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Abstract

In the context of Bayesian inference, a nonparametric kernel estimate via Candi-
date’s formula is developed for computing the marginal densitj_ of the sample data.
The estimate is computed based on Markov chains outputs. The deficiency of high
dimensional density estimation, known as the curse of dimensionality, can be han-
dled well in this Bayesian marginal inference problem. An approach is introduced
to ease the tension caused by data sparseness. This nonparametric Candidate’s esti-
mate does not require knowledge of full conditional densities. We find it a convenient
and comprehensible way to estimate the posterior demsity. The asymptotic behavior
of the estimate is studied and the best point for evaluating the estimate is derived.
It is found that the posterior mode may not be the best point. A simulation study
shows that the nonparametric Candidate’s estimate has better accuracy than the
Laplace type estimates. Laplace method is based on analytic asymptotic approx-
imation, which often requires a large size of observed data; while the Candidate’s
method asks for simply a large size of simulated Markov chains as the posterior
samples. It is much easier to get more simulated posterior samples at a low cost

rather than to obtain more observations.

Key words and phrases: Bayes factor, Gibbs sampler, kernel density estimation, Laplace
approximation, Laplace-Metropolis method, Laplace volume correction, Markov chain

Monte Carlo, Metropolis-Hasting algorithm.



1 Introduction

In Bayesian inference, a joint posterior distribution 1s available through the likelihood
function and a prior distribution. Consider an n x 1 vector of observations y with sampling
probability density p(y|@) given the p x 1 vector of parameters ¢ = (#,,...,0,). Assume
that parameter f has a prior density (@) under model M; (£ =1,2,...,K). In Bayesian
variable selection, Bayesian model selection, or Bayesian hypothesis testing, one may need

to evaluate the marginal density of sample data

m(y|M:) = [ F(y10)me(0)ds. (1)

In other Bayesian analysis, one may need to evaluate the marginal posterior density of

the form

1
W) = s [y T IOIT(0) 8018 @)

where n = g(#) for some function g and where 5 € } C R? with 1 < d < p.

Computing the marginal probability has long been an important issue in Bayesian
inference. The computation is necessary when the model selection is of interest, or when
the posterior distributions, moments, Bayes factors, or predictive densities are requested.
The quantity m(y), or m(y|Msi), is sometimes referred to as a normalizing constant,
especially when the integrand is taken to be the product of likelihood function and prior
density. Much efforts have since been placed uopn the estimation of m(y).

Several authors (e.g., Mosteller and Wallace 1964; Tierney and Kadane 1986) proposed

an analytic approximation, Laplace’s method, to approximate the integration when the



data size is large. The basic idea is to use a normal probability density function to ap-
proximate the integrand. This approximation has been shown fairly accurate in many
applications. Nevertheless, some difficuliies may arise. The approximation requires the
evaluation of the mode and variance, which may not be straightforward in many complex
models or applications. In addition, even the integrand in the above equation may involve
further integration of other nuisance parameters and thus have no closed form. Further-
more, when parameters are close to the boundaries, such as that in a variance component
model, the usual Laplace’s method may fail. Recently, Erkanli (1994) and Hsiao (1997)
proposed a modification of Laplace approximation for boundary cases. Their methods ap-
plied to cases where the local maximum likelihood estimate lies at the boundary. Pauler,
Wakefield, and Kass (1999) proposed a more general Laplace approximation for boundary
cases but it requires the knowledge of both unrestricted and restricted MLE’s.

The advent of the Markov chain Monte Carlo method has provided an easy means to
obtain samples from the target distribution such as the posterior density (see, e.g., Gelfand
and Smith 1990; Gilks, Richardson, and Spiegelhalter 1996). The MCMC method has
helped the development of mainly two types of estimates for the normalizing constant.
The first one combines Laplace approximation and posterior simulations. Based on the
simulated posterior samples, mode and variance of the approximate normal probability
density to 7(€|y) can be estimated. Lewis and Raftery (1997) estimated the mode and
vartance based on the simulation and utilized those with Laplace’s method to approximate

the Bayes factor. DiCiccio, Kass, Raftery, and Wasserman {1997) followed the same line



and improved Laplace’s method using a volume of high density points for correction to
approximate 7(f|y). Huang, Hsiao and Chang (2000) further derived the best volume for
correction.

