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Abstract

We are what we eat. Our everyday food choices affect our long-term and short-term

health. In the traditional health care, professionals assess and weigh each individual’s

dietary intake using intensive labor at high cost. In this paper, we design and implement

a diet-aware dining table that can track what and how much we eat. To enable automated

food tracking, the dining table is augmented with two layers of weighing and RFID sensor

surfaces. We devise a weight-RFID matching algorithm to detect and distinguish how

people eat. To validate our diet-aware dining table, we have performed experiments,

including live dining scenarios (afternoon tea and Chinese-style dinner), multiple dining

participants, and concurrent activities chosen randomly. Our experimental results have

shown encouraging recognition accuracy, around 80We believe monitoring the dietary

behaviors of individuals potentially contribute to diet-aware healthcare.
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Chapter 1

Introduction

1.1 Motivation

Our dietary habits affect our health in many ways. Research [30] has confirmed that di-

etary habits are important factors for healthy living and have profound impacts on many

chronic illnesses. The vast majority of the population has chronic illnesses [11] such as

heart disease, diabetes, hypertension, dyslipidemia, and obesity. A recent Surgeon Gen-

eral Report indicated that approximately 300,000 U.S. deaths are associated with obesity

and overweight each year. The total cost attributed to overweight and obesity amounts

to 117 billion in 2000. Proper dietary intake and related interventions are effective in

ameliorating symptoms and improving health. [16][30][37]

Nutritious dietary is one of the most accessible means for people to prevent illness and

to promote well-being [16]. Unlike traditional healthcare in which professionals assess

and weigh one’s dietary intake and then develop a plan for behavioral changes, ubiquitous

healthcare technologies provide an opportunity for individuals effortlessly to quantify and

acknowledge their dietary intake [16][13]. For example, at home patients face the cum-
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2 CHAPTER 1. INTRODUCTION

bersome need to record everything they eat, a task which can take a minimum of 15-20

minutes per day [7]. Ubiquitous computing technologies provide a means for individuals

to proactively monitor their intake and act upon it, leading to better food selection and

more sensible eating.

1.2 Problem and Solution

This thesis proposes a diet-aware dining table that automatically tracks what and how

much each individual eats over the course of a meal. We have augmented a dining table

with two layers of sensor surfaces underneath - the RFID (Radio Frequency Identification)

surface and the weighing surface. By combining the RFID and weighing surfaces, our

system can trace the complete food movement path from its tabletop container source to

other containers, and eventually to the individual. To validate our diet-aware dining ta-

ble, we have performed experiments, including live dining scenarios (afternoon tea and

Chinese-style dinner), multiple dining participants, and concurrent activities chosen ran-

domly. Our experimental results have shown encouraging recognition accuracy around

80%, which is as good as the 80% accuracy of the traditional dietary assessment methods.

[1]

1.3 Challenge and Contribution

Diet-aware dining table in accord with the vision of disappearing computers [21], where

computing hardware (HW) & software (SW) are hidden into everyday object (i.e., dining

table) and remain invisible to human users. There are no digital access devices (such as

cell phones, PDAs, or PCs) needed in order for human users to interact with this digital

dietary service. In comparison, traditional dietary tracking software requires human users
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to recall the amount of food consumed, and then manually enter the data. This is less

precise due to mistakes in visual measurement and imperfect memory. More importantly,

the traditional method requires explicit human effort to operate digital devices.

Our diet-aware dining table supports multiple people sharing a meal on the same

dining table. Fig. 1.1 shows a typical meal setting for a Chinese family - the family

members sit around a circular table with the main dishes placed in the center. Individual

rice bowls and plates are arranged on the table periphery. Participants first use shared

utensils to transfer food servings from the main dishes to their personal plates or rice

bowls, and then eat from there. In this dining scenario, multiple table participants are

continuously and concurrently engaging in food transferring and eating motions. This

creates multiple, concurrent person-object interactions (objects are tabletop objects such

as plates, bowls, etc.) from which a single table surface needs to observe, track, and then

infer high level interaction semantics. This is the main technical challenge addressed in

this paper - how to design a sensor-embedded tabletop surface to track food consumption

from each of many table participants.

Figure 1.1: Typical Chinese dining table setting.
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1.4 Generalization into a Smart Surface

Furthermore, the design of diet-aware dining table is able to be further generalized as a

smart surface in which two more applications in the area of healthcare are investigated

and reported in this thesis. The first application is Persuasive Game which demonstrates

the possibility of building just-in-time persuasive feedbacks to encourage better healthy

dining behaviors , since this table can track tabletop person-food interactions in real time.

In the Persuasive Game application, we have explored the design of an interactive, per-

suasive game to assist adult parents to improve dietary behavior of their young children.

The second application is Smart Kitchen which shows the possibility to record food con-

tent while cooking and further to promote healthy cooking.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Section 2 describes the related work.

Section 3 states the design choices, assumptions, and limitations. Section 4 presents

our design and implementation. Section 5 describes the experimental set-up and results.

Section 6 and 7 introduces the two applications generalized from our diet-aware dining

table. Finally, Section 8 draws our conclusion and future work.



Chapter 2

Related Work

The related work is organized into the following six categories: traditional dietary assess-

ment methods, ubiquitous dietary tracking systems, intelligent (tabletop) surfaces and

behavior recognition, including related work of two generalizing applications: persuasive

technologies and smart kitchen.

2.1 Traditional Dietary Assessment Methods

The traditional dietary assessment methods consist of keeping food records, using twenty-

four-hour recall, and filling food frequencies questionnaires [34]. In the food record

method, food quantities can be either accurately weighed or estimated by household mea-

sures before a meal. The twenty-four-hour recall method asks a user to recall the amount

of food intakes within the past 24 hours. Food Frequencies Questionnaires (FFQ) list pop-

ular food items and ask a user how often and how much these food items are consumed

within a defined period, e.g., a week or a month. All traditional assessment methods fail

to capture actual energy intakes precisely [1]. Most methods underreport actual energy

intake by at least 20 percent. Some of the errors are inevitable because human beings

5
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tend to misreport their food intakes. In other words, underreporting errors can be higher

(30 percent or more) for certain groups of users. In comparison, our method can achieve

80% plus accuracy, which is as good as the accuracy from these traditional assessment

methods.

