
E

Toxicology and Applied Pharmacology172,37–43 (2001)
doi:10.1006/taap.2001.9130, available online at http://www.idealibrary.com on
Attenuation of Paraquat-Induced Dopaminergic Toxicity
on the Substantia Nigra by (2)-Deprenyl in Vivo

Horng-Huei Liou,*,†,1 Rong-Chi Chen,†,‡ Tony Hsiu-Hsi Chen,§ Yuan-Feen Tsai,¶ and Ming-Cheng Tsai*

Departments of*Pharmacology,†Neurology, and¶Physiology, College of Medicine, and§Institute of Epidemiology, College of Public Health,
National Taiwan University, Taipei, Taiwan; and‡Department of Neurology, En Chu Kong Hospital, Taipei, Taiwan

Received September 13, 2000; accepted December 21, 2000
gic
e
co
Th
in
th

hu

or the
ause

1 dase
B
e .

a
in

ts
r

n the

n,
gro-

.
le in

ted by

1 re
e lt in
m cies.
R and
c OS),
a tegies
t vent
t ide
d ation
a ne
a and
g ivity
(

no-
y of
bility
hase

to its
xicity
ve

183
Attenuation of Paraquat-Induced Dopaminergic Toxicity on the
Substantia Nigra by (2)-Deprenyl in Vivo. Liou, H.-H., Chen,
R.-C., Chen, T. H.-H., Tsai, Y.-F., and Tsai, M.-C. (2001). Toxicol.
Appl. Pharmacol. 172, 37–43.

(2)-Deprenyl (DEP) had been shown to slow of progression of
Parkinson’s disease (PD). The present study sought to determine
whether DEP would attenuate the nigrostriatal system damage
induced by intranigral administration of the herbicide paraquat
(PQ) as a model of parkinsonism in vivo. Neurochemical and
behavioral observations of Wistar rats were the focus of our study.
In the neurochemical observation, the PQ injected in the rats
caused dose-dependent depletion of dopamine (DA) in the ipsilat-
eral striata. The coadministration of DEP with PQ partially in-
creased the striatal DA level. The prediction of the striatal DA
levels was calculated by regression coefficients obtained from mul-
tiple linear regression (r2 5 0.82): DA level (% of control) 5
103.34 2 9.58 PQ (nmol) 1 0.79 DEP (nmol). It was demonstrated
that the high dose of 20 nmol DEP could significant attenuate the
PQ (5 nmol)-elicited dopaminergic toxicity (p < 0.05). In the
behavioral observation, the intranigral injection of PQ into the rats
caused a rotation behavior contralateral to the lesioned side in
response to apomorphine administration (0.5 mg/kg, sc). This
apomorphine-induced rotational behavior could also be attenu-
ated significantly by coadministration of DEP (20 nmol) and PQ (5
nmol) compared with PQ-treated (5 nmol) animals (p < 0.05). The
above observations indicate that DEP could provide a protective
effect on the moderate injury elicited by PQ toxicity of the nigro-
strital dopaminergic system. DEP might be a useful therapeutic
agent in treating patients with early-stage PD. © 2001 Academic Press

Key Words: paraquat; deprenyl; dopamine; Parkinson’s disease.

Progressive loss of nigrostriatal dopaminergic (DAer
neurons may elicit Parkinson’s disease (PD). Increasing
dence supports the hypothesis that environmental factors
tribute to PD development (for review, see Tanner, 1989).
discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid
(MPTP) administration results in a syndrome resembling
clinical, biochemical, and pathological features of PD in

1 To whom correspondence should be addressed. Fax: 011-886-2-234
-mail: hhliou@ha.mc.ntu.edu.tw.
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mans and experimental animals has stimulated a search f
environmental chemicals resembling MPTP that might c
PD (Langstonet al., 1983; Burnset al., 1983; Ballardet al.,

985). MPTP is converted by the action of monoamine oxi
(MAO-B) to 1-methyl-4-phenylpyridinium ion (MPP1), the

ffective neurotoxin (Javitchet al., 1985; Singhet al., 1988)
Paraquat (1,19,-dimethyl-4,49-bipyridium dichloride; PQ) is
widely used herbicide. Because of the striking similarity
structure between PQ and MPP1, PQ may cause toxic effec
to the DA neurons as MPP1. From the epidemiological obse-
vation, a strong correlation has been reported betwee
incidence of PD and the level of PQ (Barbeauet al., 1986; Ho
et al., 1989; Hertzmanet al., 1990; Tanner and Goldma
1996; Liouet al., 1997). PQ has been shown to induce ni
striatal neuronal degeneration in rodents (Endoet al., 1988;
Fredrikssonet al., 1993; Liouet al., 1996; Brookset al., 1999)
These findings suggest that PQ might play an important ro
the pathogenesis of PD.

