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SUMMARY

The statistical analysis of spatially correlated data has become an important scienti�c research topic lately.
The analysis of the mortality or morbidity rates observed at di�erent areas may help to decide if people
living in certain locations are considered at higher risk than others. Once the statistical model for the data
of interest has been chosen, further e�ort can be devoted to identifying the areas under higher risks. Many
scientists, including statisticians, have tried the conditional autoregressive (CAR) model to describe the spatial
autocorrelation among the observed data. This model has greater smoothing e�ect than the exchangeable
models, such as the Poisson gamma model for spatial data. This paper focuses on comparing the two types
of models using the index LG, the ratio of local to global variability. Two applications, Taiwan asthma
mortality and Scotland lip cancer, are considered and the use of LG is illustrated. The estimated values for
both data sets are small, implying a Poisson gamma model may be favoured over the CAR model. We
discuss the implications for the two applications respectively. To evaluate the performance of the index LG,
we also compute the Bayes factor, a Bayesian model selection criterion, to see which model is preferred for
the two applications and simulation data. To derive the value of LG, we estimate its posterior mode based
on samples derived from the BUGS program, while for Bayes factor we use the double Laplace–Metropolis
method, Schwarz criterion, and a modi�ed harmonic mean for approximations. The results of LG and Bayes
factor are consistent. We conclude that LG is fairly accurate as an index for selection between Poisson gamma
and CAR model. When easy and fast computation is of concern, we recommend using LG as the �rst and
less costly index. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION AND MOTIVATION

Modelling spatially collected, possibly correlated, data has become an important scienti�c research
topic for scientists such as environmental engineers, hydrogeologists and epidemiologists. Whether
the spatial correlation exists may lead to di�erent decision making for environmental remediation,
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public policy, or inference on disease aetiology. For instance, analysis of the mortality rates ob-
served at di�erent areas may help to decide if certain locations should be considered high-risk
areas. One interesting question therefore is the selection of a proper model to represent the under-
lying distribution of the observed spatial data. The classical Poisson regression model for counts
data may not be applicable for the observed number of deaths since the true but unknown rates
may not be identical across areas. In addition, the disease numbers based on the observed rates
at areas on the same map may not be comparable since the variance may be larger than ex-
pected under the Poisson model. The observed rates may range greatly if the population sizes or
other demographic characteristics are not of similar magnitudes. Two alternative models count-
ing for the extra-Poisson variability are the Poisson gamma [1] and conditional autoregressive
models [2].
The Poisson gamma (PG) model assumes the rates at various areas are independent and identi-

cally distributed from a gamma distribution, namely the rates are exchangeable. Consequently, the
estimates resulting from the Poisson gamma model will shrink toward the overall mean. Under
the conditional autoregressive (CAR) model, however, the rates are assumed to be correlated with
each other. In other words, the variability among the observed rates can be smoothed via the cor-
relation due to the spatial structure. Therefore, the CAR model has larger smoothing e�ect than the
Poisson gamma model. The CAR model has, in fact, received great attention lately, especially in
applied research areas. Most research so far has concentrated mainly on deriving estimates [3–5].
It has not yet been discussed in the literature how to choose among the Poisson gamma and CAR
models.
This paper was motivated by a study [6] on mortality rates of asthma in Taiwan. Although it

was suspected that asthma mortality rates from neighbouring areas were similar, the researchers
asked for evidence in choosing between the Poisson gamma and CAR models. Inference based
on di�erent models may lead to di�erent public health policy or various aetiological studies. For
instance, because areas identi�ed as high-risk areas may require special attention, such as a well
designed study for levels of pollution, it is important to select an appropriate statistical model for
the observed rates and for pointing the priority areas. The resulting areas may be di�erent when
�tting the PG and CAR. When these two models are both of interest and a better one needs to
be selected for making statistical inference later, a quantity for the purpose of selection should
be employed. In this paper we propose to use the ratio of local to global (LG) variabilities as
an indicator of which model �ts the data better. With help from the Markov chain Monte Carlo
method [7], this quantity is easy to estimate. We will demonstrate its usage in Taiwan asthma
mortality and Scotland lip cancer data [6; 8]. The �rst mortality data are simpler in the sense that
no explanatory variable is included, while the lip cancer data contain a covariate. In order to
examine the accuracy of LG in model selection, we use Bayes factor, a measurement for Bayesian
model selection and hypotheses testing [9; 10], as a con�rmation.
Speci�cally, our purpose is to test the Poisson gamma versus CAR model. In other words, to

