1,3,4,5>  

  

{a(0),b(0),d(0)} {a(0),b(0),a(1)} {a(0),b(0),d(1)}     Length-3 
<4,5>       <1,4,5>  <1,4,5> 

 

 

{a(0),b(0),a(1)}   {a(0),b(0),d(1)}     Length-3 
<1,4,5>       <1,4,5>   

 

{a(0),b(0),a(1),d(1)}       Length-4 
<1,4,5> 
 

Fig. 4. Generating frequent patterns in an ITP-tree. 

β J(β) 

E(β) 

α J(α)

E(α) 

First Step

Second Step

{} 
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Let us consider the example shown in Fig 4, where α = {a(0),b(0)} and β = {a(0),b(0),a(1)}. From the figure, we 
know that J(α) = {{a(0),d(0)}, {a(0),a(1)}, {a(0),d(1)}}; E(α) = {{a(0),b(0),a(1)}, {a(0),b(0),d(1)}}; J(β) = 
{{a(0),b(0),d(1)}}; and E(β) = {{a(0),b(0),a(1),d(1)}}. The figure shows that E(α) can be obtained by joining α with 
every pattern in J(α), while E(β) can be obtained by joining β with every pattern in J(β).  
 
3.3 The ITP-Miner algorithm 

The ITP-Miner algorithm is comprised of three functions: Join2, DFS, and JoinK. The algorithm and its 
functions are shown in Figs. 5, 6, 7, and 8, respectively. The Join2 function is used to find frequent 2-patterns 
by joining two frequent 1-patterns, while the JoinK function is used to find frequent (k+1)-pattern by joining 
two frequent k-patterns.  
Algorithm: ITP-Miner 
Input: transaction database D, minimum support minsup, maximum span maxspan. 
Output: all frequent inter-transaction patterns FP. 
Method: 
1 Scan D to find all frequent 1-patterns and their dat-lists. Construct a hash table, H2, and insert the dat-lists 

into the ITP-tree T; 
2 for each frequent 1-pattern α do 
3 Insert α into FP;  
4 for each frequent 1-pattern γ in J(α) do call Join2(α, γ, T, minsup, maxspan, |D|) to get E(α);  
5 for each frequent 2-pattern β∈E(α) do call DFS(β, FP, T, minsup, maxspan, |D|);  
6 end for 
7 Output FP. 

Fig. 5. The ITP-Miner algorithm 
In Step 1 of Fig.5, the database is scanned to find all frequent 1-patterns and their dat-lists, after which a 

hash table, H2, is constructed and the dat-lists are inserted into the ITP-tree, T. In Step 4, two frequent 
1-patterns, α and γ, are joined to generate frequent 2-patterns and obtain E(α). Note that the joinable group of a 
frequent 1-pattern is equal to the set containing all frequent 1-patterns. In Step 5, for each frequent 2-pattern β, 
the DFS function is applied recursively in a depth-first search manner to find all frequent inter-transaction 
patterns. 

When running the ITP-Miner algorithm, we use the following pruning strategies to reduce the search space 
and speed up the mining process. 
Function: Join2(α, γ, T, minsup, maxspan, |D|) 
Input: two frequent 1-patterns α ={u(0)} and γ ={v(0)}, the ITP-tree T, minimum support minsup, maximum 

span maxspan, and the number of transactions in the database |D|. 
Output: the ITP-tree T. 
1 if there exists w, 0 < w < maxspan, such that H2[((u * (maxspan+1) + w) * N1 + v) mod Hashsize] > minsup 

* |D| then 
2 for each dat tα∈ α’s dat-list do 
3 for each dat tγ∈ γ’s dat-list do 
4  if (u < v and 0 < tγ-tα < maxspan) or (u > v and 0 < tγ-tα < maxspan) then 
5 Generate a candidate 2-pattern {u(0),v(tγ-tα)} if it has not been generated already; 
6 Add tα to its dat-list; 
7     end if  
8     end for  
9    end for 
10    for each candidate 2-pattern generated do 
11 if it is frequent then 
12 Insert its dat-list into T to be a child of α’s dat-list; 
13 end if 
14 end for 
15 end if; 

