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Abstract

Computing marginal probabilities is an important and fundamental issue in Bayesian inference.
We present a simple method which arises from a likelihood identity for computation. The likelihood
identity, called Candidate’s formula, sets the marginal probability as a ratio of the prior likelihood
to the posterior density. Based on Markov chain Monte Carlo output simulated from the posterior
distribution, a nonparametric kernel estimate is used to estimate the posterior density contained
in that ratio. This derived nonparametric Candidate’s estimate requires only one evaluation of the
posterior density estimate at a point. The optimal point for such evaluation can be chosen to minimize
the expected mean square relative error. The results show that the best point is not necessarily the
posterior mode, but rather a point compromising between high density and low Hessian. For high
dimensional problems, we introduce a variance reduction approach to ease the tension caused by data
sparseness. A simulation study is presented.

Key words and phrases: Bayes factor, Gibbs sampler, kernel density estimation, marginal likelihood,
marginal likelihood identity, Markov chain Monte Carlo, Metropolis-Hasting algorithm.

1 Introduction

In Bayesian inference, a joint posterior distribution is available through the formulation of the
likelihood function and a prior distribution of the parameter of interest. Consider an n x 1 vector
of observations y with sampling probability density f(y|6) given the p x 1 vector of parameters § =
(61,--.,0p). Assume that the parameter § has a prior density m(#) under model My (k = 1,2,...,K).
In Bayesian inference, including variable selection, model selection, or hypothesis testing, one may need
to evaluate the marginal density of the sample data

myiM) = [ f@I0m(0)ab. )
In other Bayesian analysis, one may need to evaluate the marginal posterior density of the form
1
woly) = = [ fI6)m(0) db - dBya @
m(y) Jio:9(0)=n) ( ’

where the parameter of interest is 7 = g(0) for some function g and where n € Q C R with 1 < d < p.
The computation of marginal probability has long been an important and challenging issue in Bayesian
inference. The derivation of its value is necessary when model selection is of interest, or when the
posterior distributions, moments, Bayes factors, or predictive densities are requested. The quantity
m(y), or m(y|My), is sometimes referred to as a normalizing constant, especially when the integrand is
taken to be the product of likelihood function and prior density. Much efforts have since been placed
upon the estimation of m(y).

Several authors (e.g., Mosteller and Wallace, 1964; Tierney and Kadane, 1986) proposed an an-
alytic approximation, Laplace’s method, to approximate the integration when the data size is large.
The basic idea is to use a normal probability density function to approximate the integrand. This
approximation has been shown fairly accurate in many applications. Nevertheless, some difficulties may
arise. For instance, the approximation requires the evaluation of the mode and variance, which may
not be straightforward in many complex models or applications. In addition, the integrand itself may
involve further integration of other nuisance parameters and thus may not be easily derived analytically.
Furthermore, when the parameters are close to the boundary, e.g., parameters in a constrained space




such as the variance components models, the usual Laplace method may fail. Erkanli (1994) and Hsiao
(1997) proposed a modification of Laplace approximation for boundary cases. Their methods applied
to cases where the local maximum likelihood estimate lies at or near the boundary. Pauler, Wakefield
and Kass (1999) proposed a more general Laplace approximation for boundary cases, but it requires
the knowledge of both unrestricted and restricted MLEs.

The advent of the Markov chain Monte Carlo method has provided an easy means to draw samples
from the unnormalized target distribution (see, for instance, Hastings, 1970; Geman and Geman, 1984;
Gelfand and Smith, 1990; Gilks, Richardson and Spiegelhalter, 1996; among many others). Several
MCMC simulation based methods for computing marginal probabilities have been developed, including
the importance sampling (Geweke, 1989; Chen and Shao, 1997, for ratio importance sampling), the
bridge sampling (Meng and Wong, 1996), the path sampling (Gelman and Meng, 1998), Chib’s method
using Gibbs output (Chib, 1995), the harmonic mean (Newton and Raftery, 1994; Gelfand and Dey,
1994), and hybrid methods by combining simulation and Laplace approximation (Lewis and Raftery,
1997; DiCiccio, Kass, Raftery and Wasserman, 1997; Huang, Hsiao and Chang, 2003).