test whether the exchangeable model or the correlated model describes better the observed spatial
variability. The main index we investigate is LG, the ratio of local to global variabilities under
the CAR model. This quantity has been mentioned brie
y in other places [4; 5] to be used as an
indication of the relative magnitudes of spatial heterogeneity. When LG is large, it indicates that
the local spatial variation is larger than the global variation. An estimate of LG can be easily
obtained from their posterior samples when �tting the CAR model using the BUGS [11] program.
Once its value under CAR is obtained �rst, it can indicate whether CAR, the model with spatial
correlation, is a good model for the data. If CAR is not proper for the observations, then �tting
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an exchangeable model such as Poisson gamma may be necessary. The other index, Bayes factor,
for checking the accuracy of LG, is a measure of evidence supported by the data [9]. It takes
account of not only any prior knowledge regarding the parameters but also the uncertainty in
each competing model [10; 12; 13]. Because the exact evaluation of the Bayes factor in this setting
is not analytically feasible due to the complexity in computations, we use the posterior samples
and the double Laplace–Metropolis method for approximation. It is essentially a variant of the
Laplace–Metropolis estimate [14] but is more suitable in testing PG versus CAR model for the
di�culty in computation. We also discuss the use of Schwarz criterion and a harmonic mean
estimate for approximations [12]. Some modi�cations will be necessary when applied to the CAR
model.
Following this section, we discuss the backgrounds of two mortality data. In Section 3, we give

notations for the two models and specify quantities of interest. We will de�ne LG and discuss how
to obtain the approximations to Bayes factor. In Section 4, we investigate the LG when applied
to two examples. In Section 5 we examine the operating characteristics and performance of LG
and compare it with Bayes factor using data simulated from CAR model. All computations were
based on the BUGS output for computational convenience. We summarize and discuss our results
in Section 6.

2. TWO CASE STUDIES: TAIWAN ASTHMA MORTALITY AND SCOTLAND
LIP CANCER

Asthma mortality and morbidity have been on the rise in Taiwan and world-wide [15; 16]. Failure
to prevent episodes of asthma attacks and to decrease the mortality may elevate the medical costs.
Some studies point out that this recent increase may relate to environmental and genetic factors
[16–18]. Some studies search for the implications for public health preventive strategies [19; 20]
or focus on the evaluation of the e�ectiveness of existing intervention programs [21–23]. Before
the formation and advocation of public health policy to residents in certain regions, it must be
identi�ed that certain areas are at higher risks than others and thus deserve more attention. The
�rst example we discuss is the asthma mortality rates for the 11 administration areas in Taipei
city in 1991 (Figure 1(a)). The goal is to investigate whether there exists any area with higher
mortality rates. Once the statistical evidence is con�rmed, the public health organization may
need to evaluate the availability of timely medical attention for that priority area or consider an
intervention programme for the whole study region if no di�erence is found among the 11 areas. In
statistical terminology, we need to construct models to describe the spatial pattern of the mortality
data and to identify the special areas.
The two spatial models, Poisson gamma (PG) and conditional autoregressive (CAR), will be

used to analyse these asthma mortality rates. Under the PG model, the mortality in area i will not
a�ect the magnitude of the mortality in area j due to independence. This model is simple and easy
to understand conceptually but the independence assumption rules out the possibility that nearby
areas may share similar medical resources and thus result in mortality of similar magnitudes. The
alternative CAR model considers the correlation among neighbouring areas. In other words, the
mortality rates of adjacent areas i and j are allowed to be similar and correlated to a certain
degree. The two models may result in di�erent estimates and thus provide di�erent areas of higher
risks.
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Figure 1. Maps of the (a) crude mortality rates, (b) estimated rates under Poisson gamma model, and
(c) estimated rates under CAR, for Taipei city. Darker colours indicate higher rates.

To simplify the computation and illustrate the methods discussed later, we chose deliberately
the raw counts of deaths for males aged from 25 to 59 for the areas under investigation. The
observed numbers were 2; 1; 1; 1; 4; 1; 2; 0; 1; 3 and 0, respectively. In this example, we consider
no other variables and thus the computation would be less complicated. It should be borne in
mind, however, that the methodology discussed in this paper should not be limited to simple
cases only. In the following example, we discuss another data set which contains an explanatory
variable in the model. The more variables that are included, the more intensive the computation
becomes.
The second example considers the lip cancer rates for N =56 areas in Scotland [8; 24].

A description and map for the data can be found in other references [8; 24]. The lip is the most
common site for oral cancer in western countries. It is known to occur mostly in ageing White
males and is extremely rare among Blacks and Orientals [25; 26]. Two major risk factors for lip
cancer are rural residence and outdoor occupations related to sun exposure [26; 27]. In this data,
the observed number of cases and a covariate measuring environmental risk for each area are
available. This covariate measures the percentage of labourers employed in outdoor occupations
such as agriculture, �shing and forestry for each area. It was noted that the covariate seems to
aggregate spatially and the pattern is similar to that of the lip cancer rates. We are interested
in knowing whether the cancer rates correlate spatially and whether this correlation can be ex-
plained by the covariate. Again, we use Poisson gamma to represent the model without spatial
correlation. We use CAR to represent the model with spatial correlation among neighbouring ar-
eas. The covariate relevant to sun exposure is included in both models. If CAR is preferred over
the PG model, it may imply that we need to identify factors for the type of correlation or ex-
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amine similar characteristics shared by those areas. If the PG model is favoured, it implies that
the percentage of the workforce engaged in outdoor occupations can explain the observed local
correlation.