The second type of approach essentially uses only Monte Carlo posterior simulation
but without analytic model approximation. This kind of estimates utilize a large amount
of simulated samples from the target distribution (say, posterior density) for estimation.
For instance, Newton and Raftery (1994) applied the simulated samples in the harmonic
mean of likelihood to estimate the marginal. However, this estimate is not stable due
to the fact that the inverse likelihood does not have fintte variance. Gelfand and Dey
(1994} modified the harmonic mean estimate by introducing a thin-tail tuning function
to stablize the estimate. The tuning function is required to have tails thinner than the
posterior. However, it is quite difficult to determine a tuning function, especially in high-
dimensional problem. Gelfand and Smith (1990) and Chib (1995) used Gibbs outputs
to estimate the marginal density based on full conditional distributions. Their methods
require knowledge of each conditional density.

Besag (1989) gave the Candidate’s formula for Bayesian prediction

y|#)=(0)

_ S

This equation holds for all # values in the support of prior 7(-). It is also known as the
basic marginal likelihood identity (Chib 1995). Chib discussed this estimate based on
the assumption that the full set of conditional densities are known. When the knowledge
of full conditional densities is intractable, the posterior density =(f|y) can be estimated

0



by nonparametric method. We refer to it the nonparametric Candidate’s estimate. Non-
parametric density estimation has been a well developed research topic in recent decades.
The techniques, such as histograms and kernel estimates, have been used in our daily
practice of statistical analysis. Several books (see, for instance, Silverman 1986; Scott
1992: Simonoff 1996) have given a very good account of the theoretical background and
usage for practical applications. In this article we first adopt the kernel method which
deals with the regular posterior distributions with open support and interior mode. This
kernel method can also be adapted to the boundary case by using a one-sided kernel (or
any other types of boundary kernels). For example, a right-sided kernel may be used in
the variance component models to avoid putting any weight exceeding the left boundary.
If an i.i.d. random sample from the posterior distribution #(8]y) is available, it is not
difficult to compute its kernel density estimate at a certain point. This nonparametric
Candidate’s method is simple to implement. It requires the evaluation of the likelihood
function, the prior density and the estimate of posterior. We intend to use the posterior
samples generated via MCMC method to obtain the nonparametric estimate. Although
the MCMC samples are usually not independent, there ha‘?e been several approaches to
reducing the correlation and computing the covariance (see Geyer 1992, for more details
and references). When given a sufficiently long burn-m of jterations and by taking MCMC
ouiputs sufficiently long apart, the posterior sample is close to i.1.d.

In Section 2 we demonstrate that the nonparametric Candidate’s estimate in equation

{3) can be easy, costless, and more accurate than the Laplace type estimates. Its asymp-



totic behavior is evaluated and the best point for estimation is derived. In Section 3
the method is compared with the Laplace type estimates in a simulation study using
two groups of distributions. For the first group, observations are generated from various
shapes of unimodal distributions. For the second group, we focus on distributions that
are highly skewed and/or have mode close to the boundary of the support. The Laplace
type estimates usually fail in this situation unless special treatments are applied; while
the Candidate’s estimate provides better solutions. We also discuss a modification for the
case where the mode is close to the boundary. A real application about the germination
of beans is analyzed in Section 4. A concluding discussion is given in Section 5. All proofs

are in the Appendix.

2 Nonparametric Candidate’s method

2.1. The approach. Suppress the model index from m(y|My) and concentrate on
the estimation of the marginal density, or the normalizing constant, m(y). For simplicity,

we use notation C to denote the normalizing constant

_ fllo)=(6)
€= m(fly)

where any value of @ in the support of prior m(-) provides the same answer. This nor-
malizing constant can be estimated by

(1110}

i (8]y)

H
=
el



where #(8|y) is a kernel density estimate of 7(8|y) based on the posterior samples §¢1}, .. 4™}
and is given by

1

7?(9|F) = W .

K ((0— 6T H1(9 - 81)) . (5)

Here H is a p X p symmetric positive definite matrix, |H| is the determinant of H, and

X{(-) is a p-dimensional kernel function satisfying conditions
Cl. K is non-negative and integrates to one: fp, K(878)df = 1.

2. X is an order 2 kernel in the sense that

/ 8,K(670)d6 =0, ¥i=1,2,....p,
Rr
ky = pr 62IC(670)d0 > 0, ¥j = 1,2,...,p,

b= /RP K?(678)d8 < co.

2.2. Theoretical results. We state in the following theorem the order of accuracy

of this nonparametric Candidate’s estimate.