The mechanism of PQ has been suggested to be media
a series of free radical reactions (Buset al., 1976; Trushet al.,

981, Kadiiskaet al., 1993). These highly toxic radicals a
xtremely reactive with macromolecules and may resu
ultiple organ injuries, leading to death in several spe
ecognizing the fact that PQ is a strong redox agent
ontributes to the formation of reactive oxygen species (R
ttempts have been made to explore pharmacological stra

hat may reduce the formation of these ROS and/or pre
heir toxic effects. Intranigral infusion of Cu-free superox
ismutase (SOD) prevents PQ-induced behavioral stimul
nd electrocortical epileptogenic discharges in rats (Iannoet
l., 1991). Melatonin protects against PQ-induced toxicity
enotoxicity is mediated by its free radical scavenging act
Melchiorri et al., 1996, 1998).

(2)-Deprenyl (selegiline; DEP), a selective type B mo
amine oxidase inhibitor, is an adjuvant to levodopa therap
PD. DEP has been shown to delay the emergence of disa
and the progression of signs and symptoms in the early p
of the disease (Parkinson Study Group, 1993). In addition
antiparkinsonian actions, DEP has prevented the neuroto
of MPTP in monkeys (Cohenet al., 1984) and has protecti
95.
0041-008X/01 $35.00
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38 LIOU ET AL.
effects against toxin-induced neuronal deterioration (Finn
et al., 1990; Wuet al., 1993, 1996; Salonenet al., 1996). DEP
has been reported to reduce the toxic effect of MPP1 via its
antioxidant effectin vivo (Wu et al., 1993, 1996). Low dose
of DEP administration after the insult have been show
possess neuronal rescue-like properties with an unk
mechanism, possibly independent of MAO-B inhibition,
different degenerative models bothin vitro andin vivo (Ansari

t al., 1993; Wuet al., 1993; Juet al., 1994; Tanget al., 1998)
urthermore, DEP has shown antiapoptotic propertiesin vitro
Tattonet al., 1994; Wadiaet al., 1998; Carlileet al., 2000)
EP is thus considered to be a potential effective neuro

ective agent.
Both MPP1 and PQ have similar effects on free rad

generation (Johannessenet al., 1986; Fallonet al., 1997; Lo-
hariuset al., 1999) and could induce nigrostriatal degen
ion. However, The effect of DEP on PQ-elicited nigrostri
opaminergic toxicityin vivo remains unclear. The prima
oal of this study was to examine the possibility of whe
EP could attenuate nigrostriatal system damage by th

ranigral administration of the herbicide PQ. Drug-indu
ehavioral asymmetries observed on the tested animals
nilateral destruction of the nigrostriatal DA system were u
s an experimental model to study PD (Ungerstedt and Ar
ott, 1970) and to evaluate the recovery of DA neur

unction by therapeutic approaches (Perlowet al., 1979; Wang
t al., 1995; Hoffmanet al., 1997). The present study w
erformed by direct intracerebral injection of PQ and DEP

he unilateral substantia nigra compacta (SNc) of the rats
ffects of DEP on PQ-induced toxicity in nigrostriatal sys
ere assessed by striatal neurochemistry and behavioral
ationsin vivo.

MATERIALS AND METHODS

Animals. Male Wistar rats (3 months old) were housed 4 per cage
temperature-regulated room (236 2°C) and maintained on a 12:12 h lig
dark cycle (lights on at 0600 h), with food and water availablead libitum. The
animals were acclimated for at least one week before the surgical proc
The rats weighed 250–300 g at the time of the stereotaxic operation.