In this article, we present a simple approach arising from the identity (3) below by employing a
kernel estimate for 7(6|y). Besag (1989) gave the Candidate’s formula for Bayesian prediction

m(y) = LU0, Q

This equation holds for all § values in the support of prior density (). It is also known as the marginal
likelihood identity (Chib, 1995). Although this kernel estimate is easy to understand conceptually, its
application has long been limited due to the estimation difficulty known as “the curse of dimensionality”
arising from data sparseness in high dimensional problems. In this article, we introduce an averaging
process of evaluations over various 6 values to effectively utilize more of the posterior sample and to
ease the tension of data sparseness. In Section 2 we demonstrate that the derivation of nonparametric
Candidate’s estimate can be easy and inexpensive. We also investigate its behavior when the posterior
sample size is large. The best point for the estimation is derived next to attain the minimum mean square
relative error. To successfully implement the procedure, we also discuss the guidelines for obtaining
the posterior sample, deriving the bandwidth for kernel estimate, and handling the multi-dimensional
problems. In Section 3 a simulation study is carried out using two groups of probability distributions.
The first group consists of various unimodal distributions, while the second group consists of those that
are highly skewed and/or have the mode close to the boundary. A concluding discussion is given in
Section 4. All proofs are shown in the Appendix.

2 Nonparametric Candidate’s method

2.1. The approach. For simplicity, we use notation C' to denote the normalizing constant,
C = m(y) = f(y|0)n(8)/m(6ly). Any value of € in the support of prior density x(-) provides the same

answer. Based on simulated posterior sample {9(1), cee, 9('“)}, the normalizing constant can be estimated
by plugging in an estimate for the posterior density
~_ fyl&)m(6)
C=——" 4
#(0ly) @
Here we adopt a kernel estimate given by
1 m . .
7 - —_gNT -1 — p@®)
R(OW) = gz 2K (@ - 09T H ™0 - 69), (5)
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where H is a p X p symmetric positive definite matrix, |H| is the determinant of H, and K(-) : R — R*
is a kernel function satisfying the following two conditions

Cl. K integrates to one, [p, K(876)d8 = 1, and

C2. K is an order 2 kernel in the sense that
/ 6,KC(676)d8 = 0, Vi =1,2,...,p,
Rp
ky = / 62KC(676)d6 > 0, Vi =1,2,...,p,
Rr

v= / KC2(678)d6 < co.
Rr

Nonparametric density estimation has been a well developed research topic in recent decades. See,
for references, Silverman (1986), Scott (1992) and Simonoff (1996) for general theory and applications
of the techniques. Here we intend to use the posterior samples generated via MCMC methods to obtain
the estimate of w(f|y). Although MCMC samples are usually not independent, there have been several
approaches to reducing the correlation and computing the covariance (see Geyer 1992, for more details
and references). When given a sufficiently long burn-in of iterations and by taking MCMC outputs
sufficiently long apart, the posterior sample is close to i.i.d.

2.2. Theoretical results. We state in the following theorems the asymptotic order of accuracy of
the nonparametric Candidate’s estimate and the best point for evaluating the estimate.

Theorem 1 Assume that the likelthood function and the prior have continuous second derivatives in
a neighborhood of a certain interior point 8 € supp{n(6)}. Also assume that the kernel function K
satisfies conditions C1 and C2, and that as m — oo, trace(H) — 0 and m|H|? — co, then

Eg . gemy (% - 1)2 =0 ({t’race(H)}z) +0 (m‘1|H|—1/2) ,

where the expectation EB(I)"",G(m)ly is taken with respect to the joint posterior distribution of 61, ..., 6(™)
giveny. Furthermore, choose the bandwidth matriz H so that \;j(H) = O(m~%“+P) forallj =1,...,p,

then c .
= - = —4/(4+p)
Egy . oom1y (5’ 1) =0 (m ) )
where A; denotes the jth largest eigenvalue.