Fig. 6. The Join2 Function 
Function: DFS(β, FP, T, minsup, maxspan, |D|) 
Input: a frequent pattern β, all frequent inter-transaction patterns FP, the ITP-tree T, minimum support minsup, 

maximum span maxspan, and the number of transactions in the database |D|. 
Output: the ITP-tree T. 
1 Insert β into FP; 
2 for each pattern γ ∈J(β), call JoinK(β, γ, T, minsup, maxspan, |D|) to get E(β); 
3 for each pattern θ∈E(β), call DFS(θ, FP, T, minsup, maxspan, |D|); 
4 Remove β’s dat-list from T; 

Fig. 7. The DFS Function. 
(1) Infrequent 2-pattern pruning. In Step 1 of the algorithm (Fig. 5), if we generate n 1-patterns in Step 1, 

we will perform n2 join operations in Step 4. Since many 2-patterns are infrequent, it is wasteful to perform 
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so many operations. To resolve the problem, we use a hashing approach [24] to check if a pair of 1-patterns 
can generate a frequent 2-pattern before joining them. In Step 1, therefore, we construct a hash table, H2, 
when searching for 1-patterns and dat-lists. Every bucket of H2 aggregates the counts of all length-2 
candidates hashed to it. Given a candidate 2-pattern generated by items u’ and v’ with dats tu’ and tv’, 
respectively, its hash value g is computed by g=((u’ * (maxspan+1) + (tv’ – tu’)) * N1 + v’) mod Hashsize, 
where 0<tv’-tu’<maxspan, N1 is the number of distinct items in the database, and Hashsize is the size of the 
hash table. The count of H2[g] is then incremented by one. In Step 1 of Fig. 6, before joining two 
1-patterns, i.e., α={u(0)} and γ={v(0)}, we compute all possible hash values for both patterns by using h = 
((u * (maxspan+1) + w) * N1 + v) mod Hashsize, where 0 < w < maxspan. If H2[h] is less than minsup*|D| 
for each possible hash value, h, we do not need to join α and γ to generate a 2-pattern. 

(2) Infrequent k-pattern pruning. Before joining two k-patterns when k > 1, we use the hash table H2 to 
filter out the join operations. In Step 1 of Fig. 8, before joining two k-patterns, β={u0(0),u1(i1),...,uk-1(ik-1)} 
and γ ={v0(0),v1(j1),...,vk-1(jk-1)}, we know that β joining γ  will yield 
{u0(0),u1(i1),...,uk-1(ik-1),vk-1(jk-1)}. Since {uk-1(ik-1),vk-1(jk-1)} is a subset of the joined pattern, it can be 
transformed into a 2-pattern, {uk-1(0),vk-1(jk-1-ik-1)}, by taking ik-1 as the reference point. Thus, we can 
compute its hash value using h = ((uk-1 * (maxspan+1) + (jk-1-ik-1)) * N1 + vk-1) mod Hashsize. If H2[h] is 
less than minsup*|D|, we do not need to join β and γ to generate a (k+1)-pattern. 

(3) Unmatched dat pruning. In the ITP-Miner algorithm, we join two joinable k-patterns to generate frequent 
(k+1)-patterns and construct a dat-list for each of the latter. In Step 6 of Fig. 6 and Step 4 of Fig. 8, when 
we construct the dat-list for a pattern, we only add the matched dats of both k-patterns to the dat-list of the 
newly generated (k+1)-pattern.  

Function: JoinK(β, γ, T, minsup, maxspan, |D|) 
Input: two frequent k-patterns β ={u0(0),u1(i1),...,uk-1(ik-1)} and γ ={v0(0),v1(j1),...,vk-1(jk-1)}, the ITP-tree T, 

minimum support minsup, maximum span maxspan, and the number of transactions in the database |D|. 
Output: the ITP-tree T. 
1 if H2[((uk-1 * (maxspan+1) + (jk-1 - ik-1)) * N1 + vk-1) mod Hashsize] > minsup * |D|, then 
2  Let θ = {u0(0),u1(i1),...,uk-1(ik-1),vk-1(jk-1)}; 
3  for each dat x∈β’s dat-list do 
4 Check if any dat y∈γ’s dat-list such that y = x. If yes, increase θ’s count by one and add x to θ’s 

dat-list; 
5 end for 
6  if θ is frequent then 
7 Insert its dat-list into T to be a child of β’s dat-list; 
8 end if  
9 end if; 

