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INTRODUCTION

 

Genetic factors contribute to virtually every human disease,
conferring susceptibility or resistance. Unlike the simple
Mendelian diseases, many genes may be involved in the
pathogenesis of the more common “complex” human dis-
eases. For example, the susceptibility genes for breast can-
cer include 

 

BRCA1

 

, 

 

BRCA2

 

, 

 

p53

 

, 

 

HRAS1

 

, 

 

HER-2/neu

 

,

 

COMT

 

, 

 

CYP17

 

, 

 

apoE

 

, 

 

CYP1A1

 

, 

 

GSTT1

 

, 

 

GSTM1

 

, 

 

NAT2

 

,

 

XRCC1

 

, 

 

ATM

 

, 

 

SNCG

 

, etc. (1–6).
To quantify the relation between susceptibility genes and

disease risk, a novel study design, the “case–parental control
study”, has come to much attention (7, 8). Under this design,
one needs only collect the genotype data of the cases and
their parents, whereas a control group in the usual sense is
not needed. Because the comparison is within family (condi-
tional on parental genotype) (9, 10), the case–parental con-
trol study is not affected by population structure (11–13),
which can otherwise confound the “genotype relative risk”
(GRR) estimation in a conventional case–control study. Fur-
thermore, there is no need to worry about possible confound-
ing from environmental factors either, since the case–
parental control design is a self-matched study with the “con-
trols” having exactly the same environmental exposures as
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the case (14). (The “controls” in the case–parental control
study are the parental untransmitted alleles.)

However, the estimation of the GRR for a particular sus-
ceptibility gene can be confounded by other genes even in a
case–parental control study. Such “gene–gene confound-
ing” can arise when several susceptibility genes have been
genotyped in a study, but the analysis is performed on a
one-gene-at-a-time basis. It can also arise when some im-
portant susceptibility gene(s) other than the one under
study have not yet been identified and thus could not be
genotyped and adjusted in the study. (It is important not to
confuse gene–gene confounding with “gene–gene interac-
tion” (15), a term that describes the effect modification of a
gene by the presence of another gene. The gene–gene con-
founding operates at a more fundamental level. It is a bias
to be reckoned with even if two genes act in a way predict-
able by the simplest multiplicative model.)

 

METHODS AND RESULTS

 

In this study, we will quantify using some simple mathemat-
ical equations, the magnitude of gene–gene confounding
bias in a case–parental control study. We will also demon-
strate the potential problems of such a bias with hypotheti-
cal (but realistic) examples.

 

Gene–Gene Confounding

 

Assume that two genetic loci, A and B, confer susceptibil-
ity to the risk of a disease.
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There are two alleles at either locus, 

 

A

 

 (high risk) and 

 

a

 

(low risk) alleles for A locus, and 

 

B

 

 (high risk) and 

 

b

 

 (low
risk) alleles for B locus. Let 

 

R

 

1
A

 

 denote the GRR of 

 

Aa

 

 ge-
notype versus 

 

aa

 

 genotype, and let 

 

R

 

2
A

 

, the GRR of 

 

AA

 

 ver-
sus 

 

Aa

 

. The corresponding GRRs at B locus are denoted by

 

R

 

1
B

 

and 

 

R

 

2
B

 

, respectively. Let 

 

R

 

0

 

 represent the disease risk of
subjects with genotype 

 

aabb

 

. We assume there is no gene–
gene interaction between A and B (in a multiplicative
model). Therefore the disease risk for subjects with geno-
type 

 

Aabb

 

 is 

 

R

 

0 

 

�

 

 

 

R

 

1
A

 

, and the disease risk for 

 

AaBB

 

 is 

 

R

 

0 

 

�

 

R

 

1
A

 

�

 

 

 

R

 

1
B

 

�

 

 

 

R

 

2
B

 

, etc.
We assume that the A gene has been genotyped and is

the gene under concern, and the B gene is the “confounder
gene” (for whatever reason described above). We set out to
examine the bias in the estimation of GRRs for the A gene,
assuming that the B gene was not accounted for in a case–
parental control study. The index of “relative bias” (RB) is
used to quantify the magnitude of bias in proportional term
[RB 

 

�

 

 (estimated value 

 

�

 

 true value)/true value]. It has a
simple relation to the “confounding risk ratio” (CRR) used
in a previous study (13), that is, RB 

 

�

 

 CRR 

 

�

 

 1.