3. NOTATIONS AND METHODS

For the Poisson gamma model, let yi denote the observed number of diseased, mi be the pop-
ulation size, pi be the disease rate (morbidity), �i (=mipi) be the Poisson parameter for area i
where i=1; : : : ; N , and N be the total number of areas under investigation. The model can be
written as (yi|�i)∼Poisson(�i) with (�i|�; �)∼ gamma(�; �). When covariates xi are of interest,
we decompose logpi into �1xi=10 and bi where bi is a random error and thus assumed to fol-
low a normal distribution. These two models (Poisson-gamma and Poisson-normal) are commonly
used to describe extra-Poisson variability [1; 23]. Because these two are both uncorrelated ran-
dom e�ects models, we refer them to the PG model for simplicity. In these models, the expected
number �i of diseased for area i is assumed independently and identically distributed from a dis-
tribution. In other words, the �i’s in di�erent areas are exchangeable and the gamma distribution
on �i is the source of the extra-Poisson variability. The prior density functions on the hyperpa-
rameters � and � can be assumed gamma (a; b) and gamma (s; t) distributions, respectively. By
changing the values of a; b; s and t, the magnitudes of the spatial variability among yi’s may be
di�erent.

3.1. CAR Model and Index LG

The Poisson gamma model, although it smoothes the spatial variability through the gamma distri-
bution, may not be ideal for spatially correlated observed data. An alternative is the conditional
autoregressive (CAR) model. The observation yi follows a Poisson distribution with parameter
(mipi) where log(pi)= � + �i. That is, the logarithm of pi is decomposed to two parts. The
components �j; j 6=i are rates of the �rst-order neighbours of area i, and follow an intrinsic normal
prior [8; 28] with the constraint

∑
i �i=0 for identi�ability. The conditional mean of �i given its

neighbours and � is ��i, and the variance is 1=(ni�). The other component � stands for the global
spatial heterogeneity. It is assumed that � is from a normal distribution with mean c and precision
�. This model is sometimes referred to as an intrinsic Gaussian conditional autoregressive (ICAR)
[28; 29]; here we will call it simply the CAR model. The spatial correlation in CAR is modelled
through the intrinsic normal prior [8; 28] on �i and hence the expected numbers of diseased are
correlated with each other. Because the mean of �i depends only on rates from adjacent neigh-
bours rather than all others, it is sometimes referred to as the Gaussian intrinsic autoregression.
Writing � as a vector (�1; �2; : : : ; �N ) and using multivariate normal distribution for notation, its
precision matrix Q; Q=D × (I − C); would be positive semi-de�nite [30]. In other words, it is
not invertible due to the local correlation. The I above is the identity matrix, D is a diagonal
matrix with dii= ni�, and the (i; j)th entry in C is cij =wij=ni where wij =1 if areas i and j are
neighbours, wii=0, and 0 otherwise.
The two hyperparameters, � and �, represent, respectively, the precision of the global spatial

e�ect (�) and that of the local spatial e�ect (�i). The � and � are further assumed from two gamma
distributions, respectively, where each distribution may represent vague prior information for the
parameter. The LG is de�ned as �=�, namely the ratio of local variability (�−1) to global variability
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(�−1). Although the local spatial variation for each area is 1=(ni�), here we have dropped ni and
used simply the inverse of � for local variability for convenience. It was argued [4] that when
LG is close to the average value of numbers of neighbours (�n=

∑
ni=N ), both local and global

spatial variability are equally important. When LG is larger than �n, the locally correlated spatial
variation is more important. In other words, larger LG indicates greater local variation and thus
the CAR model may be favoured over unstructured spatial models such as Poisson gamma. When
LG is small, it may indicate that it is inappropriate to �t the locally correlated spatial variation.
When LG is close to �n, the simpler PG model may be preferred because of no strong support
for either model. Based on the Gibbs output from the BUGS program, obtaining the estimates of
LG is fairly straightforward; we will show later that one can simply look at its value and decide
whether CAR is a proper model and if �tting an exchangeable model such as Poisson gamma
is necessary.

