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Abstract

The occurrence of the recurrent events for a subject can be represented as a realization of a stochastic counting process.
Semiparametric hazards models for serial time intervals between successive events are considered to describe the occurrence of
the repeated events relayed to the time-dependent and time-independent covariates as well as the event history. In application
to accidental events such as needle-stick injury in hospitals and regular events such as woman's menstrual cycles, it may be
natural to assume a common baseline hazard function for all episodes of events. The common baseline hazard model includes
two types of effects, the global common and episode-specific effects. Two types of likelihoods can be constructed. The first
one is the partial likelihood in which the order of event is the stratification variable. Secondly, the profile likelihood is
established by non-stratified approach. This project develops the estimation of regression parameters and the common
cumulative baseline hazard function based on these two likelihood structures. Examples will be conducted to illustrate the

performance of the proposed estimation.

KEY WORDS: counting process; partial likelihood; profile likelthood; proportional hazards model.



1 INTRODUCTION

In many studies subjects may experience two or more events under observation. The
events may be repetitions of essentially the same type or a series of recurrent events of
different types. The project in the second year considers modeling the hazard function
for serial durations between successive events conditioning on the past counting-process
history. Most literatures (Prentice, Williams and Peterson, 1981; Chang and Hsiung,
1994; Chang and Wang, 1999; Lawless and Wigg, 2001) emphasis the development of
the conditional hazards models with the distinct baseline hazard functions for different
episodes of events. However, in application to the occurrences of accidental or regular
events such as needle-stick injury in hospitals and woman’s menstrual cycles, it may be
natural to restrict the baseline hazard function to be common for each episode of events.
As suggested in Chang and Wang (1999), this project considers the conditional hazard
models involving both structural and episode-specific parameters and the baseline hazard
function is assumed to be the same for each episode of events.

Define Ty = 0. Let T; be the random variable representing the occurrence time
of the jth recurrent event and let Y; = T; — T;_; be the recurrence time of interest,
j=1,2,.... Let z(u) = (21(u), 22(u)) be a vector of covariates at time u and Z(t) =
{z(u) : u < t} be the corresponding covariates history up to and including ¢. Define
N@t)={Th,....,Tj-1 : T1 < Tp < ... < Tjo; <t < T} to be the event history prior
to the time ¢t. This common baseline hazard model including both the structural and
episode-specific parameters can be written as

ACEIN(2), Z(2)) = do(t — tj—1)exp{z1(t)B + 22(t)v;}, (1)

fort > t;_1, where j—1 =max{¢: T, < t,£ =1,2,...} is the number of recurrent events
prior to time ¢.

Suppose that only the structural parameters are considered in the conditional hazard
models, that is,

A(EIN(2), Z(t)) = Ao(t — tj—1)ezp{z(8)B}- (2)

A few special cases of model (2) are of interest. First, if only consider the time-
independent covariate in the model, the corresponding process is a renewal process
with independent time intervals for all episodes of events. The statistical inference and
estimation of 8 are based on the same approach as those used with univariate survival
data. A second special case of model (2) of interest is the first-order Markov model or
modulated renewal processes, where previous time intervals are time-dependent covari-
ates in the model. The full likelihood could be decomposed into two parts. One part has
exactly the same form as the partial likelihood derived from the renewal processes, but
it does not have a partial likelihood interpretation as discussed in Oakes and Cui (1994)
and Chang (1995). It is noted that the asymptotic distributions for the estimators of
the regression parameters and the cumulative hazard in model (2) for single renewal se-
quences have been developed by Oakes and Cui (1994). However, Oakes and Cui (1994)
established the asymptotic properties based on the large number of recurrences for a sin-
gle modulated renewal process. In medical studies the collected data frequently involve
Jarge number of (subjects) sequences with finite recurrences during a time period. In
addition, the stratified partial likelihood estimating method for § considered in Chang
and Wang (1999) is a legitimate estimating method for 4 in models (1) and (2), where

2



the order of episodes of events serves as the stratification variable. But the stratified
procedure may not be efficient, especially when the censoring is heavy. The goal of this
project is to develop a more eflicient estimating method for 3, v,’s, and the common

baseline cumulative hazard function in model (1).