 

Unstructured Population

 

Assuming that the case–parental control study was per-
formed in a homogeneous unstructured population (a ran-
dom mating population in Hardy–Weinberg equilibrium)
with population size of 

 

N

 

 subjects, the appendix shows that
the relative bias for 

 

R

 

1
A

 

(if not accounting for B) is

(1)

and the relative bias for 

 

R

 

2
A

 

is

(2)

where 

 

�

 

 is the recombination fraction between A and B, 

 

�

 

is the linkage disequilibrium parameter in parental popula-
tion, 

 

Q

 

AB

 

, 

 

Q

 

Ab

 

, 

 

Q

 

aB

 

, and 

 

Q

 

ab

 

 are the haplotype frequencies
in offspring for 

 

AB

 

, 

 

Ab

 

, 

 

aB

 

, and 

 

ab

 

, respectively, and 

 

F

 

1

 

 

 

�

 

0, 

 

F

 

2

 

 

 

�

 

 0 are some complicated functions detailed in ap-
pendix. Note that

(3)

RB1 1 2θ–( ) δ QaBR1
B[ R2

B( 1 )

Qab R1
B( 1 ) ] F1,⁄–

+–⋅ ⋅=

RB2 1( 2θ ) δ QABR1
B R2

B([ 1 )

QAb R1
B( 1 ) ] F2,⁄–

+–⋅ ⋅–=

δ PAB Pab PAb PaB
QAB( Qab QAb QaB ) 1( θ )– ,⁄⋅–⋅

=⋅–⋅=

where PAB, PAb, PaB, and Pab are the haplotype frequencies in
parental population (16). When the B gene displays a mul-
tiplicative gene-dose effect, that is R1

B � R2
B � RB, the

above equations for the relative biases in the estimation of
the effects of A gene reduce to

(4)

where F � 0 is detailed in appendix.
From these equations, it is clear that we will obtain an

unbiased estimation of GRRs for the A gene if either one of
the following three conditions is fulfilled: (i) the B gene
and the A gene are unlinked (� � 0.5); (ii) the B gene and
the A gene are in the same chromosome but are separated
widely apart, say ��10cM, such that the two genes are in
linkage equilibrium (� � 0); (iii) the B gene is not a suscep-
tibility gene for the disease under study (R1

B � R2
B � 1). In

other words, when a case–parental control study was per-
formed in an unstructured population, nearby susceptibility
gene(s) at the same chromosome could exert a confounding
bias on GRR estimation of the study gene. The direction
and magnitude of the bias is to our expectation, that is,
smaller �, larger �, and/or larger GRRs (for B gene) will
lead to larger bias and that the bias will be in a positive di-
rection (overestimation) if A and B genes are positively
correlated (� � 0) and in a negative direction (underesti-
mation) if otherwise. It is of interest to see that the RBs for
A gene do not depend on the GRRs of A gene itself.

Stratified Population

The study population is now assumed to be composed of
two subpopulations (the first subpopulation constitutes m
(0 	 m 	 1) proportion, and the second, 1 � m). Random
mating occurs within the subpopulations but the two sub-
populations do not intermix. It can be shown that the rela-
tive biases in this stratified population at large are the
weighted averages of the relative biases in the two subpopu-
lations, that is (the superscripts, I and II, indicate the two
subpopulations):

(5)

and

RB1 RB2 1( 2θ ) δ RB(⋅ 1 ) F,⁄–⋅–= =

RB1
S mF1

I RB1
I 1( m )F1

II RB1
II⋅–+⋅

mF1
I 1( m )F1

II
–+

---------------------------------------------------------------------------=

1( 2θ )–

mδI{ QaB
I R1

B R2
B([ 1 ) Qab

I R1
B( 1 ) ]–

1( m )δ II QaB
II R1

B R2
B([ 1 ) Qab

II R1
B( 1 ) ] }–

mF1
I 1( m )F1

II
–+[ ]