In addition, MyFoodPhone [3] is a market product build on camera phone, which can

reduce human efforts on dietary diary keeping. Users take pictures of what they eat. Then,

the nutritional advisors analyze pictures manually, and give personal video feedbacks to

make change of users’ eating habits. However, this system still require users’ manual

effort. In the following we describe ubiquitous dietary tracking systems, which target to

eliminate human efforts.

2.2 Ubiquitous Dietary Tracking Systems

For the dietary-tracking systems, Mankoff et al. [20] has designed a low-cost tracking

system based on scanning shopping receipts to estimate what food items people buy and

consume. By analyzing the nutritional values of the purchased food items, their system

detects missing nutrients and recommends healthier food items to achieve a better nu-

tritional balance. However, their system does not perform individual dietary tracking.

The purchased food items in a family setting may be consumed by different household

members in different quantities. The household purchased food items can be considered

healthy, but the dietary consumption of individual household member can be nutritionally

unbalanced due to personal dietary preferences and habits.

Dietary tracking at the individual level has been proposed by Amft et al. [5]. Their

approach is to place a microphone around a person’s inner ear to detect chewing sound

from the mouth. Since different types of foods (e.g., potato chips, apples, pasta, etc.) can

give different chewing sound, their system can infer what a person is currently eating in
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hisher mouth. However, different food sources that vary in nutritional contents give out

similar chewing sound, e.g., similar sound from drinking water vs. beer. Rather than

tracking food intake from chewing sound, this work takes a different approach. It creates

a smart dining table, enabling the table to track food transfers among containers and into

the individuals’ mouths.

2.3 Intelligent (Tabletop) Surfaces

The 3rd category of related work is about intelligent surfaces that can infer tabletop

human-surface interactions. The closest system to our work is the load sensing table

[31] from Lancaster University. They utilized four weighing cells installed at four cor-

ners of a rectangular table to acquire the positional information of tabletop objects, and

infer interaction events such as adding, removing an object from the surface, or knock-

ing an object over. They demonstrated success with these interaction events. However,

their main limitation is recognizing complex, concurrent interactions involving multiple

objects. For example, their positioning algorithm fails if two or more objects are moved

concurrently on the tabletop surface. In comparison, this paper expects such complex,

concurrent interactions to be relatively common in family dining scenario; therefore, they

are the paper’s target.

Other related but less relevant works apply load sensing to derive context information.

Smart floor [27] demonstrated that by applying pressure sensors underneath the floors, it

is possible to identity users and to track their locations. The posture chair by Selena [23]

deployed two matrices of pressure sensors (called pressure cells) in a chair to recognize

the posture of children, and then infer their affective interest level. To our knowledge, no

work that attempts to address complex, concurrent person-object interactions from a load

sensing surface. This paper is believed to be the first to augment the load sensing surface



8 CHAPTER 2. RELATED WORK

with a RFID surface to enable tracking of multiple, concurrent person-object interactions

over a tabletop surface.

2.4 Behavior Recognition

Recognizing dietary behaviors is categorized in inferencing ADLs (activities of daily liv-

ing). Most of the researches perform high-level inferencing from low-level sensor data

reporting. Projects in this approach are more application-oriented, and have their own id-

iosyncratic sensors and algorithms on those sensors. The diet-aware dining table belongs

to this category. Other projects in this category are described below. Mihailidis et al. [22]

used cameras and a bracelet to infer hand washing. Wan [36] used RFID tags functionally

as contact switches to infer medication taking. In addition, Tran [35] leveraged computer

vision to recognize meal preparation, but Barger et al. [12] used rule-based approach to

combine contact switches, temperature switches, and pressure sensors to infer. More-

over, Glascock [14] combined motion and contact sensors into a custom-built medication

pad, to get rough inference on meal preparation, toileting, taking medication, and up-and-

around transference. There are also other related projects [18] [24] [9] [15]using different

sensors to infer behaviors and activity level.

Furthermore, there are some other researches focus on an object-based approach.

Based on the sequence of objects people use, Philipose et al. [28] use RFID technology,

data mining, and a probabilistic inference engine to recognize ADLs. The shortcoming

for this system is that it requires users to wear a RFID-installed glove. Nonetheless, its

probabilistic inferencing method is flexible to general activities. This approach shows

fine-grained measurement of object use is a good indicator of activity. MIT’s House n

project [19] also uses the object-based approach.
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2.5 Persuasive Technologies

For the persuasive technologies, Fogg [4] listed basic principles for designing persuasive

technology. These principles are adapted in our design. In addition, we emphasize on

the fun aspect of the persuasion, as a means to attract the attention of young children and

keep them engaged during the persuasion process. Out [29] designed a high-tech doll that

looks like a human baby to simulate how hard it is to care for a baby. The doll contains an

embedded computer that triggers a crying sound at random intervals. To stop the crying,

the caregiver must pay immediate attention to the doll. The caregiver must insert a key

into the back of the baby and hold it in place to stop the crying. Rather than persuading

people by using negative reinforcement, our work provides a positive reinforcement as

encouragement for young children.

2.6 Smart Kitchen

CounterActive [17] is an interactive kitchen counter that teaches people how to cook by

projecting multimedia recipes onto a touchpanel-like kitchen counter. Experiments show

users benefit from this interactive recipe. However, this system cannot be aware of a user’s

cooking situation and further provide just-in-time feedback to result in better cooking(e.g.,

please add more carrots into the big bowl.) Cook’s Collage [35] aims to aid a cook in

remembering specific past actions. By playing a sequence of action snapshots, Cook’s

Collage provide a visual summary of recent cooking activity along a kitchen countertop.

Though this system provides cues for user to review actions, it still lacks adaptive, active

advices to teach cooking. In addition, Siio [33] concentrates on automating the creation of

web-ready recipes. When a user operates one of the foot-switches, images of the cooking

workplace are captured with voice memos into a multimedia recipe. However, without
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automatically tracking the amount of food ingredients, images and voice memos may not

be sufficient enough to create a complete recipe (e.g., adding 500 grams of carrots).