Theorem 1 Assume that the Likelihood function and the prior have continuous second
derivative in o neighborhood of e certain interior point 8 € supp{r(8)}. Also assume
that the kernel function K satisfies conditions C1 and C2, and that trace(H) — 0 and

m|H|Y? — oo, as the posterior sample size m — oo. Then, with

. fWlO)r()
“= )

the following mean square error is of order

By, _ptmiy (—g— ~ 1)2 =0 ({trace(H)}z) + O (m_1|H|_‘f"2) 1

.....

8



where the expectation Eetljl”lie(mjly is taken with respect fo the conditional joint posterior
distribution of 01, ... 0™ given y. Furthermore, choose H so that );(H) = O(m =2 (1+p))

for i =1,...,p, where A; denotes the jth largest eigenvalue. Then we have
C z fa4)
E = — —4/(4+
B, gm) |y ( 7~ 1) =0 (m4/+o))

Theorem 1 states that as long as the size of posterior sample gets large, the order
of Candidate’s estimate can be guaranteed. Once Thearem 1 is established, the next
question arisen naturally is at what value of @ the posterior should be estimated. The
Candidate’s formula is valid for all # in the support of prior, and thus any choice of 4,
such that the posterior function in the neighborhood of # is smooth, is theoretically valid.
However, consideration for efficiency may suggest the estimator {4} be evaluated at high
density points. Under the criterion of minimum mean square error, we derive the best

point in the following Theorem 2.

Theorem 2 The estimator (§) has asymptotically minimum value for

C 2
Epny,. a0my (E — 1)

at
det(V2x(0y))

7 = arg min (87

For univariaie 8, v.e. p=1, (6) becomes

Zew(0ly)|
* — argmin 28 70
¥ = argmin P

As the posterior ts proportional to f(y|6)x(8), the above minimization problem gives the

same B by using f(y|d)w ().



To attain the minimum mean square error, it is best to evaluate the Candidate’s
estimate at the value of @ which minimizes the right hand side of equation (6}). The
posterior mode may not be the most accurate point. For instance, for normal posteriors
the Candidate’s estimate is most accurate if evaluated at points of one standard deviation
from the mode. See Table 1 for accuracies at mode, mean, and best pomnt.

2.3. Some guidelines for computation. To make the nonparametric Candidate’s

estimate easy to implement, listed below are some guidelines.

1. The marginal p.d.f. m{y) is invariant under changes of prior variables. Therefore,
we may standardize the posterior sample. The matrix # in (5) can then be taken
as hl,, where h > 0 is a scalar serving as the kernel bandwidth and I, is the p x p
identity matrix. The standardization procedure makes posterior density estimate a

lot easier.

2. For a high dimensional problem, the kernel method suffers from the curse of dirnen-
sionality and is not efficient. The phenomenon of the curse of dimensionality is due
to data sparseness in a high dimensional space. It is not a problem occurring ¢t
in kernel estimates, but it exists in all kinds of nonparametric methods. Unless;
a certain model structure is imposed, the phenomenon of the curse of dimension-
ality persists. Fortunately, the deficiency problem encountered in this particular
Bayesian marginal inference problem can be easily handled on two accounts. (a)
The posterior sample is cheap to obtain. (b) For the kernel estimate {of order 2) in a

p-dimensional problem, it has pointwise bias of order O(A?) and pointwise variance

10



of order O((mh®)~!). We see that the deficiency is caused by the high variation.
Since the Candidate’s formula for marginal density is valid for all # values in the
prior support, one may average over a set of m(y} = = (y[f)n(#)/7(f|y) for various
¢ values. The averaging procedure effectively utilizes a lot more posterior sample
points, which lessens the tension of data sparseness and tends to stablize the high

variation.

3. (Optional.} Use a uniform kernel for posterior density estimate. This suggestion is
to reduce the computation load, especially in a high dimensional problem. When a
uniform kernel is used to compute the postertor density estimate at a point 8. one
simply counts the proportion of posterior samples falling into the ball centered at

with radius k.