Fig. 8. The JoinK Function. 
3.4 An example 

Let us consider the example as shown in Table 1, where minsup=50% and maxspan=1. The frequent 
inter-transaction patterns and their dat-lists generated during the mining processes are shown in Fig. 9. During 
the database is scanned, we compute the count for each 1-pattern. The counts of patterns {a(0)}, {b(0)}, {c(0)}, and 
{d(0)}, are equal to 6, 3, 2, and 4, respectively. Since the minsup is 50%, a pattern is frequent if its count is not less than 
3. Consequently, {a(0)}<1,2,3,4,5,6>, {b(0)}<1,4,5>, and {d(0)}<2,4,5,6> are inserted into the ITP-tree as shown 
in Fig. 9. Note that, since we have three frequent 1-patterns: {a(0)}, {b(0)}, and {d(0)}, there are three joinable 
groups: J({a(0)})={{a(0)},{b(0)},{d(0)}}, J({b(0)})={{a(0)},{b(0)}, {d(0)}}, and J({d(0)})= 
{{a(0)},{b(0)},{d(0)}}. 

         {}        Length-0 

 

         {a(0)}<1,2,3,4,5,6>   {b(0)}<1,4,5>   {d(0)}<2,4,5,6>    Length-1 

  
{a(0),b(0)} {a(0),d(0)} {a(0),a(1)}  {a(0),d(1)} {b(0),a(1)} {b(0),d(1)} {d(0),a(1)}    Length-2 
<1,4,5> <2,4,5,6> <1,2,3,4,5> <1,3,4,5>  <1,4,5>    <1,4,5>   <2,4,5> 

 
{a(0),b(0),a(1)} {a(0),b(0),d(1)} {a(0),d(0),a(1)} {a(0),a(1),d(1)} {b(0),a(1),d(1)}     Length-3 
<1,4,5>    <1,4,5>   <2,4,5>    <1,3,4,5>  <1,4,5> 
 
{a(0),b(0),a(1),d(1)}              Length-4 
<1,4,5> 

Fig. 9. The ITP-tree for the database shown in Table 1. 
We now describe how to join {a(0)} to every pattern in J({a(0)}) to find frequent 2-patterns. The dat-lists of 

{a(0)} and {b(0)} share three dats, <1,4,5>; therefore, by joining them we obtain a frequent 2-pattern {a(0),b(0)} 
with a list of dats, <1,4,5>. Similarly, by joining {a(0)}<1,2,3,4,5,6> and {d(0)}<2,4,5,6>, we obtain 
{a(0),d(0)}<2,4,5,6>. Moreover, {a(0),a(1)}<1,2,3,4,5> can be generated, since {a(0)}’s dat-list contains five dats 
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<1,2,3,4,5>, each of which is one less than {a(0)}’s dats <2,3,4,5,6>; {a(0),d(1)}<1,3,4,5> can be generated in the 
same manner. Consequently, E({a(0)})={{a(0),b(0)}, {a(0),d(0)}, {a(0),a(1)}, {a(0),d(1)}}, as shown in Fig. 9. 
Note that according to the “unmatched dat pruning” strategy, we only add the matched dats of both 1-patterns to 
the dat-list of the newly generated 2-pattern.  