Counter Intelligence [8] takes different approach to design kitchen of the future. They

augment kitchen with ambient interfaces to improve the usability of a physical environ-

ment. For example, augmented reality kitchen assists users in determining temperatures,

finding things, following recipes and timing various steps of preparing a meal.



Chapter 3

Design Choices, Assumptions, and

Limitations

Although the ultimate design objective is to create a restriction-free, automated dietary-

tracking system that can achieve both high accuracy and precision, this is a grand chal-

lenge requiring extensive future research efforts [20]. We acknowledge this fact, and

consider our dietary-tracking system as an early effort to address this problem. Since our

work is not yet a perfect solution, we need to state our assumptions, present our design

rational, and discuss our design limitations.

3.1 Why RFID and Weighing Surfaces?

Our diet-aware dining table tracks tabletop interactions such as transferring food among

containers and eating food by an individual. To correctly infer individuals’ dietary behav-

iors from their tabletop interactions, our system needs to track how much (weight) and

what food items are involved in these interactions. To observe these interactions, a weigh-

11
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ing surface and a RFID surface are embedded into an ordinary dining table. Assume that

food items are correctly labeled by the RFID tags on food containers, the surface can then

be used to identify these RFID-tagged containers. Furthermore, the RFID surface can

obtain nutritional information such as calorie count by looking up a food label database

indexed by RFID code [26].

This assumption raises a question as to who would perform the work of inputting the

food information for the RFID tags into the database. Three possible scenarios apply:

(1) prepared foods (e.g., microwave-ready) are purchased from supermarkets are heated

and then placed on the dining table with their original containers and packages containing

RFID tags. This is applicable to people who subscribe to a weight-loss dietary program;

(2) when the food containers (dishes) are first placed on the dining table, the table explic-

itly asks users for the food contents through a natural, easy-to-input UI, such as speech

interface; and (3) when food is prepared in the kitchen, the cooking person can input the

food’s content as the food is placed in a serving container.

The weighing surface is used to measure (1) the amount of food transferred across

different tabletop containers, as servings of food are transferred between different tabletop

containers, and (2) the amount of food consumed by an individual, as personal plates lose

weight. More details on how the weight measurements are used to detect food transfer

and food consumption events are described in Section 3.

3.2 Complex and Concurrent Interactions Involving Mul-

tiple Tabletop Objects

In a typical family meal setting, there are multiple people dining together on a dining

table, and table needs to track multiple, concurrent person-object interactions. In an af-



3.2. COMPLEX AND CONCURRENT INTERACTIONS INVOLVING MULTIPLE

TABLETOP OBJECTS 13

ternoon tea scenario, if one person is pouring tea to a cup while another one is eating

cake, it is impossible to use a single weighing surface to distinguish the amount of tea

weight transfer to the cup vs. the amount of cake weight lost through a person’s con-

sumption. This scenario is shown in Fig. 3.1-(a). This is also called the single-cell-

concurrent-interactions problem where it is impossible to distinguish multiple, concur-

rent person-object interactions over a single surface using the weight information from

only one sensor1. To address this problem, our solution is to divide the tabletop surface

into multiple cells, shown in Fig. 3.1-(b). When the size of each cell is small enough, it

is likely that each tabletop object occupies a different cell. Therefore, our solution uses

multiple weighing sensors at different cells to distinguish the weight-change of the tea

cup from the weight-change of the cake plate. This idea is generalized as follows: the

larger the size of each weighing cell relative to the average size of objects, the higher the

likelihood that multiple, concurrent person-object interactions can occur within the same

cell, therefore the higher the probability of single-cell-concurrent interactions. To reduce

this probability, we divide the weighing surface into cells of an appropriate size that just

fit the average size of tabletop food containers, such as plates, bowls, etc.

Where single-cell-concurrent-interactions problem still occurs, we introduce common

sense semantics to discern the amount of weight-changes in these concurrent interactions.

Consider the situation where a cup and a plate are placed at the same cell X at the same

time. When a user pours tea from a tea pot to a cup (leading to weight increase at cell

X), we can correctly infer the tea is transferred to a cup rather than to a plate by using

common sense in normal dining behavior.

Also, relying only on a weighing surface (i.e., without RFID surface) is insufficient to

identify tabletop objects. Distinguishing a tabletop object by its weight is difficult, given

1In the Lancaster’s approach [31], the scale is made up of four weighing sensors at four corners of a
table.
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(a) (b)

Figure 3.1: Surface structure [This illustrates that a multi-cells surface (b) can track mul-
tiple person-object interactions whereas a single-cell surface (a) cannot.]

that the weights of food containers change over the course of a meal as people transfer

food servings. Therefore, we augment the weighing surface with a passive RFID surface

to help identify tabletop objects. Each cell contains a RFID antenna that can read the

unique IDs from RFID-tagged objects on that cell.

3.3 Intelligent Surface vs. Intelligent Containers

Early in our design, we faced a fundamental design choice between embedding intel-

ligence into the table or into the food containers. One advantage for choosing the in-

telligent food containers is that they do not have the single-cell-concurrent-interactions

problem, because each food container can weight itself and detect its own weight-change

events. However, the intelligent containers approach also has many disadvantages. First,

it may result in high cost since every food container must have a weight scale and wire-

less networking module. Second, the smart food containers require battery installments

and replacements, whereas the dining table is a piece of stationary furniture that can be

plugged into a wall socket. The third disadvantage is that people may buy prepared food
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Figure 3.2: Design Picture of Diet-aware Dining Table

items from restaurants that have their own disposable packages and RFID tags. It is in-

convenient to have people transfer the food into the intelligent containers every time, in

contrast to the convenience of putting tagged packages directly on the intelligent table.

3.4 Assumptions

From the above discussion on design choices, our assumptions for our system in this paper

are:

• The dining table, its RFID-tagged tabletop objects (food containers), and table par-

ticipants form a closed rather an open system. That is, all food transfers can occur

only among the tabletop objects and individual mouths. External objects and food

sources are not allowed on the table.