3 A simulation study

In this section, we compare the nonparametric Candidate’s estimate with other esti-

mates, basically the volume correction Laplace method. <:.-all the Laplace approximation

f(y|8)=(0)

Cme = A e vt

988+, E)
where ¢(-; &, £*) is the multivariate normal density function with mean 0* and covariance
matrix X*. This approximation has ¢ = Cp.,{1 + O(n~!)}, where n is the size of the
observed data y. The asymptotic approximation applies when n is large, and it does
not utilize any simulation. Lewis and Raftery (1997) derived the estimated mode and

11



variance for ¢ based on simulated Markov chains and combined them with the Laplace’s
method. The accuracy of the Laplace approximation Cf,, depends heavily on the shape
of the posterior (f|y), in other words, it depends on the degree of resemblance between
7(8ly) and the density of a normal distribution.

DiCiccio et al. (1997) proposed to improve the Laplace approximation. They used a
volume of probahility o around the mode to adjust the Laplace approximation. [t was

called the volume correction Laplace method, denoted here C,u1_ 0,

fy|0)n(6") o
o(o* 6+, T*) P

Cvaf-—cor —

where o was recommended to be fixed at .05 and where P is the proportion of posterior
samples falling into the ball B,(8~,X*) = {# : (§ — 6~Y(Z*)"1(6 — 6"} < r?} with radius r

determined by fg (v 5. ¢(6; 8%, 2*)d0 = .

3.1 Regular case

Table 1 lists the results from simulations based on four different distributions as nom-
inal posterior distributions. The four distri® *‘ons are standard normal, Student-¢ with
degrees of freedom 5, Student-t with degrees of freedom 3, and gamma(2,1). These distri-
butions are chosen to represent various shapes of posterior distributions such as symmetry
with light tails, symmetry with heavy tails, and skewed distributions. In each replication,
either m = 1,000, 10,000 or ra = 100,000 posterior samples are drawn from each distri-
bution. There are 100 replications in total. We use the mean square error (C'/C — 1)% as

the measure of accuracy. Both the volume correction Laplace method and Candidate’s

12



estimate are considered in this comparison. The Candidate’s estimates are evaluated at
three different points: mode, mean, and the best point. For the normal distribution the
best points are at mode plus or minus one standard deviation, and we take in this sim-
ulation study the point at mode plus one standard deviation. The best point for the
Student-¢ is at mode. The best point for gamma(2,1) is at mean. Table | lists that the
average and standard error of the mean square errors from 100 replications. It can be seen
that both the average of MSEs of Candidate’s estimates and their variability {standard
error) are always smaller than those of the volume correction Laplace estimates. Among
the three candidate’s estimates evaluated at different points, the one at the best point

does outperform the rest.

—————— Place Table ! here

3.2 Boundary case

In this section we consider gammaf(1,1} as a nominal posterior distribution. It is noted
that the shape of the observations is skewed and the mode locates at the boundary. The
best point to evaluate the Candidate’s estimate is at the mode, which is the boundary
point. In this comparison, the volume correction Laplace and the Candidate’s estimate
are evaluated at one kernel bandwidth from the boundary. Table 2 lists the results for
volume correction Laplace and Candidate’s estimate for rn =1,000, 10,000, and 100,000,
respectively. Again, Candidate’s estimates have better accuracy and attain much less

standard error. This procedure can be utilized when the target distribution is not normal

13



or fairly skewed such as those seen in the random effects or variance component models.
———— Place Table 2 here ——M

Another illustration for the boundary case is a hierarchical model with y given A from
a Poisson({\) distribution, where the parameter X is from an exponential distribution with
hyper-parameter 8 from gammaf(a, b). A practical application of this model, for example,
is considering y as the number of eggs laid by certain species when conditioning on X.
The exponential prior for A and the gamma for hyperparameter indicate that it is an
endangered species. Suppose we are interested in the expected number of eggs X after
observing ¥ = 1. In other words, we need to make inference based on the posterior
distribution of A given y, i.e., the integration of f(y|A)}x(A) over X is required. Numerical
integration can be used to derive the true normalizing constant m(y). However, for
the purpose of illustration, we first compute the Laplace estimate and then generate
Gibbs samples with m = 1,000 from the full set of conditional distributions to derive
the volume correction Laplace, Candidate’s, and the harmonic mean estimate {Newton
and Raftery, 1994). The true value of m(y) is .1917 when @ and b are both assumed
1. The volume correction Laplace estimate is Oy, = .2453, which is evaluated at the
maximum likelihood estimate of A = +/2 — 1. The harmonic mean estimate is .2151.
On the other hand, the Candidate’s estimate is .1816, when evaluated at the estimated
posterior mean. Again, the proposed estimate is better when dealing with the irregular

shape of distributions.