Theorem 1 states that as long as the size of posterior sample gets large, the order of Candidate’s
estimate can be guaranteed. Once Theorem 1 is established, the next question arising naturally is that
at what @ value the posterior should be estimated. Because the Candidate’s formula is valid for all 8 in
the prior support, any choice of 6, as long as the posterior density is smooth in a neighborhood of this
6, is theoretically valid. However, consideration for efficiency suggests that the estimator (4) should be
evaluated at high density and low Hessian points. We therefore derive the best point below under the
mean square relative error criterion.




Theorem 2 The nonparametric Candidate’s estimator (4) achieves asymptotically the minimum value
~ 2
for Eg(l),_,,,g(m)w (C’/C - 1) at

abs{|n(®) (8ly)|}
[x(@ly)l+?

where 72 (B|y) is the second derivative matriz, |-| stands for the matriz determinant and abs{-} stands
for the absolute value. Since w(8|y) is proportional to f(y|6)w(8), it can be replaced by f(y|0)m(8) in
both the numerator and denominator in equation (6).

(6)

0* = arg moin

To attain the minimum mean square relative error, it is most accurate to evaluate the Candidate’s
estimate at the above 6*. Note that the best point may not coincide with the posterior mode. For
instance, the Candidate’s estimate for a normal posterior is most accurate when evaluated at points
of plus or minus one standard deviation away from the mode. Later in Section 3 we demonstrate by
simulation that the estimate evaluated at the best point does have better performance, particularly
when the underlying posterior density is highly skewed.

2.3. Guidelines for implementation. To make the nonparametric Candidate’s estimate easy
to implement, listed below are some guidelines. These guidelines are useful in obtaining an appropri-
ate sample {8(1),0) ... 4™} choosing an optimal bandwidth, constructing the procedures for high
dimensional problems, and dealing with boundary cases.

1. Standardization. Because the marginal density m(y) is invariant under changes of prior parameters
by an arbitrary transformation (as long as such transformation is invertible to avoid degeneration),
we may use the standardized posterior sample for derivation. Other types of transformation which
reduce the degree of correlation and skewness in the sample may be considered as well. The matrix
H in (5) can then be taken as h?I,, where h > 0 is a scalar serving as the kernel bandwidth and I,
is the p x p identity matrix. The posterior standardization procedure will ease the estimation of
m(y). The transformation of parameters can even be carried out before running a Markov chain.
This procedure helps to achieve a faster convergence rate of the chain and to obtain an easier
kernel estimate later on. On the other hand, if the unnormalized posterior sample is available, it
is possible to find an appropriate transformation to standardize, in a rough way, the parameters.

2. Bandwidth Selection. The choice of the bandwidth h is important. The theoretical value for
the optimal bandwidth, in the asymptotic IMSE sense, involves the unknown parameters of the
second derivatives of the posterior density 7(®(8|y) (see, for instance, Parzen, 1962; Simonoff,
1996). For convenience, the second derivatives can be estimated using a reference distribution. If
we choose the standard normal distribution as our reference posterior (with the posterior having
been standardized), some straightforward calculation leads to a rule of thumb bandwidth choice

given by
hopt = (2P 2P 20K ) (p + 92}/ P +4) 1y =1/ (p+4)

where v and k; are defined in the kernel condition C2. Alternatively, Terrell (1990) suggested
making a scale transformation on the data to get a better understanding of the second derivatives.

3. Averaging over Points. For a high dimensional problem, we suggest to average over a set of
C = f(y|6)w(6)/7(6]y) evaluated at various 6 values. The averaging process effectively utilizes
a lot more posterior sample points, which can lessen the tension of data sparseness and stabilize




the high variation. Let M denote the number of § points used in the averaging process. The
corresponding rule of thumb bandwidth choice becomes

hops = {27427 20k /(M (p + 2)) P/ 0+~ 1/049),

Again, this suggestion is based on the criterion of minimal asymptotic IMSE with the standard
normal distribution as our reference posterior. Suggestion on the size M is discussed in the
simulation study in Section 3.