• All dining participant have their personal containers (personal plates and cups) that

are usually placed in front of their seating. They are used to identify each individual

user.

• Food containers must be tagged with RFID tags. We assume that weight, nutrition,
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and ingredients of the food, as well, as, the weight and owners of food containers

are known a-priori.

• Tabletop objects are placed within each individual cell. No cross-cell objects are

allowed.

• Dining participants avoid leaning their hands and elbows on the table.
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Design and Implementation

Our system is consisted of HW & SW components. The HW component is made up of the

RFID and weighing sensors embedded underneath the table surface shown in Fig. 4.1 in

page 17. The SW component is made up a rule-based system that aggregates, interprets,

and infers tabletop dietary behaviors shown in Fig. 6.3 in page 46. The HW component

is described first, followed by the SW component.

(a) (b)

Figure 4.1: Current version of embedded RFID and weighing table surfaces

17



18 CHAPTER 4. DESIGN AND IMPLEMENTATION

(a) (b)

Figure 4.2: First version of embedded RFID and weighing table surfaces

4.1 Hardware Design and Implementation

Our current table prototype has a dining surface of 90x90 cm2, which is about the size

of a small dining table. To detect multiple, concurrent person-object interactions on the

tabletop surface, the tabletop surface is divided into a matrix of 3x3 cells, each with

the size of 30x30 cm2, about the average size of food containers. Each cell contains

a weighing sensor and a passive RFID antenna as shown in Fig. 4.1 in page 17. The

RFID reader is the i-scan MR100 made by Feig. The RFID antennas are connected to the

RFID reader through a multiplexer. Each RFID antenna is positioned underneath the table

surface such that it has an average, effective read rage of 3 cm above the table surface.

The weighing sensor is attached to a weight indicator with a resolution of 0.5 gram which

can output weight readings through a serial port at a frequency of 8 samples per second.

In the first version table prototype, each cell contains a load sensor and a passive RFID

reader/antenna as shown in Fig. 4.2. The RFID reader is the Skyetek M1 RFID reader

with an average read rage of 30 mm.
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4.1.1 Stable Weight Detection Algorithm

As users interact with objects (e.g. cups, plates, etc.) over a dining table, interactions

such as to place them on surfaces or to remove them from surfaces are of interest to be

recognized. As shown in Fig. 4.3 in page 19 [31], weight data changes when an object

is placed on the surface at position E1 and E4, an object is knocked over at E2, and the

object is removed from the surface at E3. To interpret the weight data into interactions, we

disregard how weight changes (jitters) while an interaction happens. Instead, we consider

the weight value difference if an interaction happens. For example, after a object is placed

on the load surface, weight value increases. And, after the object is removed from the load

surface, weight value decreases.

We invent a Stable Weight Detection Algorithm which calculates stable weight vaules

over time. The values will be reported to be further checked for weight difference, and

details will be described in Section 4.2. Using a slide window of 5 weight samples by

empirical experiment results, algorithm detects a stable value if all the weight samples in

the window are approximately the same.

Figure 4.3: The weight data (load) recorded over time. An object is placed on the surface
at position E1 and E4. At E2 an object is knocked over and at E3 the object is removed
from the surface.
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4.2 Software Design and Implementation

Figure 4.4: System architecture

We have come up with a rule-based approach that applies our multi-cells weighing

and RFID surfaces to detect multiple, concurrent person-object interactions. The system

and inference rules are implemented in JESS rule engine [2].

The system architecture is based on a bottom-up event-triggered approach shown in

Fig. 6.3 in page 46. High level dietary behaviors, such as pour-tea and eat-cake, can

be inferred by interpreting sensor Cell-Weight events and RFID-Presence events. We

describe each software component as follows.

The weight change detector performs the following two tasks: (1) it aggregates weight

samples collected from each of the 9 weighing sensors; (2) it reports Cell-Weight events

when the weight has changed by filtering out noises in the stream of weight samples. The

object presence detector performs similar tasks: (1) it continuously checks for presence

and absence of RFID-tagged tabletop objects within each of the 9 RFID reader cells, and
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Table 4.1: Intermediate events, sensor events, and internal states

Intermediate Events Descriptions
Weight-Change(Ob jecti,Δw) Ob jecti’s weight is changed by Δw.

Sensor Events Descriptions
RFID-Presence(Ob jecti,Cell j) Cell j detects the presence of Ob jecti.
Cell-Weight(w,Cell j) Cell j measures weight w.

Internal State Descriptions
Location(Ob jecti,Cell j) Ob jecti locates on Cell j.
Weight(Ob jecti,w) Ob jecti has weight w.

Table 4.2: Rules for recognizing intermediate events

Event Interpretation Rules
Weight(Ob jecti,w1)∩Weight ′(Ob jecti,w2) → Weight-Change(Ob jecti,w2−w1)

State Update Rules
RFID-Presence(Ob jecti1,Cell j) → Location(Ob jecti1,Cell j)
Location(Ob jecti,Cell j)∩ Cell-Weight (w,Cell j) →Weight ′(Ob jecti,w)

reports RFID-Presence events as long as the change happens.

The event interpreter interprets intermediate events shown in Table 4.1 in page 21.

The event interpreter builds internal states using sensor events from the weight change

detector and the object presence detector, and then interprets Weight-Change events.

Table 4.2 in page 21 shows the rules to interpret events. For example, the Weight-

Change(Ob jecti,Δw) event represents that the Ob jecti’s weight is changed by Δw, where

Ob jecti ∈{object on the table} and Cell j ∈ {Cell[1−9]}.
The behavior inference engine infers dietary behaviors initiated by the user u shown

in Table 4.3 in page 24. Behavior inference engine is essentially the core of the system. It

infers food transfer and eating behaviors over the table. In the real world scenarios, there

are often different food items on the table, meaning that multiple food sources can be
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(a) (b)

Figure 4.5: (a)Illustration of Law of Conservation of Mass. (b)Illustration of Weight
Matching Algorithm

transferred to the same personal container. For example, the weight-increase to a cup may

be contributed by pouring of coke, juice, or tea from different bottles and pots. Moreover,

given that there are multiple food transfer interactions happening concurrently, how does

the system identify and differentiate the food being transferred from which food source

container to which user’s personal container?