Place Table 3 here ————
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3.3 High dimensional case

In this section we apply the nonparametric Candidate’s estimate to high dimensional
problem. The Candidate’s formula O = fly|®)x(0)}/7(8ly) 1s valid for all & in the prior
support. Therefore, we evaluate the Candidate’s estimate at various 8-values and average
over them. In this comparison study, we take the multivariate normal and the ‘product
of gammas’ as the nominal posterior distributions, where the ‘product of gammas’ is set
to be the product of coordinate-wise gamma(2,1) densities. We take 100 replications. In
each replication, the posterior sample is standardized first, and then the ‘final’ Candidate’s
estimate (explained below) and its mean square error are computed. The average of these
100 mean square errors and its standard error are listed in Table 4.

For the case of 4-dimensional normal, the Candidate’s estimate is evaluated at points
f = (61,02, 83, 04) with each g; set to be either mode, mode minus one standard deviation
or mode plus one standard deviation. There are 3* many of such f-values. Evaluate
the Candidate’s estimates at these 3* points and take average. This average is the final
Candidate’s estimate. The whole procedure is repeated 100 times. For the case of 10-
dimensional normal, the Candidate’s estimate is evaluated at p;;ﬁts ¢ = (0y,...,8:0) with
each #; set to be either mode or mode plus one standard deviation. There are 2'° many
of such @-values. Again, evaluate the Candidate’s estimates at these 21° points and take
average. Of course one may evaluate Candidate’s estimates al all the 3'° points of mode
and mode plus/minus one standard deviation. In this simulation, we only use 2'® many

f-values to reduce the computational load to about 1/60 compared to using all the 31°

15



O-values. For the case of product-gamma, the Candidate’s estimate is evaluated at points
8 = (f1,...,0) with each 8; set to be either mode or mode plus one standard deviation.
There are 2% many of such #-values.

The above high-dimensional Candidate’s estimate effectively uses more posterior data
points to stablize the high variation due to data sparseness in a high dimensional space.
When the posterior is normally distributed, volume correction Laplace is slightly better
than Candidate’s. When data are from product Gamma, Candidate’s estimate outper-

forms.

Place Table 4 here —————-

4 Discussion

We have discussed the general use of the nonparametric Candidate's estimate for
calculating the marginal probability based on Markov chain outputs. This procedure can
be applied widely to outputs from Metropolis algorithms and Gibbs sampler. Either the
usual kernel for interior points or the boundary ke. .. .1 can be considered in the proposed
method. Under the boundary case, however, an easier and direct application is to estimate
the marginal probability at an interior point which is at least one bandwidth (#) away
from the endpoint. Unlike methods requiring the knowledge of all conditional densities
(Chib 1995; DiCiccio et al. 1997), the nonparametric Candidate’s estimate does not
require specific knowledge of full conditional densities and the simulation study indicates
that it performs reasonably well in overall cases including the high dimensional problem.

16



Moreover, the Candidate’s estimate is comprehensible, reliable and easy to compute.

Two 1ssues about the non-normality and multi-dimensionality are worth mentioned
here. First, if the target distribution is not close to be normally distributed, a common
approach is to transform the variables. This can be done via parameterization before
generating the Markov chains to achieve greater efficiency. Nevertheless, even if the
transformation is not carried out and the resulting simulations are skewed, the kernel
density estimate can still work. As the recommendation of which kernel to use, the
optimal is the Epanechinikov kernel based on mean integrated square error (MISE} but
the Gaussian kernel is robust enough to work well. Second, when the multivariate kernel
estimate is to be utilized, the window width can be set equal for all dimensions if the
multivariate data spread out roughly the same in each direction. On the other hand,
it may be better to use a smoothing vector if some dimension of the target distribution
varies greater than other directions. Transforming the samples to be independent among
different dimensions is also an alternative. The transformation of parameters even before
running a Markov chain may help to achieve faster convergence rate of the chain and
obtain an easier kernel cstimate later on.

Although we have used the density estimate here to derive the marginal probability,
we have no intention to abolish the other types of estimates. Each has its merits and
position to be the best in certain applications. For instance, Laplace’s method is very
accurate under regularity conditions for well behaved 7(#|y) and harmonic mean estimate

is good when the samples are within reasonable range of the likelihood. Nevertheless, the



Candidate’s estimate is very easy to apply when the size of the simulated samples can
be enlarged to a great number at a very low cost of computing, and when all conditional

distributions are not known.

Appendix: Proofs.