4. Uniform Kernel. It helps to use a uniform kernel (either over a ball or a cube) for posterior density
estimate to reduce the computational load, especially in high dimensional problems. When a
uniform kernel is used to compute the posterior density estimate at a point 6, one simply counts
the proportion of posterior samples falling into the ball (or the cube) centered at 8 with radius A
(or with edge width h). This procedure will save time in computation with only a small loss in
efficiency.

5. Estimation at Boundary. As long as the estimate is evaluated at point(s) chosen in the interior
of the parameter space, the nonparametric Candidate’s estimate discussed above is valid for pos-
teriors with modes located either in the interior or at the boundary. The estimate can also be
modified to adapt to the boundary by evaluating at boundary point(s) using a one-sided kernel or
any other type of boundary kernels. For instance, a right-sided boundary kernel may be used in
the variance component models to avoid putting any weight beyond the left boundary. For kernel
estimation with boundary adjustment, see, e.g., Gasser and Miiller (1979), Rice (1984), Miiller
(1991, 1993), Cowling and Hall (1996), and Miiller and Stadtmiiller (1999).

We shall explain the rationale behind the averaging process in item 3 above. The deficiency encoun-
tered in high dimensional estimation, known as the curse of dimensionality, is due to the data sparseness
in a high dimensional space. This problem is not specific to kernel estimates; indeed, it exists in almost
all kinds of nonparametric methods. This phenomenon persists, unless a certain model structure is
imposed to confine either explicitly or implicitly the data to an effective space of lower dimension. For-
tunately, the deficiency problem encountered in this particular marginal probability computation can
be easily handled on two accounts: (1) the posterior sample is cheap to obtain, and (2) for the kernel
estimate (of order 2) in a p-dimensional problem, it has pointwise bias of order O(h?%) and pointwise
variance of order O((mhP)~1). As the dimension p increases, the variance of kernel estimation gets
higher and higher, while the bias order remains the same. That is, the deficiency is caused by the
high variation of estimation in a high dimensional space and occurs for the estimation of the posterior
density at all points. However, our interest is not in the posterior estimation itself, but rather in using
it for computing marginal probability. Also, because the Candidate’s formula for marginal density is
valid for all @ values in the prior support, one may average over a set of M many 6 values to stabilize
the estimation variance to the order O((MmhP)~!) utilizing more posterior sample points.

3 A simulation study

In this section, we compare the nonparametric Candidate’s estimate with the volume-corrected
Laplace estimate. Both methods are easy to implement for routine use. For other methods, see DiCi-
ccio et al. (1997) for theoretical remarks and comparisons. Other methods including the importance
sampling, the bridge sampling, and the Chib’s method require evaluations of the posterior density at all



posterior sample points. In contrast, the nonparametric Candidate’s and the volume-corrected Laplace

estimates require only one single evaluation of the posterior density. The computational load for Can-

didate’s and the Laplace methods is not as heavy as that for the above mentioned methods. In other

words, when the evaluation of the posterior is difficult or expensive, it is suggested to use the Laplace-

type estimates or the nonparametric Candidate’s method. Therefore, our simulation study is limited to

the comparison of the volume-corrected Laplace estimate and the nonparametric Candidate’s estimate.
Recall the Laplace approximation

o - F0I8)m(6)
P ¢(9*;0*,E*) ’

where ¢(-; 6*,5*) is the multivariate normal density function with mean * and covariance matrix *.
This approximation has C = Crep{1 + O(n™!)}, where n is the size of the observed data y. Lewis
and Raftery (1997) derived the mode and variance estimates for ¢ based on simulated Markov chains
and combined them with the Laplace approximation. The accuracy of the Laplace approximation Crap
depends heavily on the shape of the posterior w(f|y). In other words, it depends on the degree of
resemblance between 7(6|y) and the density of a normal distribution. DiCiccio et al. (1997) proposed
to improve the Laplace approximation. They used a volume of probability o around the mode to adjust

the Laplace approximation:
o _ i) o
T 66 6n T B

where o was recommended to be fixed at .05 and P is the proportion of posterior samples falling into the
ball B, (8*,*) = {8 : (8—6")'(2*)"1(6—6*) < r?} with radius r determined by JB.(6* 5+) 9(0;6%,2%)db =
a. In a later work by Huang, Hsiao and Chang (2003), the choice of a is investigated.