3.2. Three Approximations to Bayes Factor

When there are two competing models for a data set, the Bayesian approach is to use the Bayes
factor as a model selection criterion. The Bayes factor, de�ned as the posterior odds divided by
the prior odds in favour of H0, originally was used as a measure of strength of evidence in
testing the null hypothesis H0 versus alternative H1 [9; 31]. It can be written as the ratio of two
marginal probabilities of data, Pr(y|H0)=Pr(y|H1), where the representation of each probability
can be found in Appendix A. The Bayes factor can also serve as a measure for model selection
when each competing model is a priori equally likely [10]. In our settings, the two competing
models are Poisson gamma and CAR. By convention, we put the simpler PG model as the null H0
and CAR as the alternative. We now need to evaluate the value of Bayes factor to decide which
model �ts the data better. Because the analytical forms of these two marginal probabilities are not
tractable, we will use approximations. In the following, we describe the double Laplace–Metropolis
method, Schwarz criterion, and the Markov chain Monte Carlo method for approximations. The
three approximations to the marginal probability are all based on the output obtained via the
Markov chain Monte Carlo (MCMC) method [7]. The MCMC method uses the Markov chains
to perform Monte Carlo integration. One special case, the Gibbs sampler technique [32; 33], is
often used to obtain posterior samples of quantities of interest from the set of the fully conditional
distributions. We have used the BUGS [11] program to obtain the posterior samples of � and
� under the Poisson gamma model as well as the samples of �, �, c; � and � under the CAR
model.
The �rst approximation uses the concept of Laplace’s method [34–36] which is accurate with

order O(N−1) where N is the sample size. Owing to the di�culty in evaluating the MLE under
CAR, we will use the double Laplace–Metropolis approximation. The �rst step is

Pr(y|CAR)=
∫
f(y|�)�1(�) d�≈L1(�̂)�1(�̂)(2�)3=2|�1|1=2 (1)

where �=(c; �; �) and �1 is the observed Fisher information matrix of c; � and �. Lewis and
Raftery [14] have suggested using estimates from the posterior samples to approximate the marginal
probability under the random e�ect model and called it the compound Laplace–Metropolis method.
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However, the L1 in our case is more complicated and its analytical form is not available.
Because

L1 =f(y|c; �; �)=f(y|�)=
∫
f(y|�; �)�(�; �|�) d(�; �)

the integration over � and � is not feasible, and we will approximate L1 based on posterior samples.
The details of its derivation is given in Appendix A.
The Schwarz criterion S, also called Bayes information criterion (BIC) [37], is an approximation

to the logarithm of the Bayes factor [38,39] with constant order. It can be written as

S = max log f(y|H0; �0)−max log f(y|H1; �1)− d0 − d1
2

log N (2)

where f(y|Hi; �i) is the likelihood of �i, di is the dimension of � under model Hi, and N is
the sample size. In theory, if the form of likelihood is available, its maximum can be obtained
either analytically or numerically by choosing the largest value among all the ones evaluated at
various posterior samples. For Poisson gamma model, the likelihood is f(y|�; �) and is analytically
tractable due to the conjugacy, while for CAR, the maximum likelihood can be estimated by
L1(ĉ; �̂; �̂). Substituting this quantity for max log f(y|H1; �1) in equation (2) we obtain the Schwarz
criterion, an approximation to Bayes factor.
The third approximation is based on the importance sampling method. To estimate the marginal

distribution of the data, Pr(y|Hi), using the K posterior samples from the BUGS output, we take
the posterior distribution as the importance sampling function when estimating Pr(y|Hi) [40]. In
other words

Pr(y|Hi)≈
[
1
K

K∑
k=1
Li(�(k))−1

]−1

where Li is the likelihood of �, � is the vector of parameters under Hi, and �(k) are posterior
samples. This is in fact the harmonic mean of the likelihoods evaluated at various parameter
values.
The likelihood L1 under the CAR model evaluated at K various points �i(= (ci; �i; �i)) requires

taking integrations over � and � for K times, as indicated in equation (A2) in Appendix A. If
Laplace’s method is applied for the K �xed �i points to derive L1(�i), the error may contribute
to the unstability of the harmonic mean estimator due to the occasional small likelihoods [13].
Instead we interchange the integration signs under regularity conditions to obtain

Pr(y|H1)=
∫
f(y|�; �)�∗(�; �) d(�; �)

where �∗ is the ‘marginal prior’ after integrating out � (see Appendix B). In particular, �∗
can be derived analytically when (�|c; �) and (�|�) are from normal, c from uniform, and �
and � from gamma distribution, as assumed in the following sections. Therefore, the harmonic
mean of f(y|�i; �i) with (�i; �i) being the posterior samples is an approximation to Pr(y|CAR)
and mathematically equivalent to the harmonic mean of L1(�i). This approximation is easier in
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computation especially when a general form of L1(�) does not exist. In the next section, we apply
the methodology to the two applications introduced earlier.