4.2.1 Law of Conservation of Mass

The behavior inference engine follows an important law in physics, Law of Conservation

of Mass, to infers dietary behaviors. The Law of Conservation of Mass states that the

mass of a system of substances will remain constant, regardless of the processes acting

inside the system. Applying this law in our system, it turns out to state that the weight

(the amount of food) doesn’t disappear. As illustrated in Fig. 4.5-(a), for the transfer

tea example, if there is a weight decrease of a tea pot on the dining table, there must be

a weight increase of a cup. In addition, for the drink tea example, if there is a weight

decrease of a tea cup, there must be a weight increase of someone sitting around the table.
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4.2.2 Weight Matching Algorithm

To track a food movement path from the food’s source containers to personal containers,

we design a weight matching algorithm based on the Law of Conservation of Mass. The

basic idea is to match a weight-decrease from one container to a complementary weight-

increase from another container. This matching process can be thought as a hop of food

transfer from the source food container in the center of the table, to the personal con-

tainers on the table periphery. This weight matching model is realized by maintaining a

queue of recent Weight-Change events. When a new Weight-Change event is detected,

our model applies a matching function to find a complementary Weight-Change event(s)

in the waiting queue. A good match is found when the difference between the weight-

decrease and the weight-increase pairs is smaller than a chosen weight matching thresh-

old value (ε). This weight matching model is coded as rules in Table 3. For example,

Trans f er(u,w, type) means that a serving of cake with a weight w has been transferred

from the share-plate containing food of type to the user u’s personal plate, where type

is obtained from RFID mappings. This behavior event can be inferred by first observing

a weight decrease Δw1 (< 0) in the share-plate, followed by a matching weight increase

Δw2 on the user u’s Ob jecti2. A match is found when |Δw1 +Δw2| < ε. The tag-object

mappings provide two relations: Contains(Ob ject, type) shows Ob ject contains food of

the type, such as cake or tea, and Owner(Ob ject,u) means the owner u of the Ob ject. In

addition, Eat is inferred if there is a weight-decrease in any personal container.

In real world scenarios, there are special, complex interactions that require matching

among three or more events. For examples, a person may pour tea from a tea pot to two

cups within one continuous motion, or another person may transfer soup from a soup bowl

to a personal bowl through multiple scoops. These two examples can be mapped to (1)

the amount of one weight decrease matches with the sum of multiple weight increases, or

(2) the amount of one weight increase matches with the sum of multiple weight decreases.
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Table 4.3: Inference rules for dietary behaviors

Dietary behaviors Behavior Inference Rules
Trans f er(u,w, type) Weight-Change(Ob jecti1,Δw1)∩ (Δw1 < 0)∩

Weight-Change (Ob jecti2,Δw2) ∩ (Δw2 > 0) ∩
Contains(Ob jecti1, type) ∩ Owner(Ob jecti2,u) ∩ (|Δw1 +
Δw2| < ε) → Trans f er(u,Δw2, type)

Eat(u,w, type) Weight-Change (Ob jecti1,Δw) ∩ (Δw < 0) ∩
Contains(Ob jecti, type) ∩ Owner(Ob jecti,u) →
Eat(u,−Δw, type)

To address this issue, the weight matching algorithm is extended to match more than two

weight transfer events.

4.2.3 Common Sense Semantics

Although dividing the table into cells can reduce the probability of multiple objects on one

cell, the situation mentioned in Section 3.2 may still happen. To address this situation,

we add common sense semantics to extend the inference routines that can disambiguate

the multi-objects on one cell problem. For example, if there are one cup and one plate on

the same cell, and the user pours tea from the pot to the cup; the Weight-Change event of

{cup, plate} will be reported by the Event Interpreter. According to the common sense,

tea should be poured into the cup rather than the plate. Therefore, the behavior inference

engine matches the weight-decrease of the pot to weight-increase of {cup, plate} and

generates Transfer(pot, cup, w) behavior.
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Experimental Set-up and Results

5.1 Evaluation metric, dining scenarios, and dining set-

tings

We have conducted several experiments to evaluate the accuracy of our dietary tracking

table under different dining scenarios. The evaluation metric, weight accuracy, measures

how well the system can correctly recognize the amount of weight from different food

items consumed by the dining participants. It is determined by how well the system can

correctly recognize the high-level dietary behaviors: specifically the food transfer event

and eat event. Therefore, the intermediate evaluation metric, behavior accuracy, is listed

as well.

weight accuracy =
Σweight of recognize food intake
Σweight of actual food intake

behavior accuracy =
# of recognized behaviors

# of actual conducted behaviors

Note that both behaviors are associated with attributes defined in Table 3. The transfer

25



26 CHAPTER 5. EXPERIMENTAL SET-UP AND RESULTS

event has three attributes (source object, destination object, weight), whereas the eat event

also has three attributes (user, source object, weight). Correct event recognition is defined

as the event’s attributes, except the weight attribute, are correctly identified. Since the

weight measurements have inherent sensor errors, they are evaluated separately. Specifi-

cally, the behavior accuracy is the number of behaviors recognized divided by the number

of behaviors conducted by participants. The weight accuracy is the sum of measured

weight divided by the sum of actual weight corresponding to dietary behaviors.

The experiments involve three participants. The first two participants are graduate

students from our research team who are familiar with our system. The third participant

is a graduate student from our department, who is not familiar with our system.

Dining scenarios (# participants, predefined vs. random activity sequences)

We have designed four different dining scenarios. The varying parameters are (1)

the number of dining participants and (2) whether dietary behaviors are predefined or

random. As the number of dining participants increases, we expect that they will generate

higher number of non-overlapping and concurrent events. Predefined activities mean that

the dining participants repeat some pre-arranged sequences of dietary steps which we

expect in normal dietary behaviors. The predefined activities may include both sequential

and concurrent activities. The exact activity sequences depend on the dining settings

described in later subsections. Random activities mean that the dining participants are

more or less free to follow their natural eating behaviors within the assumptions of our

system defined in Section 3.4.

