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Using Markov Chainsto Estimate Marginal Distributions and Bayes factor
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Bayes factor is a commonly used quantity in Bayesian testing hypotheses. Its definition is the
ratio of posterior odds to prior oddsin favor of the null hypothesis. This quantity can be rewritten,
using Bayes theorem, as aratio of margina probabilities. Its computation is often complicated
and difficult in practice, especially for complex hierarchical models such as random effect model.
When the analytical integration is not feasible, one can use either the asymptotic Laplace



approximation, or the numerical method. The Markov chain Monte Carlo (MCMC) method is one
efficient way which has been used widely among statisticians. The first goa of the current
research plan is to develop a numerical method using Markov chains. | intend to use the posterior
samples, assumed coming easily from established software like BUGS, to estimate the mean (or
the mode) and the value of the probability density function at that point. This approach was first
mentioned in Raftery (1996) but has not yet been investigated. It would require the technique
from nonparametric density estimate. The second goal of this research plan is to increase the

feasibility of the pseudo-prior for more general cases.

I ntroduction

The use of Bayes factors (BF) has been an important research topic in model selection and
hypotheses testing. Its definition is the ratio of posterior odds to prior odds, and can be written as
the ratio of marginal probabilities under each competing hypothesis respectively:

BF = Pr(data | model 1) / Pr(data | model 2) . (D)

When the value of Bayes factor is large, it indicates positive evidence in favor of model 1.
Jeffreys (1961) has tabulated various magnitudes for the strength of evidence in different
situations. If the number of competing models is more than two, such as in the case for model
selection, then we need to evaluate the posterior probability of each model conditioning on the
observed data:

Pr(model 7 | detal= Pr(data | model i)Pr(model i)
"(model 7] 02t8)="2 "5 fata [model j | Pr(model )

j

=12, ..k, (2

Either in equation (1) or (2), the parameters are not seen; in fact, al other parameters need to
be integrated out. The issue now is the approximation to integration. In the past, Laplace
(Tierney and Kadane 1986) approximation has been used widely; however, not all complex
models are suitable for the analytically approximation. The regularity conditions may fail or may
be difficult to verify for these cases. Recently, the Markov chain Monte Carlo methods have
drawn great attention for this purpose. Various approximations based on the Markov chains of
the posterior samples have been proposed and discussed (Gilks, Richardson, and Spiegelhalter
1996; Raftery 1996). Raftery (1996) discusses and summaries various Monte Carlo methods
using different importance sampling functions (and thus different samples from either the prior
or the posterior distribution) to approximate the integration or the margina probability. Some
approximations are useful when the samples are from the prior distribution; some are for samples
from posterior distribution.

With the potential difficulty of generating samples, we focus on devel oping the approximation



method using posterior samples only, in particular the posterior samples from Markov chains.
Carlin and Chib (1995) propose the formulation of pseudo-prior distribution to connect the model
i and parameters ¢, under model j (/ £ /) to complete the specification of a full set of conditional
probability distributions for Gibbs sampler. This approach aso focuses on the use of and
generations of posterior samples of the parameters and the discrete model index. Lewis and
Raftery (1997) propose the Laplace-Metropolis estimator for approximation in the case of
random effect logistic regression model. Basically it combines the Laplace and MCMC methods

for each integration.

Nonparametric estimate:

Our approach, similar to Lewis and Raftery (1997) and diCiccio, Kass, Raftery, and
Wasserman (1997), also focuses on the numerica methods, uses the Markov chains of posterior
samples, but applies different Monte Carlo method. In fact, we will try to estimate the mean or
mode and the posterior density function at that point assuming the posterior samples are already
available. The value C to be estimated is defined as

c= PY19p@) _ PYIgp@)
f@ly f@ly

and the value of C remains the same for every g. A natural estimatefor Cis

o= PY19p@) _ PYIgp@)
f@aly) f@ly

where f isthe non-parametric estimate for f.
Based on the results in Parzen (1962) and Eddy (1980), under regularity conditions the
nonparametric estimate of fat the point x is asymptotically normal,

F(0 - E(f(X) @N(OD)
[var( F(x)]*2

where

- 1
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and K(t) isakernel density. Assuming that the integretion above isbounded, we then obtain
f(X) - E(f(X)=o(nh) 2. Furthermore, because the expectation contains the bias, we obtain

C=d1+ o(nh)™?)]

where nisthe sample size and histhe width chosen in the non-parametric density estimate.



Results:

Our simulation indicates that this approximation is fairly accurate. In addition, as mentioned
above, this approximation is also easy to derive as long as the posterior samples are easy to
derive. We are currently deriving the multivariate case and carrying out the multivariate

simulation. The manuscript will be finished soon.
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