4. EXAMPLES REVISITED

For the asthma data, the PG model implies that the di�erence in the observed mortality rates
occurs by chance alone. No area has unusual mortality rates and neighbouring areas do not have
similar rates. On the other hand, the CAR model implies clustering of mortality rates. Speci�cally,
this model indicates that neighbuoring areas would have mortality rates of similar magnitude.
When �tting the PG model to the asthma data, we chose the exponential (0.5) distribution and
gamma (0.5,0.5) for the hyperparameters � and �, respectively. When �tting the CAR model, we
used the uniform (−3; 1) for c, gamma (4,1) for �, and gamma (4,1) for � as prior distributions.
These distributions indicated fairly vague prior information about parameters. Moreover, slightly
stronger local (1=�) than global (1=�) variability was assumed for the priors of � and � under
CAR. The mean of c under the uniform was −1 corresponding to the average value exp(�)= 0:37
of deaths among the population of size 100 000. The range of c was between exp(−3)=0:05
and exp(1)= 3. These numbers were considered reasonable for a not-too-rare disease and were
selected based on the asthma mortality rates of Taiwan in 1991 [41]. The population sizes mi
for the 11 areas are 123 529; 91 710; 39 717; 62 526; 57 614; 32 006; 79 667; 63 000; 46 252; 60 859 and
59 353 [41]. Dispersed starting values were used in the Gibbs sampler and posterior samples were
collected from multiple runs. Figure 1 displays the estimated rates under each model. Darker colour
indicates higher rates.
The estimate mode of LG based on the BUGS output was only 2.7, far smaller than the average

number of neighbours, 3.64, implying that the local spatial variability was not signi�cant as com-
pared with the global spatial variation. In other words, the CAR model may be too complicated for
the asthma mortality data. To approximate the logarithm of Bayes factor, the Laplace–Metropolis
estimate gave −13− (−49)=36, the Schwarz criterion was −15− (−48)=33, and the modi�ed
harmonic mean estimate was −34 − (−57)=24. All three approximations indicate very strong
evidence that PG model �ts better than the CAR model. The conclusions based on LG and Bayes
factor are consistent and the same as in the previous literature [6]. Although the area with the
highest estimated rate under the PG model remains the same as under the CAR, other areas with
higher estimated rates under PG di�er from those areas identi�ed under the CAR model. For in-
stance, area 6 ranks the second highest estimated rate under PG but it ranks only the eighth under
CAR. Therefore, if the intervention programme can only be applied in a few areas, the choice will
depend heavily on the correct model used. Once the areas at higher risks are identi�ed, further
studies on its medical resources, availability of timely emergency care, and design of intervention
programmes can be carried out [21–23].
For the Scotland lip cancer data, the PG model implies that the rates are exchangeable after

adjusting for the covariate xi of percentage of outdoor occupations. That is, when taking xi into
consideration, all areas are under the same risk and the di�erence in the observations is due to
chance only. On the other hand, the CAR model implies that even when xi is considered, there
may exist correlation among neighbouring areas. In this data, a term of �1xi=10 was added in
the decomposition of log pi for each area to stand for the covariate under both PG and CAR
models. The prior distribution for c; �; � and �1 were uniform (−1; 1), gamma (2,1), gamma (2,1),
and normal (0; var = 1 × 105), respectively. While under the PG model, the priors for �1 and
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bi were normal (0; 1 × 105) and gamma (1 × 10−3; 1 × 10−3). Again, these prior distributions
all have large variances indicating no preferable values in the range based on previous available
knowledge.
The estimated LG based on the BUGS output was 0.007, indicating very weak local variability

as compared to the global one (the average number of neighbours was 4.71). We also computed
the approximation to logarithm of the Bayes factor based on the modi�ed harmonic mean esti-
mate. The value was 11 representing strong support of the PG over CAR model. In other words,
with the presence of the covariate of percentage of outdoor occupations, there does not seem
to be spatially local correlation for lip cancer mortality rates in Scotland. As a consequence of
model selection, the Poisson gamma would be a better choice than the CAR model. It also in-
dicates that much of the spatial similarity was explained once the covariable was included in the
model. A similar conclusion pointed out [8,24] that there did not seem to be spatial correlation
for these 56 areas once the covariate was contained in the statistical model. In other words, this
explanatory variable of workforce engaged in outdoor occupation removes most of the spatial
correlation. Note that the Laplace and Schwarz criterion approximations are not available for this
data set because the calculation involves computing the covariance matrix of the rates whose di-
mensionality is 56× 56. In the following we will consider fewer numbers of areas and carry out
all approximations.

5. SIMULATION

In this section we describe the results based on simulations and compute the LG and the above
three approximations to Bayes factor for each replication. Because the previous two data sets have
demonstrated the use of LG when indeed the Poisson gamma is a better model than the CAR,
here in this section we focus on data generated from CAR only. We would like to �rst examine
the behaviour of LG when the spatial local correlation among data ranges from strong to weak,
and next to con�rm its indication of the better model using the approximations to Bayes factor as
the standard.
There were three sets of data generated from CAR model, denoted as CAR1, CAR2 and CAR3.