Dining Settings (afternoon tea vs. dinner)

There are two dining settings: an afternoon tea setting and a Chinese-style dinner
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(a) (b)

Figure 5.1: Afternoon tea scenario showing the placements of table objects and partici-
pants

(a) (b)

Figure 5.2: Chinese-style dinner scenario showing the placements of table objects and
participants
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setting. The dinner setting is more complex than the afternoon tea setting since it involves

a larger number of food containers. We describe these two settings in more details as

follows. In the afternoon-tea scenario, participant(s) enjoyed an afternoon tea with a

cake, a pot of tea, sugar, and milk. The objects (food containers) on the intelligent table

are shown in Fig. 5.1-(a) in page 27, including a tea pot, a cake plate, a sugar jar, a milk

creamer, personal cake plates, and tea cups. The personal cake plates and tea cups are

placed on the cells in front of each participant. The cake plate is placed on one center

cell. The tea pot, the sugar jar, and the milk creamer are placed together on another

center cell. Possible high-level dietary behaviors are transferring-cake (to a personal

plate), pouring-tea (to a personal cup), eating-cake (from a personal plate), and drinking-

tea (from a personal cup). In the dinner scenario, three dining participants enjoyed a

sumptuous dinner with three shared dishes, one shared soup bowl, and a shared rice bowl.

The objects (food containers) on the table are shown in Fig. 5.2-(a) in page 27, including

these shared plates & bowls, as well as personal bowls located on cells in front of each

of three participants. Possible high-level dietary behaviors are transferring-food (to a

personal bowl) and eating-food (from a personal bowl). Note that given the weight and

type of the food items consumed, it is relatively straight-forward to compute the calorie

count by looking up a nutritional table for these food items.

We describe the result for each of four dining scenarios as follows. A summary of

their experiment results are shown in Table 5.1 in page 29.
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Table 5.1: Experimental results for 4 dining scenarios & their recognition accuracy.

Scenarios Event Statistics Results

Dining Scenar-
ios

# of
users

Activity
Sequence

Time
Duration
(seconds)

# of Di-
etary
Behaviors

Dietary
Behavior
Recognition
Accuracy

Dietary
Weight
Recognition
Accuracy

#1 Afternoon
tea

1 Predefined 73 12 100% -

#2 Afternoon
tea

2 Predefined 162 24 100% -

#3 Afternoon
tea

2 Random 913 78 79.49% -

#4 Chinese style
dinner

3 Random 1811 162 83.33% 82.62%

5.2 Dining Scenario #1: Afternoon Tea - Single User -

Predefined Activity Sequence

The first dining scenario involves the afternoon tea setting, single user, and predefined

activity sequence. The predefined activity sequence is consisted of the following steps:

(1) cut a piece of cake and transfer it to the personal plate; (2) pour tea from the tea pot

to the personal cup; (3) add milk to the personal cup from the creamer; (4) eat the piece

of cake from the personal plate; (5) drink tea from the personal cup; and (6) add sugar

to the personal cup from the sugar jar. This 6-steps sequence is repeated twice during

the experiment. The results are shown in Table 5.1. Based on our measurements, the

dietary behavior’s recognition accuracy (i.e., transfer & eat events) is 100%. This result

is expected, given that the predefined activity sequence has been anticipated and tested

extensively during our prototyping. In addition, this scenario involves only a single user

with no concurrent interactions.
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5.3 Dining Scenario #2: Afternoon Tea - Two users - Pre-

defined Activity Sequence

The second dining scenario also involves the afternoon tea setting and predefined activity

sequence, but with two users performing concurrent activities. The predefined activity se-

quence is consisted of the following steps: (1) A cuts cake and transfers it to A’s personal

plate; (2) B pours tea from the tea pot to B’s personal cup; (3) A pours tea to A’s personal

cup while B cuts a piece of cake and transfers it to B’s personal plate; (4) A adds sugar

from the sugar jar to A’s personal cup while B adds milk from the creamer to B’s personal

up; (5) A eats cake and B drinks tea; (6) B eats cake from B’s personal plate while A

drinks tea from A’s personal cup; and (7) A pours tea from the tea pot to both A’s and

B’s personal cups. This 7-steps predefined activity sequence is repeated twice during the

experiment. The results are shown in Table 5.1. Based on our measurements, the dietary

behavior recognition accuracy is 100%. This result shows that our table is accurate in

recognizing concurrent activities from multiple participants.

5.4 Dining Scenario #3: Afternoon Tea - Two Users -

Random Activities

The third dining scenario involves the afternoon tea setting and two users, but with random

dietary activities. Random activities mean that the table participants are more or less free

to perform any impromptu dietary behaviors for 913 seconds over the table within the

bound of our assumptions described in Section 2.4. The results are shown in Table 5.1.

Based on our measurements, the recognition accuracy is 79.49%. Table 5.2 in page 31

shows the recognition accuracy for each of the two dietary behaviors. The eat events have



5.4. DINING SCENARIO #3: AFTERNOON TEA - TWO USERS - RANDOM AC-

TIVITIES 31

better recognition accuracy than the transfer events, because they can be directly deduced

by personal container’s Weight-Change event.

To determine the causes for the misses in activity recognition, we videotaped the af-

ternoon tea scenario. By analyzing the video in combination with the system event logs,

we derive four main leading causes shown in Table 6. They are described as follows.

Table 5.2: The accuracy of activity recognition under afternoon tea scenario #3

Dietary Behavior # of Actual Events Recognition Accuracy
Transfer event 41 70.73%

Eat event 37 89.19%

Table 5.3: Causes of miss recognition in afternoon tea scenario #3. There are 78 activities
analyzed from the video log. The number of misses counts both false positives and false
negatives.