Since we have E({a(0)}), we can join every 2-pattern β in E({a(0)}) to every 2-pattern in J(β) to get frequent 
3-patterns. Consider the pattern {a(0),b(0)}. We know that the patterns joinable to {a(0),b(0)} are those in 
E({a(0)}) that are larger than {a(0),b(0)}. In other words, J({a(0),b(0)})={{a(0),d(0)},{a(0),a(1)},{a(0),d(1)}}. 
In this stage, the join operation is performed by matching the dat-lists of two joinable patterns, so we join 
{a(0),b(0)}<1,4,5> and {a(0),a(1)}<1,2,3,4,5> to get {a(0),b(0),a(1)}<1,4,5>; and join {a(0),b(0)}<1,4,5> and 
{a(0),d(1)}<1,3,4,5> to get {a(0),b(0),d(1)}}<1,4,5>. Therefore we get E({a(0),b(0)}) = {{a(0),b(0),a(1)}, 
{a(0),b(0),d(1)}}, as shown in Fig. 9. After obtaining E({a(0),b(0)}), we join every 3-pattern β in E({a(0),b(0)}) 
and every 3-pattern in J(β) to find frequent 4-patterns. According to the “infrequent k-pattern pruning” strategy, 
for joining {a(0),b(0),a(1)} and {a(0),b(0),d(1)}, the last extended item of the former and that of the latter can 
be combined to form a 2-pattern, {a(1),d(1)}, which is a subset of the joined pattern, {a(0),b(0),a(1),d(1)}. 
Pattern {a(1),d(1)} can be transformed into {a(0),d(0)} by taking dat=1 as the reference point. We join 
{a(0),b(0),a(1)}<1,4,5> and {a(0),b(0),d(1)}<1,4,5> to find frequent 4-patterns, and obtain 
{a(0),b(0),a(1),d(1)}<1,4,5>, as shown in Fig. 9. The other two 3-patterns, {a(0),d(0),a(1)} and 
{a(0),a(1),d(1)}, can be obtained in the same way. 

A similar procedure can be applied to the nodes containing {b(0)} and {d(0)} by calling the DFS function 
recursively. Fig. 9 shows the complete set of frequent patterns and their dat-lists. Starting from the node 
containing {b(0)}, the patterns found include {b(0)}, {b(0),a(1)}, {b(0),d(1)}, and {b(0),a(1),d(1)}. Meanwhile, 
starting from the node containing {d(0)}, the patterns found include {d(0)}, and {d(0),a(1)}. The mining 
process is terminated once the node containing {d(0),a(1)} has been processed, since no more frequent patterns 
can be generated. 
 
4. Performance Evaluation 

We evaluated the performance of the ITP-Miner algorithm on two synthetic datasets. The datasets were 
generated with different parameters synthetically. We compared the ITP-Miner algorithm with the FITI 
algorithm [24]. All experiments were performed on an IBM Compatible PC with an Intel Pentium IV CPU 
2.8GHz, 1G-byte main memory running on Microsoft Windows XP. Both algorithms were implemented using 
Microsoft Visual C++ 6.0. 
 
4.1 Generation of synthetic data  

We use the same method as that in [24] to generate synthetic transactions. The process involves two steps: 
first, we generate potential frequent itemsets, after which we generate transactions in the database from those 
itemsets. The parameters used to generate synthetic data are shown in Table 3.  

Table 3. Parameters. 
Parameter Meaning

|D| Total number of transactions
A Average length of the transactions
F Number of potential frequent inter-transaction itemsets
MaxT Maximum length of the transactions
L Length of each potential frequent inter-transaction itemset 
MaxI Maximum length of the potential frequent inter-transaction itemsets 
S Number of distinct items
M Maxspan 

 
Table 4. Parameter settings for the two synthetic datasets. 

Parameter Dataset1 Dataset2
|D| 10,000 1,000
A 5 100
F 1,000 1,000
MaxT 10 200
L 5 6
MaxI 10 10
S 500 500
M 3 5

The potential frequent inter-transaction itemsets, Litem, may span several transactions. The length of each 
itemset follows a Poisson distribution whose mean is equal to L, and the maximum length of an itemset is MaxI. 
Every itemset in Litem is associated with a relative distance ranging from 0 to M (maxspan). Hence, we can 
generate |D| transactions from Litem. The length of each transaction is selected from a Poisson distribution whose 
mean is equal to A, and the maximum length of any transaction is MaxT. 

We generated three synthetic datasets using the parameters shown in Table 4, the first two are similar to the 
datasets used in [24]. The first dataset, Dataset1, had 10,000 transactions, with an average of 5 items per 
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transaction. Dataset2, on the other hand, had only 1,000 transactions, but each one contained 100 items on 
average.  
 