When generating the CAR data, because the intrinsic autoregressive prior on �=(�1; �2; : : : ; �N )
was a multivariate normal distribution with a zero mean vector and a non-invertible precision
matrix Q, the � cannot be generated directly from a non-singular multivariate normal distribution
as commonly done in most computing packages. Based on the result in Besag and Kooperberg
[30], we performed some transformations along with data generation. More details were listed
in Appendix C. For the three CAR data sets, the hyperparameters �, � and c were �xed at
(1; 0:1;−1); (0:5; 0:1;−1) and (1; 1;−1), respectively. These values were speci�ed to control the
level of autocorrelation. For each area, the population size mi was chosen deliberately to be 100
000 for the sake of comparison. In other words, the numbers of diseased now stood for the
observations from 100 000 people. For each simulation, there were 1000 replications. For each
replication, an estimate of LG was calculated �rst to see if spatial local correlation is signi�cant
as compared with global variability. All replications were �tted with both PG and CAR models
and the three approximations to Bayes factor were computed to see which model �ts better and
whether the conclusion is consistent with that from LG. Under the PG model, we have assigned
gamma (4,1) distribution to � and gamma (4,4) to �. Under the CAR model, the priors on c; �
and � were assumed uniform (−3; 1), gamma (4,1), and gamma (4,4), respectively. With reference
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Table I. Summary statistics (the 5th and 95th percentiles, quartiles, median and mean) of LG when
data were generated from CAR model.

Data 5th percentile 25th percentile median mean 75th percentile 95th percentile Number ¿3:64

CAR1 1.66 6.09 11.69 13.99 18.77 35.99 836
CAR2 1.28 4.59 9.74 12.38 17.11 32.84 799
CAR3 0.66 1.16 1.39 1.53 1.74 2.99 17

to the application, we have �xed the numbers of neighbours to be 5, 4, 4, 6, 5, 6, 10, 5, 7, 5
and 9 for each area, respectively, and the total number of areas was N =11. The data were all
generated from the built-in subroutines in FORTRAN and then analysed with BUGS to produce
posterior samples.

5.1. Behaviour of LG

The ratio of local to global variability LG was suggested [4; 5] to be compared with the average
number of neighbours �n to see whether the local or global spatial variability is stronger. Table I
lists the summary statistics of LG. The estimated LG for each simulation was obtained using the
posterior samples of � and � when data were �tted with the CAR model. In CAR1 and CAR2
data sets, almost 80 per cent of the LGs were larger than 3.64, indicating greater local spatial
variability than the global variance. It implies that CAR should be a fairly good model for the
data. On the other hand, the LG of CAR3 was relatively small and the mean was around 1.5.
These values indicate that CAR may not be a proper model for the data. In fact, when checking
the values of hyperparameters speci�ed for each data set, the ratio of local to global variance
(�=�) were 10, 5 and 1, respectively. That is, in CAR3 the local variance was much smaller than
the global variance. In this case, the choice of a simpler model such as Poisson gamma may be
necessary. In summary, the estimated LGs showed positive evidence for the existence of local
correlation for data from CAR1 and CAR2 but not for the data from CAR3 which is closer to
the Poisson gamma model. We observed that LG does correctly imply the better model. Next, we
used the approximations to Bayes factor for further con�rmation.

5.2. Comparison of LG and Bayes factor

For each replication we used the modi�ed harmonic mean of likelihoods, Schwarz criterion, and
double Laplace–Metropolis method described in Section 3 for approximations. When comparing
the behaviour of LG with various approximations to Bayes factor (BF), we found that LG does
agree with Bayes factor and favours the same model. The columns in Table II were the percentages
of data whose LG and BF satis�ed LG¿3:64 and log(BF)6− 3. The number 3.64 is simply the
average number of neighbours and the cut-o� number 3 for log BF is chosen because it has been
suggested as a value of having positive evidence against H0 [9,31]. These numbers indicated that
both LG and BF favoured CAR over the PG model. The numbers were around 80 per cent for
CAR1 and CAR2, showing strong agreement. For CAR3, more than 95 per cent of LG were less
than 3.64 and more than 80 per cent of log BF were greater than −5; both provided support for the
PG model. The consistency between LG and BF provides strong support for using either one or
both for model selection. Another way to demonstrate that LG agrees with Bayes factor is to look
at the scatter plot. Figure 2 was the plot of LG versus approximated Bayes factor. The patterns
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Table II. The agreement of LG and three approximations to Bayes factor for simulation
data. L–M is the Laplace–Metropolis estimate, SC is the Schwarz criterion, and harm

is the harmonic mean estimate. Numbers are shown in percentages.