Stereotaxic operation. The rats were anesthetized by pentobarbital so
30 mg/kg, ip) and mounted in a stereotaxic apparatus (David Kopf in
ents). A 2-cm long incision was made in the midline of scalp to expos

kull and a 0.5-mm-diameter hole was drilled in the calvaria over the righ
or the insertion of a 30-gauge injection needle by using the Paxino

aston (1986) coordinates: AP 5.3, L 2.0, H 7.8 mm. All rats under
ntranigral injection; they were divided into 4 major groups with diffe
rugs administration protocol. Group A received intranigral injection of
2.5, 5, and 10 nmole, respectively,n 5 7 in each group). Group B receiv
ntranigral co-administration of PQ and DEP. They were administrated
he following listed dosage regimen of PQ and DEP (nmole): PQ 2.51 DEP
5, PQ 2.51 DEP 20, PQ 51 DEP 5, PQ 51 DEP 20, PQ 101 DEP 5, and
PQ 10 1 DEP 20, respectively (n 5 7 in each group). Group C receiv
intranigral injection of DEP 5 and 20 nmole, respectively (n 5 7 in each
group). Group D, the sham-operated control animals, received intra
injection of saline (n 5 7). PQ (Sigma, St. Louis, MO, USA) and DEP (R
Natick, MA, USA) were dissolved in normal saline and were slowly infu
an
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(0.2ml/min) by an infusion pump through a 30-gauge stainless steel need
the right SNc. The injection needle was left in position for a further 2
following the infusion of total 1ml of drug solution. The position of th
injection site was verified histologically at postmortem.

Striatal dopamine level assayed by HPLC.Animals were scarified b
decapitation two weeks after intranigral injection of substance. The brains
quickly removed and immediately frozen in isopentane at–20°C. Serial cr
sections (200mm thick) were cut in the frontal plane, the tissues of the stria

icropunched (Palkovits, 1973), and the micropunched tissues homogen
erchloric acid (0.1 M), using an ultrasonic cell disruptor (Heat System Ultra
SA), then centrifuged at 3000 g for 3 min. The supernatants were remov
ssayed for DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic
HVA) using high-pressure liquid chromatography (HPLC) with electrochem
etection. A C-18 reverse phase column (5mm, 12.5 cm long, Waters Chrom

ography Division, USA) was connected to a carbon electrode set at a pote
.75 V relative to the Ag/AgCl reference electrode, together with an
mperometric detector (Bioanalytic System Inc., USA) in the HPLC system
t al., 1994; Liouet al., 1996).
Each liter of the mobile phase used in the experiment contained he

ulfonic acid (1.75 g), disodium EDTA (0.1 g), triethylamine (3.5 ml), ph
horic acid (4 ml) and acetonitrile (40 ml) in distilled water (Tsaiet al., 1994;
iou et al., 1996). It was filtered and degassed just prior to use. Ext
tandards of DA, DOPAC and HVA were dissolved in perchloric acid (0.
nd run at the same time as the experimental samples. The protein c
ere assayed from tissue pellets solubilized in NaOH (0.5 M) by the m
f Lowry et al. (1951).

Behavioral observations and pharmacological tests.The spontaneou
ehavior of rats was observed after unilateral intranigral injectio
ubstances, when left undisturbed in their cages or when disturb
andling, pinching of their tails, and sudden noise. Apomorphine-ind
otational behavior was assessed utilizing a computerized rotometer s
Hudsonet al., 1993) described by Ungerstedt and Arbuthnott (1970).
ere tested 10 days after intranigral injection of the test substance or s
he rats were placed in rotometer bowls and secured to the counting
y a thoracic harness. After acclimation for at least 10 min, an injecti
pomorphine (Sigma, St. Louis, MO, USA, 0.5 mg/kg,sc) was adminis

ered. Animals that had completed a 360° circle towards the intact
ralateral) side and/or the lesion (ipsilateral) side were monitored
ecorded by computer every minute for 2 h continuously (Hudsonet al.,
993; Wanget al., 1995).

Statistical methods. All observed values are expressed as the mean6 SE.
he overall analyses for comparison of mean values were perform
ne-way analysis of variance (ANOVA). Statistical significant level (a) was

set up at 0.05. Post-hoc tests (i.e., Scheffe’s method) were used to exam
specific difference between any of two groups while the results of the o
analysis reach statistical significance. The relationship of DA to PQ and
was analyzed by the use of multiple linear regression. The association be
the rotational behavior and striatal DA levels was analyzed by simple
regression. The strength of this relationship was quantified by squa
correlation coefficient (r 2).

