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I am grateful to Dr. Weinberg for her insightful
commentary (1) on my paper (2). Weinberg is looking
forward eagerly to a day when researchers will be able to
search the whole genome for susceptibility loci for
complex diseases (1). Likewise, I notice with excitement
that the conventional “risk factor” epidemiology as we
know it has undergone a profound change. Moving into
this postgenomic era, epidemiology can mean gene-
mapping business, no less truly than it has been for so
long about odds ratios and confidence intervals for, for
example, smoking and lung cancer.

To obtain a weighting scheme for the various family
configurations encountered in actual practice, the Di is
defined as the allele count for the case (Ci) minus the
allele count for the following: 1) nontransmitted, Ni
(case-parents data); 2) imputed nontransmitted,  (case-
sibling data); 3) spouse, Si (case-spouse data); and 4) im-
puted spouse,  (case-offspring data), where the “non-
transmitted” refers to the parental alleles not transmitted
to the case (1), the “imputed nontransmitted” has an al-
lele count of , where the Bi is the mean al-
lele count of the control siblings, and the spouse and the
imputed spouse are defined the same as in my paper (2).
The Dis defined in this way all have the same “mean” (e1
in my paper (2)) under the alternative hypothesis, irre-
spective of family configurations. The statistical effi-
ciencies of the various family configurations are then in
proportion to the inverses of their respective “variances”
(e2 in my paper (2)).

Table 1 presents the relative efficiencies for the
various family configurations (relative to case-parents
data). Note that, in this paper, the disequilibrium test (1),
but not the transmission/disequilibrium test (2), was
applied to the case-parents data. To be brief, I present
only the case with the allele frequency set at P = 0.1. It
is of interest to note the following. First, the case-spouse
data and the case-parents data have exactly the same
efficiency. Second, the case-offspring data and the case-

sibling data have roughly the same relative efficiency,
when the number per family of offspring and the number
per family of control siblings are equal. Third, the rela-
tive efficiency of the case-offspring (case-sibling) data
with one offspring (control sibling) per family is ~0.5.
These findings largely confirm Weinberg’s speculations
(1).

In addition, I agree with Weinberg (1) that the informa-
tion from the following two lines of relatives can be inte-
grated to improve the power of the disequilibrium test:
line I, the parents or, if the parents are missing, the
control siblings; and line II, the spouse or, if the spouse
is missing, the offspring. The penultimate column of
table 1 presents the relative efficiencies (also calculated
from e2 in my paper (2)) for a Di, averaged from case-
parents and case-spouse data, and the last column, the
relative efficiencies from one control sibling and one
offspring. It is of interest to note that the relative effi-
ciencies are less than 2.00 for parents plus spouse.
(Having two controls does not make the case twice as
informative). Moreover, the relative efficiencies are less
than 1.00 for one control sibling plus one offspring. (Two
haploids do not make a whole diploid control). The
values are larger than the corresponding values for two
control siblings or two offspring, though. (Having two
lines of relatives is better than having only one).

The variance formula simplifies considerably under the
null. We have, dropping the subscript i, Var(D) =
Var(C – N) = Var(C) + Var(N) = 4P(1 – P), for case-
parents data. Likewise, Var(D) = Var(C – S) = Var(C) +
Var(S) = 4P(1 – P), for case-spouse data. Because the
numbers of “identical by descent” (3) for a sibling pair
are 2 (probability = 0.25), 1 (probability = 0.5), and 0
(probability = 0.25), we have Cov(B1, B2) = Cov(C, B1) = 0.25 ×
2P(1 – P) + 0.5 × P(1 – P) + 0.25 × 0 = P(1 – P), with
B1 and B2 being the allele count for the first and the
second control siblings, respectively. Thus, for case-
sibling data with x control siblings per family, 

Reprint requests to Dr. Wen-Chung Lee, Graduate Institute of Epidemiology, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei 
100, Taiwan, Republic of China (e-mail: wenchung@ha.mc.ntu.edu.tw).

N̂i

Ŝi
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Similarly, we can show that 

for case-offspring data with y offspring per family.
Treating case-parents data as case-sibling data with x = ∞ and case-spouse data as case-offspring data with y = ∞, the variance

(under the null) of a weighted average of the two lines of relatives (superscripts, I and II) is 

where Ok is the allele count for the kth offspring. With the use of the identical-by-descent probabilities again (for siblings,
parent-offspring, and uncle-nephew pairs) (3), the last term can be shown to be t(1 – t) × 4P(1 – P). Thus, the variance is a
quadratic function of t and has a minimum value of 

when

TABLE 1.   Relative efficiencies for the various family configurations (relative to case-parents data)

γ Spouse

No. of control siblings No. of offspring

Parents + 
spouse

One 
control 

sibling + 
one 

offspring
1 2 3 4 5 1 2 3 4 5

Multiplicative mode of inheritance

4.0 1.00 0.53 0.69 0.77 0.82 0.85 0.56 0.72 0.79 0.84 0.87 1.13 0.77

2.0 1.00 0.51 0.67 0.76 0.80 0.84 0.51 0.68 0.76 0.81 0.84 1.22 0.77

1.5 1.00 0.50 0.67 0.75 0.80 0.83 0.50 0.67 0.75 0.80 0.84 1.26 0.78

Additive mode of inheritance

4.0 1.00 0.50 0.67 0.75 0.80 0.84 0.51 0.67 0.76 0.81 0.84 1.16 0.74

2.0 1.00 0.51 0.67 0.76 0.80 0.84 0.51 0.68 0.76 0.81 0.84 1.22 0.77

1.5 1.00 0.51 0.67 0.76 0.81 0.84 0.52 0.68 0.76 0.81 0.84 1.25 0.78

Recessive mode of inheritance

4.0 1.00 0.53 0.69 0.77 0.82 0.85 0.56 0.72 0.79 0.84 0.86 1.25 0.82

2.0 1.00 0.51 0.68 0.76 0.81 0.84 0.52 0.69 0.77 0.81 0.84 1.30 0.81

1.5 1.00 0.51 0.67 0.75 0.80 0.84 0.51 0.68 0.76 0.81 0.84 1.32 0.80

Dominant mode of inheritance

4.0 1.00 0.49 0.65 0.74 0.79 0.83 0.47 0.64 0.73 0.78 0.82 1.18 0.72

2.0 1.00 0.49 0.66 0.74 0.80 0.83 0.49 0.65 0.74 0.79 0.83 1.25 0.75

1.5 1.00 0.50 0.66 0.75 0.80 0.83 0.49 0.66 0.74 0.79 0.83 1.28 0.77

Null model

1.0 1.00 0.50 0.67 0.75 0.80 0.83 0.50 0.67 0.75 0.80 0.83 1.33 0.80
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The last row of table 1 presents the relative efficiencies
calculated from these formulas. It can be seen that the
approximation is satisfactory as long as the risk parameter, γ,
is not too far away from its null value of 1.0. Therefore, the
following weighted disequilibrium test is proposed (with the
subscript, i, denoting the ith family):

with

and

which is distributed as a 1-degree-of-freedom chi-square
distribution under the null.
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