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利用事後分配的馬可夫鏈樣本來估計邊際密度函數與貝氏因子

Using Markov Chains to Estimate Marginal Distr ibutions and Bayes factor

計畫中文摘要：

貝氏因子(Bayes factor) 是貝氏統計方法中對於推論假設檢定(hypothesis testing)所用的一個

統計量。它的定義可以表成兩個資料的邊際機率(marginal probability of data)的比值。然而，

貝氏因子的計算在實際應用上卻常常遇到困難。在過去要解決這個問題常使用 Laplace

method；現在，拜電腦(軟硬體)快速發展所賜，則常使用Markov chain Monte Carlo (MCMC)

的方法。不過，直接運用MCMC的方法只能提供我們有興趣之隨機變數(parameter of interest)

的事後樣本(posterior sample)，並不能直接得到貝氏因子的值。解決方法一是善加運用事後

機率樣本，直接估計在每一個模式下資料的邊際機率。簡單的說，我希望能夠找到事後樣

本中的某個值(如 mode或 mean )，以及在該點的機率密度函數值，然後再估計資料的邊際

機率與貝氏因子。這個方法只是眾多貝氏因子估計值中的一個；但是，它提供另外一個簡

單好算的選擇。

關鍵詞：Bayes factor, Laplace-Metropolis, MCMC, Random effect

十七、計畫英文摘要：

Bayes factor is a commonly used quantity in Bayesian testing hypotheses. Its definition is the

ratio of posterior odds to prior odds in favor of the null hypothesis. This quantity can be rewritten,

using Bayes’ theorem, as a ratio of marginal probabilities. Its computation is often complicated

and difficult in practice, especially for complex hierarchical models such as random effect model.

When the analytical integration is not feasible, one can use either the asymptotic Laplace



approximation, or the numerical method. The Markov chain Monte Carlo (MCMC) method is one

efficient way which has been used widely among statisticians. The first goal of the current

research plan is to develop a numerical method using Markov chains. I intend to use the posterior

samples, assumed coming easily from established software like BUGS, to estimate the mean (or

the mode) and the value of the probability density function at that point. This approach was first

mentioned in Raftery (1996) but has not yet been investigated. It would require the technique

from nonparametric density estimate. The second goal of this research plan is to increase the

feasibility of the pseudo-prior for more general cases.

Introduction

   The use of Bayes factors (BF) has been an important research topic in model selection and

hypotheses testing. Its definition is the ratio of posterior odds to prior odds, and can be written as

the ratio of marginal probabilities under each competing hypothesis respectively:

            BF = Pr(data | model 1) / Pr(data | model 2) .                 (1)

When the value of Bayes factor is large, it indicates positive evidence in favor of model 1.

Jeffreys (1961) has tabulated various magnitudes for the strength of evidence in different

situations. If the number of competing models is more than two, such as in the case for model

selection, then we need to evaluate the posterior probability of each model conditioning on the

observed data:

      Pr(model i | data)=
Pr(data | model i)Pr(model i)
Pr(data |model j | )Pr(model j)
j

∑ ,  i=1, 2, … , k .     (2)

   Either in equation (1) or (2), the parameters are not seen; in fact, all other parameters need to

be integrated out. The issue now is the approximation to integration. In the past, Laplace

(Tierney and Kadane 1986) approximation has been used widely; however, not all complex

models are suitable for the analytically approximation. The regularity conditions may fail or may

be difficult to verify for these cases. Recently, the Markov chain Monte Carlo methods have

drawn great attention for this purpose. Various approximations based on the Markov chains of

the posterior samples have been proposed and discussed (Gilks, Richardson, and Spiegelhalter

1996; Raftery 1996). Raftery (1996) discusses and summaries various Monte Carlo methods

using different importance sampling functions (and thus different samples from either the prior

or the posterior distribution) to approximate the integration or the marginal probability. Some

approximations are useful when the samples are from the prior distribution; some are for samples

from posterior distribution.

   With the potential difficulty of generating samples, we focus on developing the approximation



method using posterior samples only, in particular the posterior samples from Markov chains.

Carlin and Chib (1995) propose the formulation of pseudo-prior distribution to connect the model

i and parameters θj under model j (j ≠ i) to complete the specification of a full set of conditional

probability distributions for Gibbs sampler. This approach also focuses on the use of and

generations of posterior samples of the parameters and the discrete model index. Lewis and

Raftery (1997) propose the Laplace-Metropolis estimator for approximation in the case of

random effect logistic regression model. Basically it combines the Laplace and MCMC methods

for each integration.

Nonparametr ic estimate:

   Our approach, similar to Lewis and Raftery (1997) and diCiccio, Kass, Raftery, and

Wasserman (1997), also focuses on the numerical methods, uses the Markov chains of posterior

samples, but applies different Monte Carlo method. In fact, we will try to estimate the mean or

mode and the posterior density function at that point assuming the posterior samples are already

available. The value C to be estimated is defined as
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and the value of C remains the same for every θ. A natural estimate for C is
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where f̂  is the non-parametric estimate for f.

   Based on the results in Parzen (1962) and Eddy (1980), under regularity conditions the

nonparametric estimate of f at the point x is asymptotically normal,
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and K(t) is a kernel density. Assuming that the integretion above  is bounded, we then obtain
2/1)())(̂()(̂ −=− nhoxfExf . Furthermore, because the expectation contains the bias, we obtain
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where n is the sample size and h is the width chosen in the non-parametric density estimate.



Results:

   Our simulation indicates that this approximation is fairly accurate. In addition, as mentioned

above, this approximation is also easy to derive as long as the posterior samples are easy to

derive. We are currently deriving the multivariate case and carrying out the multivariate

simulation. The manuscript will be finished soon.
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