4.2 Experiments on synthetic data 

In this section, we compare the ITP-Miner algorithm with the FITI algorithm by varying one parameter, 
while maintaining the other parameters at the default values shown in Table 4. 

Fig. 10. Minimum support versus run time, 
Dataset1 with maxspan=3. 

Fig. 11. Minimum support versus run time, 
Dataset2 with maxspan=5. 

Fig. 10 shows the minimum support versus the run time for Dataset1. The minimum support varies 
between 0.04% and 0.1%, and the ITP-Miner algorithm runs 10-50 times faster than the FITI algorithm. Fig.11 
illustrates the minimum support versus the run time for Dataset2. In this case, the support varies between 10% 
and 15%, and the ITP-Miner algorithm runs 3-8 times faster than the FITI algorithm. The ITP-Miner algorithm 
outperforms the FITI algorithm because the latter generates a huge number of candidates when the support is 
small. To count the support of candidates, the FITI uses the Apriori algorithm to count the support of 
intra-transaction candidates by repeatedly scanning the database. Whenever the FITI algorithm reads a new 
transaction from the FIT tables [24], each inter-transaction candidate must be matched with maxspan+1 
consecutive transactions. Moreover, support counting of the FITI algorithm is quite time-consuming because it 
needs to perform subset matching. In contrast, the ITP-Miner algorithm counts the supports by joining the 
dat-lists of joinable patterns, and only needs to scan the database once; thus, it is more efficient than the FITI 
algorithm.  

Next, we illustrate the impact of the maxspan on the performance of the algorithms for three datasets in 
Figs. 12 and 13. As the maxspan increases, more candidates and patterns are generated. Thus, the run-time of 
both algorithms increases. We observe that the run-time of the ITP-Miner algorithm increases slowly as the 
maxspan increases. For the FITI algorithm, as the maxspan increases, the range of the FIT tables [24] that must 
be scanned to count the candidates’ supports increases. In addition, the number of generated candidates 
increases rapidly in a breadth-first search manner. Hence, the time required to count the candidates’ supports 
increases. In contrast, by joining patterns in the ITP-tree, the ITP-Miner algorithm uses a depth-first search 
manner to avoid having to scan the database and count the support for a large number of candidates. Thus, the 
ITP-Miner algorithm performs efficiently when the maxspan increases. 

Fig. 12. Maxspan versus run time, 
Dataset1 with minsup=0.05%.

Fig.13.Maxspan versus run time, 
Dataset2 with minsup=11%.

In summary, since the ITP-Miner algorithm employs the ITP-tree and dat-lists to mine frequent patterns, it 
only requires one database scan and can localize candidate joining, pruning, and support counting to joinable 
patterns. As the “infrequent 2-pattern pruning” and “infrequent k-pattern pruning” strategies are used to check if 
both patterns are joinable, the ITP-Miner algorithm avoids many unnecessary join operations. It outperforms 
the FITI algorithm by one order of magnitude and requires less main memory storage. 

  
5. Conclusions and Future Work 

This work has been published in Information Sciences Journal [27]. In this study, we have proposed an efficient 
method for mining all frequent inter-transaction patterns. The method consists of two phases. First, we design a 
data structure, called a dat-list, to record the dimensional attribute information of a frequent item in a database. 
Then, we devise a data structure, called an ITP-tree, to store the frequent patterns found. Second, we propose an 
efficient algorithm, called ITP-Miner, to mine the frequent patterns in a depth-first search manner. By using the 
ITP-tree and dat-lists to mine frequent patterns, our proposed algorithm only requires one database scan and can 
localize joining, pruning, and support counting to a small number of dat-lists. Therefore, our proposed 
algorithm is more efficient than the FITI algorithm. The experiment results show that ITP-Miner outperforms 
the FITI algorithm by one order of magnitude and requires less main memory storage space. 

Although we have shown that the ITP-Miner algorithm can efficiently mine frequent inter-transaction 
patterns, there are still some issues to be addressed in future research. First, we may also extend the algorithm 
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from 1-dimensional transaction databases to higher dimension databases. Second, without generalization, too 
many patterns may be mined and they may be too detailed. However, by generalizing with a concept hierarchy, 
we may be able to obtain patterns or rules that are more abstract and meaningful.  
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