3.1 One dimensional case with interior mode

Table 1 lists the results from simulations based on four different distributions as the nominal pos-
teriors. The four distributions are standard normal, Student-t with degrees of freedom 5, Student-t
with degrees of freedom 3, and gamma(2,1). These distributions are chosen to represent various shapes
of posterior distributions such as symmetry with light tails, symmetry with heavy tails, and skewed
distributions. In each replication, either m = 1,000, 10,000 or m = 100,000 posterior samples are
drawn from each distribution. There are 100 replications under each setting. We use the mean square °
relative error (C/C ~ 1)? as the measure of accuracy.

The Candidate’s estimates are evaluated at three different points: the mode, the mean, and the best
point. For the normal distribution, the best points are the mode plus or minus one standard deviation.
Here we consider the one at the mode plus one standard deviation. The best point for the Student-¢ is
its mode. For gamma(2,1), its best point locates at the mean. Table 1 lists the averages and standard
errors of the mean square relative errors from 100 replications. Some numbers are omitted as they are
the same as the numbers in the best point column. It can be seen that all three Candidate’s estimates
are more accurate than the volume-corrected Laplace estimates. Among the three Candidate’s estimates
evaluated at different points, the one at the best point does outperform the rest.

Place Table 1 here



3.2 One dimensional case with boundary mode

In this section we first consider gamma(1,1) as the nominal posterior distribution. It is noted that
the shape of the observations is skewed and the mode locates at the boundary. The best point to
evaluate the Candidate’s estimate is at the mode, which is also the boundary point. In this comparison,
the volume-corrected Laplace and the Candidate’s estimate are evaluated at one kernel bandwidth from
the boundary. Table 2 lists the results for the volume-corrected Laplace estimate and the Candidate’s
estimate for m =1,000, 10,000, and 100,000, respectively. Again, the Candidate’s estimates attain
better accuracy and have much smaller standard errors. This procedure can be utilized when the
target distribution is not normal or fairly skewed such as those seen in the random effects, or variance
component models with constrained parameters.

Place Table 2 here

Another illustration for the boundary case is a hierarchical model with y given A from a Poisson(\)
distribution, where the parameter A is from an exponential distribution with the hyper-parameter 3
from gamma(a,b). Suppose we are interested in the posterior mean of ) after observing y = 1, we then
need to make inference based on the posterior distribution of A. In other words, we need to compute
the integration of f(y|A)w(A) over A\. Numerical integration can be used to derive the true normalizing
constant m(y). Here, for the purpose of illustration, we first compute the Laplace estimate and then
generate Gibbs samples with m = 1,000 from the full set of conditional distributions to derive the
volume-corrected Laplace, Candidate’s, and the harmonic mean estimate (Newton and Raftery, 1994).
The true value of m(y) is .19 when a and b are both assumed 1. The volume-corrected Laplace estimate
is Cyol—cor = -25, which is evaluated at the maximum likelihood estimate of A = /2 — 1. As seen
in Table 3, the harmonic mean estimate is .22, and the Candidate’s estimate is .18, evaluated at the
estimated posterior mean. The mean square relative error for our proposal is only .003. The MSREs of
the volume-corrected Laplace and harmonic mean are 16 and 4 times larger than that of the Candidate’s
estimate. Again, the Candidate’s estimate is much better when dealing with distributions of irregular
shape.

Place Table 3 here

3.3 Multi-dimensional case

In this section we apply the nonparametric Candidate’s estimate to multi-dimensional problems.
The Candidate’s formula C = f(y|6)n(8)/n(0|y) is valid for all 8 in the prior support. Therefore, we
evaluate the estimate at various @-values and average over them. In this comparison study, we choose
the multivariate normal and the ‘product of gammas’ as the nominal posterior distributions, where
the ‘product of gammas’ is referring to the product of coordinate-wise gamma(2,1) densities. There
are 100 replications under each setting. Here is a reminder that the bandwidth should be adjusted to
the number of evaluation points according to item 3 in the guidelines. Table 4 lists the results for the
volume-corrected Laplace estimate and the Candidate’s estimate for m =1,000 and 10,000.