Causes of misses
# of misses of
transfer events

# of misses of eat
events

Total

(c1) Event interference within the weigh-
ing cell’s weight stabilization time

6 2 8

(c2) Weight matching threshold 2 0 2

(c3) Slow RFID sample rate 3 0 3

(c4) Noise from weighing cell 1 2 3

Total of misses 12 4 16

(c1) Event interference within the weighing cell’s weight stabilization time: for activities

such as putting down an object on the table, it takes about 1.5 seconds for our

weighing sensor to output a stable weight value. If two events occur on the same

cell and their time interval is less than the weighing cell’s stabilization time, our

system cannot differentiate these two Weight-Change events. Instead, our system

will incorrectly recognize them as a single Weight-Change event. Consider the case
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where user A puts down the tea pot at cell X while user B immediately (within 1.5

seconds) grabs a sugar cube from the sugar jar on the same cell X. There are actually

two Weight-Change events of amount (Δw1) and of amount (−Δw2). However, due

to two events interfering with each other within the weight stabilization time, our

system can only detect one erroneous Weight-Change event of amount |Δw1−Δw2|.

(c2) Weight matching threshold: the current threshold value is set to be four grams to

filter out noises in the weight readings from weighing cells. However, in some

cases, such as transferring one cube of sugar, this threshold value may still be too

large. As a result, it may lead to false weight matching involving unrelated weight

transfers of similar amounts. Consider the example that user A is removing a cube

of sugar from the sugar jar. This results in a Weight-Change of approximately four

grams in the sugar jar. At the same time, user B is transferring food weighted

approximately eight grams. Eight grams is twice as much as four grams, but they

are still within the weight matching threshold. Therefore, this leads to false weight

matching. To address this issue, we may change the weight matching threshold to

be a percentage of transferred weight rather than an absolute value of four grams.

(c3) Slow RFID sample rate: we have found cases when a user picks up a cup and

quickly puts it down. This interval is less than the amount of time the RFID reader

performs one round of reading over nine antennas. Therefore, a Weight-Change

event is generated without any corresponding RFID-Presence event. This leads to

false inference.

(c4) Noises from weighing cells: although we ask users not to touch the table, some still

do during the experiment out of personal habits. This leads to erroneous generation

of Weight-Change events.
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5.5 Dining Scenario #4: Chinese-style dinner - Three users

- Random activities

The fourth dining scenario involves the Chinese-style dinner setting, three users, and ran-

dom dietary activities for 1811 seconds. Similar to the third scenario, three participants

perform impromptu dietary behaviors within the bound of our assumptions described in

Section 2.4. The results are shown in Table 4. Based on our measurements, the recogni-

tion accuracy is 83.33%. Note that increasing number of table participants only slightly

increases the activity rate. The reason is that as the number of table participants increases,

out of politeness they try to go the dishes less frequently to avoid in-the-air conflicts over

the dishes.

Table 5.4 in page 34 shows the recognition accuracy (for the transfer and eat events)

and weight accuracy for each of dietary behaviors. The weight accuracy is computed

as the ratio between the measured and the actual weight transferred or consumed during

dietary behaviors. Both the recognition and weight accuracy for the food transferring

behaviors are between 80 85%, except for dish A, which is fluid-covered food. The reason

for lower accuracy on transferring fluid-covered food is that juices from the fluid-covered

food can easily drip from the chopsticks during food transfer (from a very lousy chopstick

user). The juice dripping leads to erroneous generation of Weight-Change events with

both positive and negative values, causing mismatches in the weight matching algorithm.

Furthermore, the weight accuracy of transferring dish A is low at 68.42%, because these

transfer recognition misses can accumulate to a large weight sum. Similar to the afternoon

tea scenario, the eat events have better recognition accuracy because they can be directly

deduced from the personal container’s Weight-Change event.

To determine the causes for the misses in activity recognition, we videotaped the

Chinese-style dinner scenario and analyzed the video in combination with the system
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Table 5.4: The accuracy of the Chinese-style dinner scenario #4

Dietary Behavior # of times Recognition Accuracy Weight Accuracy
Transfer dish A events 19 73.68% 68.42%
Transfer dish B events 29 79.31% 78.75%
Transfer dish C events 23 82.61% 79.19%
Transfer rice events 12 83.33% 81.88%
Transfer soup events 19 84.21% 80.16%

Eat events 60 88.33% 91.23%
Overall 162 83.33% 82.62%

event logs. We derive five main leading causes shown in Table 8. They are described as

follows.

Table 5.5: Causes of miss recognition in Chinese-style dinner scenario #4. There are 162
activities analyzed from the video log. The number of misses counts both false positives
and false negatives.

Causes of misses
# of misses of
transfer events

# of misses of eat
events

Total

(c1) Segmented weight-change events 5 0 5

(c2) Eating before transferring food on
personal containers

5 5 10

(c3) Weight matching ambiguity 7 0 7

(c4) Noises from weighing cells 3 2 5

(c5) Slow RFID sample rate 3 0 3

Total of misses 23 7 30

(c1) Segmented Weight-Change events: during a lousy food transfer where a user drops

a part of food back into the container or on the table, the weight matching algorithm

fails because of the difference between weight change values of the container and

the personal plate. In addition, such category also includes a case (which didn’t

happen in our experiment) that a user holding a personal bowl in the air and scoop
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soup from a soup bowl to the personal bowl several times. In this case, the weight

matching algorithm also fails because it cannot match a weight decrease with a

several weight increases.

(c2) Eating before transferring food on personal containers: this occurs when a user

picks up a serving of food from a shared plate. However, before the user completes

the transfer to his/her personal plate, he/she eats a bite of food. This violates one

of our assumptions in Section 3.4 that eating must come from food in the personal

plates. In this case, weight matching method fails to recognize the food transfer

event due to the disappearing weight on the intermediate bite. Although the users

are told about this restriction, some of them still do it out of personal habits.

(c3) Weight matching ambiguity: weight matching ambiguity occurs when two unrelated

Weight-Change events of similar weight values are mismatched by our system. If

two people transfer food with approximately the same weight, this introduce weight

decrease from two share containers equal to weight increase in two personal con-

tainers. The system cannot accurately pair up the source and destination containers

in these two concurrent food transfers.

(c4) Noises from weighing cells: the same as (c4) in afternoon tea scenario.

(c5) Slow RFID sample rate: the same as (c3) in afternoon tea scenario.