RESULTS

Striatal Dopamine Content Assayed by HPLC

The injection of PQ into the SNc resulted in reducing
striatal DA levels. The effect depended on the dose of
injected. Following intranigral administration of PQ (2.5,
and 10 nmole), the DA levels in the ipsilateral striata w
decreased to 81.6, 47.9 and 13.5% of saline-treated contro
(5 and 10 nmole) significantly decreased the striatal DA le
compared with controls (p , 0.05).
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39(2)-DEPRENYL ATTENUATE PARAQUAT INDUCES DOPAMINERGIC TOXICITY
The effects of DEP on PQ-elicited striatal DA toxicity w
showed in Fig. 1. Co-administration of low dose of PQ
nmole) and DEP (5 and 20 nmole) into SNc attenuated th
induced toxicity manifested as the ipsilateral striatal DA le
to be increased to 92.4% and 95.8% of control. In the ani

FIG. 1. Effects of unilateral intranigral administration of (–)-depre
DEP) and/or paraquat (PQ) on dopamine (DA) contents of the ipsil
triatum. Animals were scarified two weeks after treatment (n 5 7, in each

dosage regimen). The striata were micropunched and assayed for DA le
HPLC. The striatal DA contents were expressed as percentage of cont
was notable that the animals which co-administrated DEP (20 nmole) a
(5 nmole) were significantly increased in the striatal DA levels compared
those of PQ (5 nmloe) (p , 0.05). PQ1 DEP 5: co-administration of PQ a
5 nmole DEP, PQ1 DEP 20: coadministration of PQ and 20 nmole DEP

TAB
Effects of (2)-Deprenyl on Paraquat-Treated Anima

DOPAC (pg/mg) DA (pg/mg

ontrol 27.946 2.58 184.646 13.
EP (5) 28.696 2.72 182.726 10.
EP (20) 31.296 4.36 186.266 12.
Q (2.5) 24.426 3.15 150.626 12.
Q (2.5)1 DEP (5) 22.046 2.59 170.696 10.
Q (2.5)1 DEP (20) 23.086 4.21 176.846 11.
Q (5) 20.176 2.51 88.626 14.

PQ (5)1 DEP (5) 20.086 3.01 93.126 10.
PQ (5)1 DEP (20) 25.266 3.28* 142.486 12.
PQ (10) 6.946 1.24 24.846 2.
PQ (10)1 DEP (5) 7.326 1.84 30.196 2.
PQ (10)1 DEP (20) 7.206 1.64 29.926 2.

Note.Concentrations (in pg/mg protein) of dopamine (DA), 3,4-dihydroxy
after unilateral intranigral injection of (2)-deprenyl (DEP) and/or paraquat
DEP. Values are expressed as the mean6 SE for each group (n 5 7).

* Statistically significant difference compared with the same dose of P
5
Q
s
ls

which received PQ (5 nmole) elicited moderate striatal
toxicity (47.9%), co-administration of PQ (5 nmole) and D
(5 and 20 nmole) increased the DA levels to 50.4% and 7
of control. Co-administration of PQ (10 nmole) and DEP
and 20 nmole) increased the striatal DA contents to 16.5%
16.2% of control. Results of ANOVA showed only the eff
of DEP on PQ (5 nmole) on DA level reach statistic sign
cance (F(2,18) 55.84,p 5 0.01). Subsequent Scheffe’s post-

ssessment showed that the DA levels in the group o
dministration of DEP (20 nmole) and PQ (5 nmole) w
ignificant higher than those in PQ (5 nmole) and co-adm
ration of PQ (5 nmole) and DEP (5 nmole) (p , 0.05). PQ (5
mole) elicited moderated DA toxicity was significantly att
ated by co-administration of high dose of DEP (20 nmo
hen the striatal DA level depleted more than 85% by PQ

mole), co-administration DEP (5 and 20 nmole) could
ttenuate the PQ elicited severe striatal DA toxicity in rat
We further analyzed the dose-response effects betwee

Q and DEP in the striatal DA level. The prediction of stri
A levels was calculated by regression coefficients obta

rom multiple linear regression (r 2 5 0.82): striatal DA leve
(% of control) 5 103.34–9.58 PQ (nmole)1 0.79 DEP
nmole).