For the case of 4-dimensional normal and product-gammas, the Candidate’s estimate is evaluated
at points § = (61,02,03,0,) with each 6; set to be either the mode, mode minus one standard deviation
or mode plus one standard deviation. There are M = 3* many of such § points. We evaluate the
Candidate’s estimates at these 81 points and take their average. This average is the reported Candidate’s
estimate.



*t

For the case of 10-dimensional normal and product-gammas, the Candidate’s estimate is evaluated
at points 8 = (64,...,610) with each 6; set to be either the mode or mode plus one standard deviation.
There are M = 2!0 many of such § points. Again, we evaluate the Candidate’s estimates at these 1024
points and take their average. The results are reported in Table 4. Certainly one may increase, decrease,
or customize the evaluation points. For instance, instead of all 10 coordinates, one may pick d many
coordinates and evaluate at these M = 2¢ points only. Alternatively, instead of evaluation at all points
of mode plus one standard deviation, one may pick points of mode plus one standard deviation in some
coordinates and mode minus one standard deviation in other coordinates.

When the posterior is normally distributed, the volume-corrected Laplace estimate is better than
the Candidate’s. When the posterior is product-gammas, Candidate’s estimate outperforms the volume-
corrected Laplace estimate.

Place Table 4 here

4 Concluding Remarks

This article attempts to draw the attention of readers to this simple and straightforward method
for calculating marginal probabilities based on Markov chain output. This procedure can be applied for
routine use by output from Metropolis algorithms or Gibbs sampler. Either the usual kernels for interior
points or boundary kernels can be considered in the proposed method. Under the boundary case, an
easy and direct application is to estimate the marginal probability at the point which is one bandwidth
(k) away from the boundary. Unlike the methods requiring the knowledge of all conditional densities or
evaluating the posterior density at all posterior sample points, the nonparametric Candidate’s estimate
does not require specific knowledge of the full set of conditional densities and it requires only the
evaluation at one single point (or a couple more for the high dimensional problem). We have also
shown that there exists a best point for evaluation and laid out its derivation. In cases of multi-
dimensional problems, we suggest a procedure of averaging over some high density points to overcome
the data spareness. The simulation study indicates that it performs reasonably well in overall cases.
The Candidate’s estimate is comprehensible, reliable and easy to compute.

Other simulation studies based on higher dimensionality, say 100 or even more, for comparison
may be interesting. However, based on our experience, unless further structure of the joint posterior
distribution can be available, the computational load, including the computation of the Hessian matrix,
would be so large that the current computing facility fails to handle the problem. We are currently
investigating solutions to ease the load when the complexity of the posterior distribution can be relaxed
under various conditions.

Some issues concerning standardization are worth mentioning here. If the target distribution is not
close to being coordinate-wise uncorrelated and symmetric, a common approach is to transform the
parameter variables. This can be done via reparameterization before generating the Markov chains
in order to achieve greater efficiency. Transformation will result in not only faster convergence but
also an easier choice of the bandwidth matrix. As indicated in the implementation, though we have
naively chosen the normal as the reference posterior to get a rule of thumb bandwidth A, the scale
family suggested by Terrell (1991) may be an alternative. Nevertheless, even if the transformation is
not carried out and the posterior distribution is highly skewed, the nonparametric Candidate’s estimate
can still work reasonably well.

The proposed averaged estimate over several points may be useful for high dimensional problems to
reduce the curse of dimensionality. We further suggested to select some, say d, coordinates and average



over points in those dimensions. This approach would be particularly useful when the dimensionality
is so large that the Hessian matrix cannot be computed. The criteria for choosing the location and
number of points for averaging pfocess will be important and worth further investigation.