Proof for Theorem 1.

By Taylor expansion one can derive the bias as
” kﬁ 2
Egiy atmy T(Oly) — 7 (0ly) = ?trace {HV ?r(6'|y)} + o(trace(H)),

where V?z(8]y) is a p x p matrix with the (¢, j)th entry given by 87 (6|y)/(88;06;) and

ky is given in condition C2. The variance is given by

. vy _ -
vargy _alm|y *(fly) = m|1(if||1f’1 + o0 [m 1|H| 1/2) )

where v is given in condition C2. Thus,

C 2
EG“)I._”H[’“)ly (E - l)

= 0 ({trace(H)}z) + ¢ (m~1|H|_”2) : (7)
By choosing ff so that A;(H) = O(m=2/(44P)) and plugging it into (7), we have

C 2
Ef?(l}’“_,ﬂ(m]ly (E —_— 1) = O (m“4;{4+p)) .

The following lemma is necessary for the proof of Theorem 2.

18



Lemma 1 For a symmetric positive semi-definite matriz A and constants ¢y and ca, the

solution for the minimization problem
arg min ¢, (trace {HAY)® + oo H|7'/2,

over positive definite H is given by H,,, = G'D,,(7, where G is an orthogonal matriz

which diagonalizes A, A = GAG' with A = diag(A1,...,A,), and

. Dot Copt
Do = dia g )
Pf g( A] )lp

where Q. s a function of ¢;, A;, and p. Moreover, the minimal value is given below:

igf e (trace {HAY)? + ;| H|7/?

— czlnf(p+4]cg,f(p+4) (p(zp+4]f{p+4} + p—pf{p+4}) |A|2f(p+43.

Proof: For symmetric positive semi-definite matrix A, there exists an orthogonal matrix
(7 such that A = GAG’, where A is a diagonal matrix with non-negative diagonal entries.

Let 1) = G'HG, then

e (trace {HAY? + oy |H|71/?
= o (trace {G'HGAY) + |G HG|™?

= ¢ (trace {DAY)? + | D72
We shall now solve for the following minimization problem:

arg mDin e (trace {DAY)? + | DI~Y2, (8)
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Consider the set of matrices with fixed diagonal elements

D = {D : symmetric positive definite with diagonal elements dy,...,d,}.

Then
arg max |D| = diag(di. ..., dy).
where diag(d;,...,d,) denotes a diagonal matrix. Therefore, the minimization problem

{8) can be restricted to diagonal D. Notice that

» 2 » —1/2
¢ (trace {DA}) + ¢ D712 = ¢ (Z dé)!i) + (H di) ,
i=1

=1

we have

3
YN {cl (trace {DA})2 + Cz|D|_U2}
%

» 2 e P ~-1/2
= 2)\k|‘31 (Z d@k,‘) - E (H dt) . (9]

i=1 =1

Setting expression (9} to zero, we get

c p -1/2 4 » -2
Mdy = — (H d,-) (Z dé.xi-) ¥ a.
461 =1 =1 -

Plugging e into the minimization problem (8) and solving for the minimizer «, the solution

is

(621”‘)\1)1.2 e Ap) ot
Dopt = .

de1p

Thus, the solution for (8) is

. 20 &40
Dy = diag ( }lpt, ...,—pt) .
1
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Therefore,

Hopt = G’Dgng.

a
Proof for Theorem 2.
Begin with
By atm)y (% - 1)2 = By gtmoy (;Eg:’;; _ l) : (10)
_ Baw, oy (R(8ly) — 7 (0ly)°
2 w2(8y) 2 "
= gy (trece (VO 4 S s

to(trace(H)) + o (m_1|H|_”2) .

We shall solve the following minimization problem, which gives the optimal H for mini-

mum asymptotic mean square error:

k2 , : vn(fy)
arg min -~ (tmce {HV 7r(6'|y)}) + m|H|7?