In Section 2, we study the likelihood structure based on Model (1). The estimation
of the regression parameters and cumulative baseline hazard are considered in section 3.
The statistical properties of the parameter estimators in Model (1) are also discussed in
Section 3. A simulation study is presented in Section 4 to illustrate the performance of
the estimators.

2 LIKELIHOODS

Suppose that there are n subjects under observation. Let {N;(-), Z:(:), C;} be the
event process, covariates and censoring time for subject . Assume that the {N;(-), Z:(-), Ci},
i = 1,2,...,n, are independent and identically distributed. Let K;(¢) be the number
of events occurring in the interval [0,¢). Let T;; be the jth event time for subject
t,and Yy, = T3 — Tij-1, ¢ = 1,2,...,n, 7 > 1. The observed recurrence times are
{ya, - .. ,y,»’ki(c,.),y: ki (o) 41} Where ¢; is the realization of the random censoring time C;
and y;'L ki(e)+1 = Ci — liki(c:) 1S the time from the last observed event to the censoring
time. Further define z;; = y;; for j = 1,2,...,ki(c;) and Tik(c) 4l = y{‘)‘ki(q)ﬂ for later
discussion. Let K = mazi<i<o{Ki(Ci)}.

Define y(1),; < y2),; < --- < Y(4;),; to be the d; ordered distinct recurrence times for
the jth recurrent event. Let Z(;) ; denote the covariates history up to and including ¢ ;,
the ordered event time corresponding to y;) ;. With the help of the above notation and
under the independent censoring assumption,

At | Ni(t), Zi(t), C; > t) = A(t | Ni(t), Zi(t)),
the full likelihood for model (1) can be expressed as,

dj “i).d
L0855, = 1)) = T T] dolais el 005 0t00mde = gy ol

j>li=1

{z1(w)B+z2(u)v; }d’u}

3)

2.1 Profile Likelihood

As discussed in section 1, we can not construct a partial likelihood which is a product
of a series of conditional probabilities. As suggested by Breslow (1974), substituting the

Breslow estimator of the baseline cumulative hazard function, Aq(t),

)= % .

m2>1y(;) m<t ijl EKER]'(y(i),m) e:vp{za (tf,j—l + y(i),m)ﬂ + zf?(tl,j—l + y(i),m)’)’j}’




in L(B;7;,J > 1; Ao()) and simplifying yields a profile likelihood proportional to

£p1(/6;7j7j 2 1) =
d;

i exp{2(i),1(ta),1)8 + )2 (ta),3) 5} (4)
3121 2om>1 2 {leRm(ugsy )} ZPLZ0 (tem—1 + Y(0),1)B + 2e2(tom—1 + Y(),i)vm}

where R;(u) is the risk set defined at u for the jth recurrent event among those who have
had j —1 recurrent events - namely, R, (yg);) = {£: ZTom > Y, and ke(tem—1+yg);) >
m — 1}.

2.2 Partial Likelihood

To construct the partial likelihood for Model (13, we first define the “complete
history” of the first j recurrent events up to and inclu ing time y; 5,

Hi(vw ) = HZawnyvwa) - (Zayn, Yayn)d; - -
{(Z0)5-1,9@,5-1)s -+ (Z(g;_0),5-15 Yia;_1)i-1) b5
{(Z(l)’.?’ y(l)vj)’ e (Z(i)?j’ y("))])}}’

for i < d; and j < K. The complete history, H;(y@),;), consists of full information of

counting processes and covariates for the first j — 1 recurrent events, and information of
counting processes and covariates up to and including Y(i),; for the jth recurrent events.

Thus, the partial likelihood, £, can be simply expressed as

d.
2 ezp{2)1(t),5)8 + 22 (tw.i) i}

jl;‘[l =1 2 {teR; ()} €ZP{za (te -1 + U(i),5)B + ze2(te o1 + Y6t

The partial likelihood is the same as derived in Chang and Wang (1999) by the model
with various baseline hazards for different episodes of events.