Table 1 showed the effects of DEP on PQ-treated anima
evels of striatal DA and its metabolites. It was demonstr
hat DEP in various doses led to a recovery of DA, DOP
nd HVA in the neostriatum. The PQ-induced increase in
tilization as seen from the (DOPAC1HVA)/DA ratio was no
ounteracted by the DEP treatment.

ehavioral Studies

Figure 2 showed the apomorphine (0.5 mg/kg,sc) induced
otational behavior in rats 10 days after unilateral intran

al

by
. It
Q

th

1
on Levels of Striatal Dopamine and Its Metabolites

HVA (pg/mg) DOPAC/DA HVA/DA

9.246 1.12 0.146 0.01 0.056 0.01
10.056 1.67 0.146 0.01 0.056 0.01
11.516 1.70 0.136 0.01 0.056 0.01
6.386 1.27 0.166 0.01 0.046 0.01
7.056 1.71 0.136 0.01 0.046 0.01
7.216 1.26 0.136 0.01 0.056 0.01
5.146 0.94 0.226 0.04 0.066 0.01
5.096 0.76 0.216 0.03 0.066 0.01
6.206 0.81* 0.196 0.02 0.056 0.01
2.706 0.24 0.256 0.04 0.116 0.01
2.196 0.76 0.246 0.04 0.106 0.01
2.416 0.92 0.246 0.03 0.086 0.01

enylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum 2
) were listed. Parentheses show the concentration (nmole) of injected

reated animals and the coadministration with DEP and PQ-treated ratsp , 0.05).
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40 LIOU ET AL.
injection of DEP and/or PQ. Apomorphine induced rare c
tralateral rotational behavior in the saline-treated controls6

turns/h,n 5 7) and DEP-treated (5 and 20 nmole) rats (6
2 and 9 6 4 turns/h,n 5 7). In rats receiving intranigr
njection of PQ (2.5, 5 and 10 nmole), the apomorphine elic
ontralateral rotational behavior at a rate of 266 8, 486 12,
nd 1106 14 turns/h (n 5 7 in each dosage), which w
tatistically significant compared with saline- and DEP-tre
nimals (p , 0.05).
Co-administration of PQ and DEP into SNc could atten

he apomorphine induced contralateral rotational behavi
ats treated with PQ dose-dependently. Apomorphine ind
ontralateral rotational behavior in the rats that received
dministrated low dose of PQ (2.5 nmole) and DEP (5 an
mole) at the rates of 126 2 and 116 5 (n 5 7). In the rats

njected with the moderate dose of PQ (5 nmole) and DE
nd 20 nmole), apomorphine elicited contralateral rotati
ehavior in rats at the rates of 456 7 and 206 4 (n 5 7).
ikewise, apomorphine elicited rotational behavior in the

reated with high dose of PQ (10 nmole) and DEP (5 an

FIG. 2. Effects of apomorphine (0.5 mg/kg,sc) on contralateral rotation
behavior in rats 10 days after unilateral intranigral injection of (–)-deprenyl (
and/or paraquat (PQ). Each column showed the mean6 SE from 7 rats in eac
group of treatment. At groups C, D5, and D20, the rats received intra
injection of saline (control), DEP 5 nmole, and 20 nmole, respectively. At PQ
PQ 5, and PQ 10, the rats received intranigral administration of PQ 2.5 nm
nmole, and 10 nmole with or without co-administration of DEP. White colu
represented the rats which did not co-administrate with DEP. The hatch co
represented the rats which co-administrated with DEP 5 nmole, and the
columns represented the rats which co-administrated DEP 20 nmole. The st
significant difference in the numbers of contralateral turning per hour com
with the same dose of PQ- and DEP co-administration with PQ-treated grou
as shown,p , 0.05 (*). Noted that DEP (20 nmole) co-administration with PQ
nmole) significantly attenuated the PQ-elicited (5 nmole) rotational beha
after apomorphine treatment.
-

d

d

te
in
ed
o-
0

(5
al

s
0

mole) at the rates of 976 12 and 896 23 (n 5 7). Among
hese treated rats, co-administration of DEP (20 nmole) an
5 nmole) revealed significantly that decreased apomorp
licited rotational behavior compared with those rats tha
eived PQ (5 nmole) (p , 0.05).
There is a well correlation between the change in striata

evels and behavior measure of rotation using individual
al data (r 25 0.73). A simple linear regression equation

the relationship between rotational behavior and striatal
levels was: animal total contralateral turns/h5 –0.56 (striata
DA levels) 1 108.26.