⁄+–⋅–

++–

⋅

⋅

=
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(6)

It is then clear that in the stratified population, we will ob-
tain unbiased estimations if either one of the following
three conditions is fulfilled: (i) the B gene and the A gene
are unlinked (� � 0.5); (ii) the B gene and the A gene are
in the same chromosome but are separated widely apart,
say ��10cM, such that the two genes are in linkage equi-
librium in both subpopulations (�I � �II � 0); (iii) the B
gene is not a susceptibility gene for the disease under study
(R1

B
 � R2

B
 �1). These conditions are essentially the same

as those in the case of unstructured population as described
before, that is, only nearby susceptibility gene(s) can exert
a confounding effect on the study gene. Note however that
in general RB1

S ≠ RB2
S even with a multiplicative gene-

dose effect for the B gene.

Admixed Population

Suppose that an admixed population obtains a fraction m of
its genes from ancestral population I and a fraction 1 � m
from ancestral population II. As in the case of traditional
admixture analysis (16), we assume that the admixture has
taken place in a single event at generation 0. If a case–
parental control study was conducted at the (t � 1)th gen-
eration (parents from the tth generation), we have relative
biases of

(7)

(8)

and, with a gene-dose effect for B,

(9)

RB2
S mF2

I RB2
I 1( m )F2

II RB2
II

=
⋅–+⋅

mF2
I 1( m )F2

II
–+

------------------------------------------------------------------------------------=

1 2θ–( )

mδ I{ QAB
I R1

B R2
B( 1 ) QAb

I R1
B( 1 )–+–[ ]

1( m )δ II QAB
II[ R1

B R2
B 1–( )

QAb
II R1

B( 1 ) ] } mF2
I[ 1( m )F2

II ].–+⁄–

+⋅–

+

⋅

⋅

RB1
t 1+( ) 1( 2θ ) δ t( ) QaB

t( )R1
B R2

B([ 1 )

Qab
t( ) R1

B( 1 ) ] F1
t( )⁄–

+–⋅ ⋅–=

1 2θ–( ) 1( θ )t δ 0( ) QaB
t( )R1

B R2
B([ 1 )+ 

Qab
t( ) R1

B( 1 ) ] F1
t( ),⁄–

–⋅ ⋅–⋅=
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t 1+( ) 1( 2θ ) δ t( ) QAB

t( ) R1
B R2

B([ 1 )

QAb
t( ) R1

B( 1 ) ] F2
t( )⁄–

+–⋅ ⋅–=

1 2θ–( ) 1( θ )t δ 0( ) QAB
t( ) R1

B R2
B([ 1 ) + 

QAb
t( ) R1

B( 1 ) ] F2
t( ),⁄–

–⋅ ⋅–⋅=

RB1
t 1+( ) RB2

t 1+( ) 1( 2θ ) 1( θ )t

δ 0( ) RB( 1 ) F t( ).⁄–

⋅

⋅

–⋅–= =

The �(0) (linkage disequilibrium at generation 0) in these
equations deserves special attention. It is composed of two
terms, the first being the weighted average of the disequilib-
rium parameters of the two ancestral populations, and the
second, the disequilibrium arising from population structure
(16). That is, �(0) � [m�I � (1 � m)�II] � [m(1 � m) (PI

A. �
PII

A.) (PI.B � PII.B)], where PI
A . and PII

A . denote the A al-
lele frequencies in I and II, respectively, and PI.B and PII.B

denote the corresponding values for B. Note that there is
no confusion between the admixed population at t � 0 (ge-
netic mixing allowed) and the previously defined stratified
population (no genetic mixing).