Recall that

E (9 - 1)2 _ B (trace {H V*r(0]y)})" v
o008l | A 172(0y) ma{8ly)|H [V
By Lemma 1,
> k2 (trace {H Vr(8|y)})" v
: i) e (0T [HTTT

= 3 (Ti’(@]y))_(zx""ﬂf(?*"ﬂ IVEW(‘gly)|24-"(1r3+4]'1

where the constant ¢y is given by

L2 rf{pt4) o\ 4/ (p44)
€y = (f) (_) (p(2p+4)a"{13+4} + p—P.'"(P’i"i}) )
e
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Therefore, the estimator (4) has asymptotically minirnum value at

arg min w
o (m(Bly))H
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Table I: These are the averages and standard errors of mean square errors on 100 repli-

cations for Laplace volume correction and Candidate’s estimates.

vol. cor. Laplace

(mode)

Candidate
(mode]

Candidate
(best point)

Candidate

{mean)

normal
m=1,000
m=10,000
m=100,000

1.61e-2 (2.47e-3)
2.20e-3 (3.12c-4)
1.70e-4 {2.07¢-5)

3.07e-3 (4.42¢-4)
4.99%-4 (6.74e-5)
7.89¢-5 (1.15¢-5)

1.72¢-3 (2.23¢-4)
2.53e-4 (3.28e-5)
4.64e-5 (6.65¢-6)

3.05e-3 (4.34e-4)
4.91e-4 (6.66¢-5)
7.89¢-5 (1.16c-5)

4(5)
m=1,000
m=10,000
m=100,000

7.05¢-2 (5.21e-3)
4.89e-2 (1.38e-3)
5.10e-2 (6.04e-4)

4.46e-3 (4.18e-4)
7.37e-4 (7.68e-5)
1.50¢-4 (1.59¢-5)

4.46e-3 (4.18e-4)
7.37e-4 {7.68¢ 5)
1.50e-4 (1.59¢-5)

4.23e-3 (3.85e-4)
7.30e-4 (7.62e-5)
1.50e-4 (1.59¢-5)

t(3)
m=1.000
m=10,000
m=100,000

1.71e-1 (8.13¢-3)
1.76e-1 (3.78e-3)

1.76e-1 (1.60e-3) -

9.97e-3 (6.27e-4)
2.13¢-3 (1.42e-4)
5. 73e-4 (2.31e-5)

9.97e-3 (6.27e-4)
2.13e-3 (1.42e-4)
3.73¢-4 (2.3le-5)

9.88¢-3 (6.3le-4)
2.11e-3 (1.4le-4)
3.73e-4 (2.31e-5)

gamma(2,1)
m=1,000
m=10,000

m=100,000

8.99¢-2 (6.11e-3)
8.63e-2 (1.65¢-3)
8.55¢-2 (6.3%-4)

5.70e-3 (4.99e-4)
7.53e-4 (7.47e-5)
1.56e-4 (1.58¢-5)

1.66e-3 (2.11e-4)
3.11e-4 (4.29¢-5)
5.21e-5 (5.86e-6)

[.66e-3 (2.11e-4)
3.1le-d (4.29e-5)
5.21e-5 (5.86e-6)

25



Table 2: These are the averages and standard errors of mean square errors on 100 repli-

cations for Laplace volume correction and Candidate’s estimates.

vol. cor. Laplace Candidate Candidate
gammal(l,1} () (best point, ) (mean)

m=1,000 1.16e-2 (1.52e-3) 1.29e-3 (1.64c-4) 3.56e-3 (5.07e-4)
m=10,000 1.08e-3 (1.55e-4) 3.85¢-4 (5.02e-5) 5.48e-4 (6.27e-5)
m=100,000 1.27e-4 (2.26e-5) 3.53e-4 (2.14e-5) 1.0le-4 (1.40e-5)

Table 3: Estimation of the normalizing constant in a Poisson hierarchical model.

true value  vol. cor. Laplace harmonic mean Candidate

m = 1000 1917 .2453 2151 1816
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Table 4: High-dimensional case with 100 replications.

dimension=4

vol. cor. Laplace

Candidate

normal
m=1,000
m=10,000

2.43e-2 (3.54e-3})
1.72e-3 (2.66e-4)

8.94c-3 (1.38e-3)
2.40e-3 (2.98¢-4)

product-gamma
m=1,000
m=10,000

1.05e-1 (6.27-3)
1.07e-1 (2.42e-3)

8.26e-3 (1.49e-3)
4.27e-3 (5.28e-4)

dimension=10

vol. cor. Laplace

Candidate

normal
m=1,000
m=10,000

1.83e-2 (2.31e-3)
2.07e-3 (3.06e-4)

9.41e-2 (6.93e-3)
4.78¢-2 (3.57e-3)

product-gamma
m=1,000
m=210,000

3.90e-1 (1.420-2)
3.94e-1 (4.27e-3)

1.25e-1 (3.21e-3)
6.12e-2 (1.70e-3)
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