DISCUSSION

The present study demonstrated that DEP could attenua
toxic effects elicited by PQ on striatal DA and its metaboli
In accordance with neurochemical findings, DEP caused
nificant diminution of apomorphine-induced rotational beh
ior in rats whose striata had been unilateral lesioned with
These neurochemical and behavioral results suggest tha
could protect nigrostriatal neurons from PQ-induced DA-e
toxicity.

PQ has been extensively studied as a both a pulmonar
neurotoxicant. Unlike the accidental and high-level PQ e
sure that produced acute pulmonary toxicity, it was presu
that the chronic low-level nonpulmonary toxic doses co
produce a different syndrome defined by damage to
ganglia and parkinsonism. Little is actually known about ac
human exposure levels to PQ and the routes by which
occur, although it is likely that they would include inhalati
per oral ingestion or through transdermal absorption.
levels of PQ appear to be retained in tissue such as muscl
subcutaneous exposures from where it can then be s
released into blood (Sharpet al., 1972). Several investigato
suggest PQ was a causal factor for PD (Barbeauet al., 1986;

o et al., 1989; Hertzmanet al., 1990; Tanner and Goldma
996; Liouet al., 1997). Bocchetta and Corsini (1986) repo

wo patients believed to suffer from PQ-induced parkinson
anchez-Ramoset al. (1987) reported a young farmer who h
een exposed to PQ and affected with PD. Animal studies
howed that repeated systemic injection of PQ was sufficie
educe locomotor activity and the decline of DA-ergic neu
n mice (Brookset al., 1999). Systemical administration
14C] PQ indicated that the herbicide did partition in the C

presumably by penetration of the endothelium comprising
blood–brain barrier (Lindquistet al., 1988). The autoradio

raphic studies with systemically applied [14C] PQ also dem-
onstrated that the compound was most highly confine
neuromelanin producing cells such as those in the
(Lindquistet al., 1988). Such a pattern of distribution sugg
that PQ can preferentially enter and/or be maintained in
which elaborate neuromelanin.

PQ possesses marked neurotoxicity for the nigro-str
DA-ergic system (Endoet al., 1988; Fredrikssonet al., 1993;
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41(2)-DEPRENYL ATTENUATE PARAQUAT INDUCES DOPAMINERGIC TOXICITY
Liou et al.,1996; Yang and Sun, 1998; Brookset al., 1999). We
found that the intranigral administration of PQ caused a d
dependent decrease of DA in the major terminal area
striatum. Similar pharmacological results were seen in M1

-treated rats (Bradburyet al., 1986; Sirinathsinghjiet al., 1988;
unet al., 1988). Our results revealed that DEP could pro

protective effect against PQ-induced moderate nigral inju
reflected by a 50% or less depletion of DA in the striatum
the dose of PQ elicited more than 85% depletion of striatal
DEP could not exert its protective effect. These observa
were consistent with previous findings on the effect of DE
MPP1-treated ratsin vivo (Wu et al., 1993, 1996).

Unilateral lesions within the nigrostriatal DA-ergic syst
f the rats induced a rotational behavior, which reflecte

mbalance of DA-ergic activity in the striata (Ungerstedt
rbuthnott, 1970; Creeseet al., 1977). Behavioral supersen

ivity was manifested by the rats rotating in a direction c
ralateral to the side of the lesion following the syste
dministration of a DA agonist, such as apomorphine,
ppeared to be caused by supersensitivity of the dener
triatal DA receptors (Ungerstedt and Arbuthnott, 1970; Cr
t al., 1977; Hudsonet al., 1993). This behavior correlat
ith the extent of DA depletion and thus was utilized a

unctional index for the recovery of DA-containing neur
ollowing therapeutic interventions (Perlowet al., 1979; Wang
et al., 1995; Hoffmanet al., 1997). The present experime
howed that the apomorphine could induce a degree of v
us contralateral rotational behavior in rats after unila

ntranigral injection of PQ in a dose-dependent manner. T
otational behaviors were significantly reduction by adm
ration of DEP (20 nmole) in the PQ-treated (5 nmole) anim
his restored rotational behavior manifestation was simil

he fetal DA homografts in unilateral 6-hydroxy-dopam
6-OHDA) lesioned rats (Wanget al., 1995).