In the admixed population, either the unlinked condi-
tion (� � 0.5) or the null-B condition (R1

B
 � R2

B � 1) will
guarantee the unbiased estimation of GRRs of the A gene.
However, a non null linked gene could by all means con-
found the GRR estimation, even if the gene is located very
far away from the study gene. This is due to the disequilib-
rium arising from population structure (� (t) ≠ 0 even if � I �
� II � 0, provided that the admixture is recent (t is not too
large) and that there are frequency differences for both A
and B genes in the two ancestral populations (PI

A. ≠ PII
A.

and PI.B ≠ PII.B )). Note that such a gene–gene confounding
due to population structure does not appear, as shown in
the previous section, in a stratified population without ge-
netic mixing between its subpopulations.

Examples

Suppose a researcher conducted a case–parental control
study for breast cancer in an unstructured population to es-
timate the GRRs for the GSTT1 gene. The alleles of the
GSTT1 gene were grouped into “null” (high risk) and “non
null” (low risk) groups, with frequency of the null alleles
being about 0.4. However, the potential confounding effect
from a nearby gene, the COMT gene, has been overlook in
the study. (The COMT gene can be grouped into two alleles,
“low activity” (high risk) and “high activity” (low risk),
with rough equal frequency. The GRRs for COMT are
R1

COMT � R2
COMT � 2.5). The genetic distance between

these two genes is � � 0.9%. Assume that the linkage dis-
equilibrium between these two genes is � � 0.12 (Lewontin
disequilibrium parameter (17) D
 � 0.6), this study will
then have relative biases of (using the above equations for
unstructured population) RB1 � RB2 � 50.6%. Such mag-
nitude of bias deserves epidemiologists’ full attention.

As another example, suppose a case–parental control
study for breast cancer was conducted in an admixed popu-
lation, this time to estimate the GRRs for the SNCG gene
(at 10q23.2–10q23.3). The researcher however did not take
into account the potential confounding effect from the
CYP17 gene, which is located at the same chromosome as
(but far away from) the SNCG gene (� � 15%). The GRRs
for the CYP17 gene are R1

CYP17 � R2
CYP17 � 3. Assume that
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the admixed population obtains equal proportion of its
genes from two ancestral populations, I and II. The SNCG
and CYP17 genes are in linkage equilibrium in both ances-
tral populations (since the two genes are wide apart). The
frequencies of the high-risk allele for SNCG gene in popu-
lation I and II are, respectively, 0.8 and 0.2. And the corre-
sponding values for CYP17 gene are 0.7 and 0.1. If the study
were conducted long after the admixture process (say, at
the 30th generation), there will be relative biases of (using
the above equations for admixed population) RB1

(30) �
RB2

(30) � 0.3%, which is negligible of course. However, if
the study were conducted in a population that was recently
admixed (say, at the 3rd generation), the relative biases will
then amount to RB1

(3) � RB2
(3) � 22.5%.

Table 1 shows the values of relative bias under various con-
ditions, assuming a gene-dose effect for the confounder gene.

DISCUSSION

A comparison of our approach in this study to the associa-
tion-mapping approach in the genetics literature (18–20) is
in order, especially since both approaches use the same data
structure of case–parents triads. For the mapping approach,
interests are centered on using a marker (or markers) to
“map” a putative susceptibility gene by linkage-disequilib-
rium tests. Naturally, the � level and the power of the test
are the focal points. In our approach the genomic locations
of the genes are assumed to be already known. What remains

is then to quantify correctly the separate effects of the various
genes on disease risk. And thus we encounter the con-
founder–gene problem. To make a sharper contrast between
the two approaches, take the case of population admixture
for example. Unlike the very narrow range (	� 1 cM) of
disequilibrium likely seen in an unstructured population, an
“admixture disequilibrium” can extend over a very long dis-
tance (or even the entire chromosome, if immediately after
the admixture). This has since become the basis for the “ad-
mixture mapping” (21, 22) using the “transmission/disequi-
librium test” (TDT) (19). In this case, admixture actually
boosts the power of a TDT. However, our focus here is on es-
timation rather than on testing. And we found out that from
the standpoint of gene–gene confounding, an admixture
population is not a blessing but could be an origin for biases.