LG ¿3:64 LG ¿3:64 LG ¿3:64
log(L–M) 6− 3 log(SC) 6− 3 log(harm) 6− 3

CAR1 80.49 84.23 82.00
CAR2 76.18 79.80 77.49
CAR3 1.10 1.70 1.60

Figure 2. Plots of three approximations to Bayes factor versus LG. The horizontal solid line is log BF= − 3
the horizontal dotted line is log BF=3 and the vertical line is LG=3.64.

of points (LG,BF) were all similar. The horizontal lines in each graph were log(BF)= − 3 and
log(BF)=3, and the vertical line in each graph was LG=3:64. Most of the points (LG; log(BF))
lay in the two opposite-diagonal dimensions (the second and forth). Again, the two indices agreed
with high probability and showed strong linear correlation.
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6. DISCUSSION

In this paper we proposed to use the local to global variation (LG) as an indicator for spatial
model selection, particularly when choosing between Poisson gamma and CAR models. We have
illustrated its usage and applied it to Taiwan asthma mortality and Scotland lip cancer data. Both
results imply that the Poisson gamma would �t the data better than CAR. We have also computed
Bayes factor, a measure commonly used in Bayesian model selection and hypotheses testing, for
the two data sets, respectively, to see if the conclusions con�rm the �nding based on LG. Both
indicators agreed in favouring the Poisson gamma model. In addition, to illustrate the behaviour
when data indeed contain spatial local correlation, we generated data from the CAR model and
examined the choice for a better model using LG and Bayes factor. As the results show, the
LG is indeed a good quantity for selection between the two competing models. Although Bayes
factor may be commonly used in the setting of model selection, its computation can be complex,
depending on the structure of model. On the other hand, an estimate of LG based on the posterior
samples can be derived easily using the BUGS program. We recommend using LG because it is
intuitive and also for its easy computation.
For the Taiwan asthma mortality, the Poisson gamma model �ts better and thus it implies

that there exists no signi�cant local correlation among rates from neighbouring areas. Our results
raise several points and questions for further investigation. The asthma mortality rates of the whole
region are similar and thus the next step of research on identifying risk factors for individuals may
focus on all the areas instead of some particular ones. The asthma mortality may contain deaths
of patients having early-onset asthma or other factors including hypoxic seizures and a history
of respiratory failure. It is possible that these two types of mortality may have di�erent models.
In that case, the autopsy or medical charts may help to distinguish these two types. Furthermore,
although the current statistical model supports the independence among areas, it is not known
whether the independence would disappear when taking into consideration the asthma prevalence
and morbidity. In addition, to prevent deaths from asthma, an e�ective medical intervention should
be available for all the areas under study. The o�cers from the health department may need to
examine whether the medical resources are available and e�ective equally for the whole region.
For the Scotland lip cancer rates, we conclude that the Poisson gamma �ts the data better than

the CAR model once the explanatory variable related to exposure to sunlight is included in the
model. That is, the observed spatial pattern of rates among areas is explained by the covariate.
It is possible, however, that the sun exposure may not be the only explanatory variable [26,27].
Collecting other information for each area may be useful in identifying unusual areas. After that,
further investigation of risk factors for people living there would be necessary. For instance, the
individual’s occupation and amount or time of exposure to sunlight may be possible risk factors.
However, the assess of e�ect and interactions of factors remains important because various factors
may act interactively or independently when developing the carcinogenesis [27]. Another issue
regards the values of mi in this study. When Breslow and Clayton [8] analysed this data, they
decomposed log(mipi) to log Ei and �i where Ei is the expected number of deaths for the ith area.
The log Ei is similar to the sum of � and log mi in our model but not exactly the same because �
is random and Ei is constant. Since the information about mi is not available, we derive mi based
on the values of Ei in their paper with m1 set to 100 000.
There are some points worth mentioning in the process of model �tting for the two data sets.

First, there are other hierarchical models for these spatial data. For instance, instead of assuming
pi follows a gamma distribution when no covariate is included, its logarithm, log pi, can follow
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a normal distribution as an uncorrelated random e�ects model. An advantage of this model would
be the easy and direct comparison with the CAR assuming correlated random e�ects model. Other
forms of distribution can also serve as alternatives. However, it should be kept in mind that these
models should interpret the data properly. Second, the prior distributions for hyperparameters are
either non-informative or based on national estimates of mortality or morbidity rates. When one has
other belief in these parameters, di�erent priors can be used and the computation should proceed
in the same manner. For instance, the Taiwan asthma data have been examined previously but
di�erent priors were used [6]. In fact, our conclusion is consistent with theirs. This implies that
the results are robust to these chosen prior distributions. Third, all the computations covered in
this paper were based on the posterior samples generated from the BUGS program. BUGS is
a friendly software and can cover a variety of models beyond the two spatial ones considered
here. However, the convergence of the posterior outputs has to be monitored by the user and a
companion software CODA of BUGS can serve the purpose [42]. Fourth, it is a custom in BUGS
that the prior distribution is assumed for the inverse of variance rather than the variance. However,
when one has an informative prior for the variance, it should not matter which kind is used as
long as the transformation works through. In both the asthma and lip cancer data, the gamma
prior for the inverse of variance can be transformed to inverse-gamma distribution for variance. It
can be seen after transformation that these inverse-gamma are proper and have large means. This
again supports our prepossession of a large variance. Fifth, the modi�ed harmonic mean estimate
discussed at the end of Section 2 uses f(y|�; �) as the likelihood function and �∗ as the modi�ed
prior information. It is due to the di�culty in integration over � and � to get L1(c; �; �). We have
called it a mathematically equivalent estimate. For our computations, several plots of functions
f(y|�; �) and �∗(�; �) (�gures not shown here) appeared to have 
atter �∗ than f(y|�; �), which
implied dominant information contained in f(y|�; �). Consequently, using mainly f(y|�; �) in the
harmonic mean estimate should be a reliable and acceptable choice. Finally, as an alternative to
examine whether the spatial correlation is important, one may prefer to include both correlated and
uncorrelated terms in one model and compare their contribution. For instance, to add a random
term in log pi for each area under CAR model may be considered. In that case, the number
of parameters will increase, and the computation and convergence may not be achieved easily.
A better approach would be to replace the correlated random e�ects with a �xed structure for
correlation under the type of Poisson-gamma model. The model construction and �tting would be
an interesting topic and more research is expected.