Although we have used the nonparametric Candidate’s estimate to derive the marginal probability,
we have no intention to abolish other types of estimates. Each has its merits and position to suit
certain applications. For instance, the Laplace type methods are very accurate for well behaved 7(6|y)
satisfying certain regularity conditions, the harmonic mean estimate is good when the samples are
within reasonable range of the likelihood, the bridge sampling and the path sampling approaches are
still quite accurate when other methods fail for extremely high dimensional problems. Nevertheless, the
nonparametric Candidate’s estimate is easy to apply with reasonable computational load.

5 Appendix of proofs

Proof for Theorem 1. By the Taylor expansion and properties of the kernel in C2, one can derive the
bias of the posterior density estimate as

~ k
Eg),.. gy 7 (0ly) — m(6ly) = —22~trace {H 7r(2)(9[y)} + o(trace(H)),

where 7((0|y) is a p x p matrix with the (i, )th entry given by 9%m(6ly)/(86;06;). The variance of the
posterior density estimate is given by

- vn(fly _ _
varon,. gy (FO18)) = 2T + o (m 1)

where v is given in condition C2. Thus, we have

Egu),..otm|y (g— - 1)2
= O ({trace(H)}*) + 0 (m"1H|72). (7)

~ 2
By choosing the bandwidth matrix H satisfying A;(H) = O(m~%/(4+P)) then we have Egw ... otm)y (C /C — 1) =
O (m~-4@+p)) a
The following lemma is necessary for the proof of Theorem 2.

Lemma 1 Let H be the set of all p x p positive definite matrices. For a symmetric nonnegative definite
matriz A and constants ¢; and cg, the solution for the minimization problem

. 2 -1/2
arg min ¢; (trace {HA})® + c2|H|

is given by Hopy = G'DopiG, where G is an orthogonal matriz which diagonalizes A, i.e., A = GAG'
with A = diag(Ay,...,Ap), and

Dypt = diag (—C;\Lft,...,g)—iﬂ)
P

with agpt given later in (11). Moreover, the minimal value is given by

inf c1 (trace {HAY) + cal H|™/2 = (cap)?/®+9) (co /) #+4) (p 1 4)| 42/ +0).
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(If any of the A, k = 1,...,p, is zero, then pass the limit A\, — 0 into Dopt and getlimy, g aopt /A = 00
The lemma is still valid.)

Proof. For a symmetric nonnegative definite matrix A, there exists an orthogonal matrix G such that
A = GAG', where A is a diagonal matrix with nonnegative diagonal entries. Let D = G’HG, then

c1 (trace {HA})? + co| H|~1/?
= ¢ (trace {G'HGA})? + | G'HG|™1/?
a1 (trace {DA})? + co|D|~Y/2.
We shall now solve for the following minimization problem:
arg IrJnel% c1 (trace {DA})? + cp|D|72/2. (8)

Let D be the set of all p x p diagonal matrices in H. Note that
. 2 -1/2 _ 2 -1/2
min c; (trace {DA})® + 2| D| minc (trace {DA})® + co| D|7H/2.

That is, the minimization problem (8) can be restricted to D. We have

» 2 » -1/2
¢y (trace {DA})2 + cleI"l/2 =0 (Zdi/\g) +c (H d,~> ,

i=1 i=1

and

o 14 . 62 p -1/2
od, {c1 (trace {DA})? + | D|~ 1/2} = 2XkC1 (Zd,/\,) TR (H d,-) . 9)

i=1 1
By setting expression (9) to zero, we get

o (2 -1/2 -1
v = 7= (Hd) (ZdA) : (10)
i=1

i=1
Note that the right hand side of (10) is a constant. Define o = Axdy and plug it into the minimization
problem (8). The minimizing « is

2/(p+4 2/(p+4
(SR (oo o
opt derp 4cip ’

Therefore, the solution for (8) is Doyt = diag (opt/M1,---,0opt/Ap) and the corresponding optlma.l
matrix is Hopt = G'DoptG. It is then easy to check that the minimal value is ¢ (trace {HoptA}) +
ca| Hopt| ™1/? = (c1p)?/ (”“)(02/4)4/ ®+4) (p + 4) 4|/ +4),