The present study showed that apomorphine-induced
ralateral circling behavior seen after unilateral intranigra
ection of PQ correlated well with the decrease in striatial
evels, and the neurochemical and behavioral changes in
y PQ were attenuated by administration of DEP. It sugge

hat the decrease in turning was related to the protective a
f DEP on PQ-induced DA depletion.
The increases in the ratio of DA metabolites to DA indica

hat the compensatory mechanisms could be aroused
rease the DA release in the brain of PD or in brain of
ested animals that had been treated with 6-OHDA, MPTP
Q (Palkovits, 1973; Sirinathsinghjiet al., 1988; Liouet al.,
996). The present experiment showed no change in the
f DA metabolites to DA between the PQ-treated and
dministrated with PQ and DEP-treated rats. These data
ated that DEP might not increase striatal DA levels via
etabolites such as methamphetamine or amphetamine (
aRajanet al., 1999), which had been shown to enhance
elease or alter the DA turnover (reflected as the rati
OPAC/DA) by its inhibitory action of MAO-B activity.
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Although the mechanisms of how DEP operated its ef
n PQ were not known for certain, several lines of evide

ndicated that DEP might exert its protective actions via
ntioxidative properties. DEP had been reported to sup

he formation of free radicals from MPTP and its analog
Chiuehet al., 1992; Wuet al., 1996) and it could scaven
ydroxyl and peroxyl radicals bothin vivo andin vitro (Cohen

and Spina, 1989; Wuet al., 1993, 1996; Thomaset al., 1997).
esides, DEP could prevent quinolinic acid-induced
ocampal damage by a mechanism of interfering ROS g
tion (Behanet al., 1999). In addition to the putative antio
ant properties, the neuroprotection of DEP had b
onsidered to be associated with several intracellular m
isms, including enhancement of antioxidant enzymes, su
OD and catalase (Carrilloet al., 1992), inhibition of the
ptake of DA (Zsillaet al., 1986), preservation of mitocho
rial membrane potential (Wadiaet al., 1998), activation o
ntiapopotic system (Tattonet al., 1994; Maruyama and Nao
999; Carlileet al., 2000), and increase in mRNA of troph

actors, such as BDNF (Tanget al., 1998), NGF (Semkovet
l., 1996) and CTNF (Seniuket al., 1994). DEP might prob
bly act like an antioxidant and/or scavenger, inhibiting

ree radical formation and oxidative injury elicited by PQ in
igrostriatal system in this experimental paradigm, but
xact mechanism remained to be elucidated.
PQ is a generator of superoxide anions which were know

nduce cell damage, either directly by blocking cell respira
hain (Patelet al., 1996), or indirectly by activation of choli
rgic (Seto and Shinohara 1988) and glutamatergic (Pelle
iampietroet al., 1990; Bagettaet al., 1992) transmission th
auses neuronal death via an excitotoxic mechanism.
mine metabolism was a secondary target for PQ toxicity
an interfere with polyamine synthesis and uptake, produ
rrested growth and eventually cell death (Masek and R
rds, 1990; Bayoumiet al., 2000). The intracellular spermidi
nd spermine pools were negatively affected with PQ
ose-response manner (Bayoumiet al., 2000). Our result

illustrated that DEP apparently had protective effect on
which were given a moderate, but not high, dose of PQ eli
neurotoxicity. As to whether a high dose of PQ might pos
more potent toxicity to generate mechanism that was be
the neuroprotective action of DEPin vivo, it deserves a furthe
nvestigation.

In conclusion, DEP could reduce the moderate neuro
ffect of MPP1 and PQ in rats. These data revealed that

might be a useful therapeutic agent in treating the early
of PD patients.
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