3 ESTIMATION

We first introduce assumptions and notation that facilitate the development of the
asymptotic properties. Suppose that a longitudinal study is conducted over a finite time
interval [0, co] so that all the censoring times are bounded, C; < ¢, < co.

First, consider a simpler case where model (1) involves only finite episode-specific

parameters v;, j = 1,...,J. The following assumptions are considered: (A) Z(t) =
{Zi1(t), Ziz(t)} are bounded uniformly in ¢ for each i; (B) [ Ao(t)dt < oo; (C) A(t) >0
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for t € (0,c0); (D) inf; Pr(Ci > ¢ Ki(Ci) > 7 — 1) > 0; (E) A(E|N:i(t), Zi(t)) = 0 if
K;(t) > J for an integer J > 1

The assumption (E) with assumptions (A) and (B) implies that K;(co) (i =1,...,n)
are bounded by a constant J. From assumptions (A), (C) and (E), it can be shown

that Pr(K;(C;) > J) > 0, which ensures that the number of the observed Jth episodes
increases as the sample size n increases.

Let [3,,1 be the estimator of 3 derived from maximizing the profile likelihood £, and
B2 is the estimator of 3 based on the partial likelihood L,;. The asymptotic properties
for 3,2 and ¥;,2’s are the same as discussed in Wang and Chang (1999).

We first consider Model (2), a special case of (1). Without v; (i.e. all y; = 0), the
profile score functions for 3 and +y; are

[ (1)
1 _ Zi 7. (/8)773/) dM.: 5
B = =Ty a(6s) - F i y)} 5, )
r s
Uny(B,v) = ZZ/ Zip(big) I(Kltiy) > 5 - 1) - —@]—(—ﬁl—)} dM;;(y), (6)
J>1 =17 | an(ﬁ YY)
where fl.’l = y+t i,j~1) dMU (y) sz] (y) ](XZ] > y, i(fij) > .7 - 1)/\0(y)€$p{2i1 (Elj)ﬂ+
2:12(tu)'71} NtJ(y) =I(X;; <y Y;= XmK( i) = - 1)

(")(ﬂ,% Y) = 2 Tmo1 Ceehinty) 2151(tem)®€$p{221(tzm)ﬁ‘FZez(tem)’Ym} and S52(8,7;y) =

2 1 ZZGR,,n(y) 2e3(tem)®1(Ko(te;) > 7 — 1)ezp{za1(fem)B + 2e2(tem)y;} for v = 0,1,2.
The assumptions (A) and (B) imply that the condition F(K;{co)) < co and then

1 Ke(Cy)

E(S®(B,7y) < bi=Y. E( Y. I(Yem > 1)) (7)
na me1
S bum 3 B(KAC) < by < oo, (8)
=1

where zﬁ”exp{zgl(fgm)ﬁ + 2p3(tem)Ym } is bounded uniformly by a constant b; from as-
sumption (A). Similarly, E(Ség(ﬂ,’y;y)) < oo and the second moments of S’l:;)(ﬁ 7 Y)
and S2nJ (8,v;y) are also uniformly bounded from assumption (E). Define s (ﬂ 7, y) =
E(S(v)(ﬁ,'y, ))ands (ﬁ 7,9) = E( é’,’l)](ﬂ v;y)). From the above discussion, St N3, 7;y)

and SQnJ(ﬂ 7;y) are convergent in probability to s(”) (8,7,y) and s(") (6,7,y), respec-
tively. Therefore, one has the following approximations

pl _ i g 1n (ﬁ )
Uns(B,7) = ;;/ ~2’:’1(%’ i) = z—@(—ﬁ%} dM;;(y) + op(1), and (9)
I (1)
Urs, L (B,y) = Z Z/ zo(ti I(Ki(t;) > 7 — 1) — %ﬁm} dM;;(y) + of10)
j>1‘L 1 L 8211._7(/67 7Y



It is noted that the above two profile score functions can be viewed as a generalized
version of the partial score function from univariate survival data. Using the history
H;(-) as defined in section 2.1, asymptotical normality of 8y and 4; (j=1, ..., J) can be
developed by the counting processes and martingale techniques in survival analysis and
the corresponding variance-covariance matrix of 3, and ¥; (j=1, ..., J) is estimated by
the second derivative of the logarithm of the profile likelihood Lp;.