Proof for Theorem 2. Begin with

c 2_ 7(0ly) 2
Egy, . gomy (5 - 1) = Eg),._ gtmy ( @ly) 1) (12)
By, gemy, (7(Oly) — 7(0ly))”
m(0ly)

g 2 un(oly
= 47r2(29|y) (trace {H7®(0ly)})" + m|H|'272(8]y)

+o (trace(H)) + o (m‘1|H]_1/2) ..
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We shall solve the following minimization problem, which gives the optimal H minimizing the asymptotic
mean square relative error:

K3 @ 2 vn(Bly)
arg min —= (trace {H7r (Gly)}) + mIH
By Lemma 1,
2
. k2 (trace {Hvr@)(ﬁly)}) v
Hew pERIC T @l

= c3(m(Bly))” PP+ @) (@) (gy) 2}/ ®+9),

where the constant c3 is given by
4 4/(p+4)
3 = 0.25 (pk%)p/ ®+4) (}%) (p+4).

Therefore, the estimator (4) has asymptotically minimum value at

arg min [ (8]y)*(x (6ly)) "+,

or equivalently, at argument minimizer for abs{|r(? (Gly)l}(vr(ely))'(p*’z). O
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Table 1: These are the averages and standard errors of mean square relative errors from 100 replica-

tions for Laplace volume correction and Candidate’s estimates. All reported numbers here have been

multiplied by 103.

vol. cor. Laplace Candidate Candidate Candidate
(mode) (mode)  (best point)  (mean)
normal
m=1,000 16.1 (2.47) 3.07 (.44) 1.72 (.22) 3.05 (.43)
m=10,000 2.2 (.31) .50 (.07) .25 (.03) .49 (.07)
m=100,000 2 (.02) .08 (.01) .05 (.01) .08 (.01)
¢(5)
m=1,000 70.5 (5.21) — 4.46 (.42) 4.23 (.39)
m=10,000 48.9 (1.38) — .74 (.08) .73 (.08)
m=100,000 51.0 { .60) — .15 (.02) .15 (.02)
£(3)
m=1,000 171. (8.13) — 9.97 (.63)  9.88 (.63)
m=10,000 176. (3.78) — 213 (14)  2.11 (.14)
m=100,000 176. (1.60) — .37 (.02) .37 (.02)
gamma(2,1)
m=1,000 89.9 (6.11) 5.70 (.50)  1.66 (.21) —
m=10,000 86.3 (1.65) 75 (07) .31 (.04) —
m=100,000 85.5 ( .64) 16 (02) .05 (.01) —
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Table 2: These are the averages and standard errors of mean square relative errors from 100 replica-
tions for Laplace volume correction and Candidate’s estimates. All reported numbers here have been

multiplied by 103.

vol. cor. Laplace Candidate Candidate

gamma(1,1) (h) (best point, )  (mean)
m=1,000 11.6 (1.52) 1.3 (.16) 3.6 (.51)
m=10,000 1.1 ( .16) 4 (.05) .5 (.06)
m=100,000 .1(.02) 4 (.02) .1(.01)

Table 3: Estimation of the normalizing constant in a Poisson hierarchical model.

m = 1000 true value vol. cor. Laplace harmonic mean Candidate
CorC 19 25 22 18
MSRE — .048 .012 .003
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Table 4: Multi-dimensional case with 100 replications. All reported numbers here have been multiplied

by 102.

dimension=4 vol. cor. Laplace Candidate

normal
m=1,000 2.43 (.35) .89 (.14)
m=10,000 .17 (.03) .24 (.03)
product-gammas
m=1,000 10.5 (.63) .83 (.15)
m=10,000 10.7 (.24) 43 (.05)
dimension=10  vol. cor. Laplace Candidate
normal
m=1,000 1.83 (.23) 9.41 (.69)
m=10,000 .21 (.03) 4.78 (.36)
product-gammas
m=1,000 39.0 (1.42) 12.5 (.32)
m=10,000 39.4 ( .43) 6.12 (.17)
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