In conventional “risk factor” epidemiology, susceptibil-
ity genes were often treated just like any other exposure in
the study, such as smoking, drinking, educational status,
etc. However, our analysis has shown that as far as con-
founding effects are concerned, genes are very different
from ordinary exposures. To determine whether another
gene could confound the effects of the gene under concern,
one must pay attention to the history of the study popula-
tion (whether it is a recently admixed population, and how
recent?). One must also consider the relative genomic posi-
tions of the two genes (whether the two genes are in the
same chromosome, and how close?). By contrast, there is no
such corresponding concept as “linkage” and/or “disequilib-
rium” between, say, smoking and drinking.

TABLE 1. Relative bias under various conditions, assuming a gene-dose effect for the confounder gene

Recombination
fraction (%)

Lewontin 
disequilibrium

parameter

Genotype
relative risk

for the
 confounder gene

Relative bias (%) for the gene under study

Unstructured
population

Stratified*
population

Admixed population

Generation � 3 Generation � 30

0.1 0.8 10 333.1 285.1 453.0 415.9
0.1 0.8 2 59.1 50.7 67.8 65.4
0.1 �0.8 10 �76.9 �29.7 58.4 56.4
0.1 �0.8 2 �37.1 �13.2 18.0 17.5
0.1 0.8 1 0.0 0.0 0.0 0.0
1.0 0.2 10 36.2 28.8 145.4 94.5
1.0 0.2 2 11.9 10.2 36.3 26.5
1.0 �0.2 10 �26.6 �8.7 89.1 61.4
1.0 �0.2 2 �10.6 �3.5 25.4 18.8
10.0 0 10 0.0 0.0 59.1 2.7
10.0 0 2 0.0 0.0 18.2 1.0
20.0 0 10 0.0 0.0 31.3 0.1
20.0 0 2 0.0 0.0 10.4 0.0
50.0 0 10 0.0 0.0 0.0 0.0

In the unstructured population, the frequency of the gene under study is 0.5, while that of the confounder gene is 0.4. The stratified (admixed) population
are composed of (derived from) two subpopulations (source populations), I and II. The frequencies of the study gene are 0.8 (I) and 0.2 (II), while those of
the confounder gene are 0.7 (I) and 0.1 (II). The Lewontin disequilibrium parameters are assumed equal in I and II.

* The two relative biases are in general not equal. Here the geometric average is presented.
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From the derived relative-bias formula, we found that the
degree of bias resulting from gene–gene confounding can be
quite substantial under certain conditions (two genes are very
close-linked and/or the study was performed in a recent ad-
mixed population). With epidemiology fast moving into a
post-genomic era (23–25), one will be expecting more and
more encounters of such a bias in real practices. Should that
happen, we should consider jointly all the susceptibility genes
in the same chromosome and avoid the taken-for-granted one-
gene-at-a-time approach. The methodological details of the
confounder-gene adjustment in case–parental control studies
will be reported elsewhere.

This study was partly supported by a grant from the National Science
Council, Republic of China.
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APPENDIX

Because the B gene was not observed, the data was clas-
sified according to the A gene (a total of ten categories of
case-parents triads). Following the principle of Schaid (20),
the number of triads in each of the ten categories can be de-
rived (using the same notations as in text):

(10)

(11)

(12)

(13)

# A( A AA AA ) N R0R2
AR1

A

PA�
2 PAB

2 R2
BR1

B 2PA�
2 PABPAbR1

B
+ PA�

2 PAb
2

+( ),
⋅=→×

# AA( Aa AA ) 2N R0R2
AR1

A

PA�PAB Pa�( PAB{ θδ )R2
BR1

B PA�PAB

Pa�( PAb

[

θδ ) PA�PAb Pa�( PAB θδ ) ]R1
B

PA�PAb Pa�PAb( θδ ) },

+

+

–

+

+ +

–

⋅=→×

# AA( Aa Aa ) 2N R0R1
A

PA�PAB PA�( PaB{ θδ )R2
BR1

B PA�PAB

PA�( Pab

[

θ– δ ) PA�PAb PA�( PaB θδ ) ]R1
B

PA�PAb PA�Pab( θ– δ ) },

+ +

+ + +

⋅=→×

# AA( aa Aa ) N R0R1
A

2PA�Pa�PABPaBR2
BR1

B[ 2PA�Pa� P( ABPab PAbPaB )

R1
B 2PA�Pa�PAbPab ],

+ +

+

⋅=→×
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(14)

(15)

(16)

(17)

(18)

# Aa( Aa AA ) N R0R2
AR1

A

Pa�( PAB θδ )2
–[ R2

BR1
B 2 Pa�PAB( θδ ) Pa�PAb(–

θδ )R1
B Pa�PAb( θδ )2 ],

+

+ +

+

⋅=→×

# Aa Aa Aa→×( ) 2NR0R1

.