APPENDIX A

Letting �=(c; �; �), the marginal probabilities Pr(y|H0) and Pr(y|H1) mentioned in Section 3.2
are formulated as

Pr(y|H0) =
∫

N∏
i=1

[ ∫
f(yi|�i)f(�i|�; �) d�i

]
�0(�; �) d(�; �)

Pr(y|H1) =
∫ (∫

f(y|�; �)�(�; �|�) d(�; �)
)
�1(�) d� (A1)

where y=(y1; : : : ; yN ), �=(�1; : : : ; �N ), and �0; �1 are priors on hyperparameters. We now estimate
the likelihood value L1 using the posterior samples of (c; �; �) and Laplace’s method. De�ne
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L(�)=L1(c; �; �); f1 = max f(y|�; �), and �1(�)= max �(�; �|�) for notational convenience, then

max L(�) ∼= max
�i
l(�i) =max

�i

∫
f(y|�; �)f(�; �|�i)d(�; �) (A2)

≈max
i
(2�)N=2|�1|1=2f1�1(�i) (A3)

with �i=(ci; �i; �i) being the posterior samples, (�̂; �̂) the MLE of (�; �), and �1 the observed
Fisher information matrix of (�; �). The �rst maximum over � was obtained by evaluating L at
various posterior samples of �. One reminder for practical users is that we have used in equation
(A3) the posterior mode of (�; �) instead of the mode conditioning on (y; c; �; �) and assumed the
two are close enough. The estimate of Pr(y|CAR) is now complete after substituting the values
of equation (A3) into equation (1). For the parameters at two di�erent stages, the Metropolis
estimator of the mode was used in the Laplace approximation. This estimate is a variant of the
compound Laplace–Metropolis method [14] where it is possible to evaluate analytically the mode
in one of the two stages but not the other, while the analytical modes are not available for both
stages under CAR model.

APPENDIX B

To evaluate the modi�ed harmonic mean estimate, we write out the integration of Pr(y|H1), letting
�=(c; �; �), and interchange the integration signs under regularity conditions to obtain

Pr(y|H1) =
∫ (∫

f(y|�; �)�(�; �|�) d(�; �)
)
�1(�) d�

=
∫
f(y|�; �)

(∫
�(�; �|�)�1(�) d�

)
d(�; �)

=
∫
f(y|�; �)�∗(�; �) d(�; �) (B1)

where �∗ is the ‘marginal prior’ after integrating out �=(c; �; �). In particular, �∗ can be derived
analytically when (�|c; �) and (�|�) are from normal, c from uniform, and � and � from gamma
distributions, as assumed in the applications.

APPENDIX C

Based on the result in Besag and Kooperberg [30], we generated x1; : : : ; xN−1 from a multivariate
normal with zero mean and a variance matrix equal to the inverse of Q∗ where Q∗ was the upper
left (N − 1) by (N − 1) matrix of Q. Next, de�ning

�N =
N−1∑
i=1
xi=N and �i= xi − �N for 16i6N − 1

these �i then were used together with � to generate yi, the number of diseased. The matrix
Q=D× (I − C) contained the information about neighbours where the matrices D; I and C were
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de�ned in Section 2. The matrix I − C is


1 −1=5 0 −1=5 −1=5 −1=5 0 0 0 0 −1=5
−1=4 1 0 −1=4 0 0 0 0 −1=4 0 −1=4
0 0 1 −1=3 0 0 −1=3 0 −1=3 0 0

−1=6 −1=6 −1=6 1 −1=6 0 −1=6 0 −1=6 0 0
−1=4 0 0 −1=4 1 −1=4 −1=4 0 0 0 0
−1=3 0 0 0 −1=3 1 0 0 0 0 −1=3
0 0 −1=4 −1=4 −1=4 0 1 −1=4 0 0 0
0 0 0 0 0 0 −1 1 0 0 0
0 −1=5 −1=5 −1=5 0 0 0 0 1 −1=5 −1=5
0 0 0 0 0 0 0 0 −1 1 0

−1=4 −1=4 0 0 0 −1=4 0 0 −1=4 0 1




where the number in the denominator is the number of neighbours.
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