Now consider the general model defined in Model (1) involving infinite episode-
specific parameters ({y;}) in which the number of {;} increases with the sample size n.
That is, the estimation of § will be established without assumption (E). As discussed in
Chang and Wang (1999), 9,1 for large j > 1 may not be consistent since assumption
(C) does not guarantee Pr(K;(C;) > j) > 0 as j — oo. In order to avoid the effect
of the inconsistent estimation of -y;’s on the estimation of (3, consider a substratified
profile score function for 8 which consists of two parts: the first part is the profile score
function using the first J recurrences provided that Pr(K;(C;) > J) > 0 and the second
part is the stratified partial score function (considered by Chang and Wang, 1999) using
the rest of the data.

4 SIMULATION

In the previous sections, we have shown the asymptotic normality of 3 and the {¥;1}
for the special case with finite recurrent events. When model (1) involving infinite
7,’s, three-type estimating procedures of [ are discussed in the previous section. A
simulation study is conducted to illustrate the performance of estimators of 3 and v;’s

with three different estimating procedures. A sample with size=50 is generated from
the Weibull distribution with the conditional hazard function of the jth event time,
/\Oj(tj - tj_l)emp{—ﬁzl - ’7_7'22)}, where /\Oj(tj b tj_l) = (20)(t] - tj—l); 1 BZTL(]., 05)
and z; ~ Bin(1,0.7). The true parameter values are 3 =1; 7 = =2, yo = —2, 73 = =3,
Y4 = —4, 5 = —5 and 7; = —1 for 5 > 5. The independent censoring times are
generated from the uniform distribution on [0, ¢}, with ¢ = 4. The average number of
events for a subject is 2.5. Tables 1 gives the simulation results based on 500 replicates
of samples generated from the above simulation procedures.

The display in Table 1 includes the mean estimates of 8 and +;’s and the Monte
Carlo variance estimates (var) for the corresponding § and 4;’s. From Table 1, we can

see that the MSEs of Bpl based on the profile likelihood and substratified method are
less than that based on the partial likelihood.



Table 1: Simulation with Sample Size=>50

Parameter Profile Partial Substratified(k=4)

estimate(mse) estimate(mse) estimate (mse)
3 1.09 (0.108) _ 1.096 (0.14) 1.083 (-0.108)
- -2.04 (0.348)  -2.129 (0.665) -2.052 (0.365)
- -2.06 (0.474)  -2.108 (1.337) -2.086 (0.519)
s -3.19 (0.993) -7.506 (—) -3.214 (1.07)
" -5.20 (153.925)  -81.651 (—) -5.19 (153.908)
- 5.98 (518.434)  -76.714 (—) 77.15 (—)
6 88.56 (—)  10.026 (—) 9.401 (—)
" -83.42 (—) -8.406 (—) -8.592 (—)
- 21.96 (—) 10.279 (—) 9.777 (—)
Yo 14.45 (—)  -272.471 (—) -272.496 (—)
Mo 44.89 (—)  102.884 (—) 102.481 (—)

5 Conclusion

This project considers the extended semi-Markov model with the structural and episode-
septic parameters. The estimation of the structural and episode-specific parameters
and the cumulative hazard can be obtained based on the profile likelihood when the
number of events is bounded. In addition, the corresponding large sample properties
can be established as the same as the traditional univariate survival data through the
empirical count processes and the martingale representation. When the number of events
may be infinite under the condition that the expected number of events is finite, a
substratification estimating approach for estimating 8 can be developed to handle the
inconsistent estimates of ;. ,
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