Pa�PAB θδ–( ) PA�PaB θδ+( )R2
B R1

B

Pa�PAB θδ–( ) P( A� Pab θδ–( )

Pa�PAb θδ+( ) PA�PaB θδ+( )

+[

]R1
B

Pa�PAb θδ+( ) PA�Pab θδ–( )

+

+











,

=

# Aa Aa aa→×( ) NR0 PA�PaB θδ+( )2R2
B R1

B

2 PA�PaB θδ+( ) PA�Pab θδ–( )R1
B

PA�Pab θδ–( )2

+

+

[

],

⋅=

# Aa aa Aa→×( ) 2NR0R1
A

Pa�PaB Pa�PAB θδ–( )R2
B R1

B

Pa�PaB Pa�PAb θδ+( ) Pa�Pab Pa�PAB θδ–( )+[ ]R1
B

Pa�Pab Pa�PAb θδ+( )

+

+












,

⋅=

# Aa aa aa→×( ) 2NR0

Pa�PaB PA�PaB θδ+( )R2
B R1

B

Pa�PaB PA�Pab θδ–( ) Pa�Pab PA�PaB θδ+( )+[ ]R1
B

Pa�Pab PA�Pab θδ–( )

+

+












,

⋅=

(19)

The GRR estimates for the A gene are (7):

(20)

and

(21)

(If desired, one can use the Lee and Chang’s method (8) to
achieve greater precision in GRR estimation. Here we re-
sort to the simpler method of Sun et al. (7), since the focus
of this paper is on the anatomy of bias but not on preci-
sion.)

The RBs for the A gene are then (after some algebra):

(22)
and

(23)
where

(24)

and

(25)

When R1
B � R2

B � RB, the above equations for RBs reduce
to

(26)

where

(27)

# aa aa aa→×( ) NR0

Pa�
2 PaB

2 R2
B R1

B 2Pa�
2 PaB Pab R1

B Pa�
2 Pab

2+ +( ).

⋅=

R1
Â # Aa aa Aa→×( ) # Aa Aa Aa→×( )+

# Aa aa aa→×( ) twice of # Aa Aa aa→×( )+
-----------------------------------------------------------------------------------------------------------------=

R2
Â

# AA Aa AA→×( ) twice of # Aa Aa AA→×( )+
# AA Aa Aa→×( ) # Aa Aa Aa→×( )+

---------------------------------------------------------------------------------------------------------------------------

=

RB1 R1
Â R1

A
– 

  R1
A

1 2θ–( ) δ QaBR1
B R2

B 1–( ) Qab R1
B 1–( )+[ ] F1⁄⋅ ⋅

=⁄=

RB2 R2
Â R2

A
– 

  R2
A

1 2θ–( ) δ⋅

=⁄=

QABR1
B R2

B 1–( ) QAb R1
B 1–( )+[ ] F2,⁄⋅

F1 QaB PA�PaB θδ+( )R2
B R1

B

Qab PA�PaB θδ+( ) QaB PA�Pab θδ–( )+[ ]R1
B

Qab PA�Pab θδ–( )

+

+

=

F2 QAB PA�PaB θδ+( )R2
B R1

B

QAb PA�PaB θδ+( ) QAB PA�Pab θδ–( )+[ ]R1
B

QAb PA�Pab θδ–( ).

+

+

=

RB1 RB2 1 2θ–( ) δ RB 1–( ) F,⁄⋅ ⋅= =

F PA�PaB θδ+( )RB PA�Pab θδ–( ).+=