5.6 Discussion

Our experimental results have shown reasonable recognition accuracy of around 80%,

which is at least as good as the accuracy of the traditional dietary assessment methods.
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5.6.1 Methods to Reduce Recognition Misses

Below we proposed some methods to address some of the main causes of inaccuracy from

our experimental results, and relax some of the assumptions and restrictions. Note that

some of the restrictions can be solved by making simple design changes.

Design (Hardware) Change

In our experiment, users may grab food directly from the shared containers without

transferring it to personal containers first ((c2) in Section 5.5). The system therefore

cannot tell who has consumed what food. However, this problem can be solved if we

tagged personal utensils with RFID tag. If a user picks up food with RFID-tagged utensils,

the system could identify which user picks up the food and then regard the interaction as

eat interaction instead of a transfer food interaction, if there is no weight match between

a source container and a personal container.

There is also Weight matching ambiguity ((c3) in Section 5.5) between concurrent

transfer interactions. Again, this problem can be solved if we tagged personal utensils

with RFID. Our system can use the RFID-tagged utensils as a complement evidence to

the Weight Matching Algorithm to infer a transfer interaction. By sensing a RFID-tagged

utensil around when a share container decreases its weight and sensing the utensil around

again when a personal container increases weight, a transfer interaction can be inferred

Software Change

In addition, Segmented Weight-Change events (in (c1) in Seciton 5.5) can be addressed

by extending weight matching algorithm with Bin packing. Since the current version of

Weight Matching Algorithm does only one-to-one weight matching, it can not match

segmented Weight-Change events if there is one weight decrease of a share container and
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multiple weight increases of other containers. Bin packing algorithm can extend weight

matching algorithm into one-to-many or even many-to-many matching.

5.6.2 Removing No Cross-cell Objects Assumption

Here, we proposed a method to remove the no cross-cell objects assumption. Since we

divide the table into nine cells, a container may be placed across different cells. Multiple

containers’ weight change can be identified by the sum of weight change of the cells under

them. Sometimes, they may be placed across the same cell. When weight change happens

to the cell that has multiple containers crossing on, we can not decide how much weight

gain or loss is contributed by which of these containers, because only the amount of total

weight changes on the cell is determined.

Weight distribution history belong to one container was updated every determined

food transfer event happens. Each time simultaneous food transfer event happen and these

two containers cross the same cell, we can take advantage of each container’s non-crossed

cell and weight distribution history to derive crossed cell’s weight distribution. Consider

the scenario as shown in Fig. 5.3. Assuming containers A and B across the same cell #5

are put on the cell one by one, we can identify which cells are crossed by each container,

obtain the weight distribution of each container on its crossed cells, and then record the

information into weight distribution history (Fig. 5.3-(a)(b)). After all containers being

placed on the table, suppose weight loss are detected on cell #5 and #2 at the same time,

we can look up the weight distribution history and find that cell #5 and #2 are crossed by

container A. Then the sum of weight loss on cell #5 and #2 is viewed as the weight loss

on container A, and weight distribution history is updated accordingly (Fig. 5.3-(c)). If

cell #2, #4, and #5 all detect weight loss at the same time, we can find that container A

and B have weight change simultaneously. Then we use weight distribution history and
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Figure 5.3: Illustration of proposed method to remove no cross-cell objects assumption.

weight loss on cell #2 and #4 as determinative proportional scale to estimate weight loss

of container A and B (Fig. 5.3-(d)), while weight distribution history is not updated.

We evaluated how accurate our proposed method could track multiple-objects cross-

cell interactions. The setup of this experiment is: two people drink one big bowl of

cocktail using cups and eat one cake using plates. The big bowl and cake are placed

across the middle cell, as shown in Fig. 5.4. We test 12 runs of cutting cake and scooping

cocktail. Some of them are done simultaneously and others are done non-simultaneously.
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Figure 5.4: Experiment setup: two users eating a cake and drinking cocktails. Cake and
cocktails are placed across cells.

Although the average error in non-simultaneous runs is still 1 g, the average error in

simultaneous runs reaches X g with a large variance Y g. The Y variance is primarily due

to different position every time one pickups. We tell the weight distribution of the crossed

cell by the distribution history of the two dishes last time. If one often pickups food

from similar position, the mean error and variance go down to A and B. This experiment

shows that weight history help us to derive current weight distribution in an appropriate

amount, but where the user pickup is a random distribution. In other words, the user is

not necessary to pickup food nearby last time. Probably, in the future we can improve our

accuracy by using the latest several weight-distribution-histories, even a distribution, to

estimate current weight distribution. However, in the second stage, plates are assumed to

contain only cake and cups are assumed to be filled only with coke, which is not feasible

in real world settings. In the next design, we try to solve the problems when multiple

kinds of food can be hold in plates or cups.

5.6.3 Probabilistic Inference

The inference accuracy strongly depends on selectivity of the match function. If the match

function is selective enough, the target can be easily distinguished from other weight
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change events, else mismatches would happen frequently and lead to poor accuracy. For

example, a arbitrate Weight Matching Threshold ((c2) in Section 5.4) may lead to false

weight matching. To make the match function flexible and selective at the same time, it’s

possible to use probabilistic inference by the match function we defined below:

match probability =

⎧⎨
⎩

1
|weight1−weight2| , if |timestamp1− timestamp2| < T

0, otherwise

The idea to use the two parameters are described below:

• Weight: Since the weight of food would not vary a lot during transfer, the weight

decrease and the weight increase should be almost the same. Consequently, if a

weight decrease and a weight increase differ a little i.e. smaller than some threshold

value, these two events probably match with each other.

• Timestamp: The process of one hop food transfer takes less than T seconds, so a loss

event and a gain event can not be a match if the difference between their timestamps

is greater than T seconds.

Every time a new event comes, it uses this predefined match function to compute

match probabilities with each existing events. Only if the event that has the largest match

probability greater than some threshold value can be the target to match with the new

event, otherwise the new event remains unmatched and is inserted to the queue to wait for

later matching.
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Application I: Persuasive Game

6.1 Abstract

We have explored the design of an interactive, persuasive game to assist adult parents to

improve dietary behavior of their young children. The persuasive game is played over a

smart lunch tray. The smart lunch tray incorporates both the context-awareness principle

in ubiquitous computing and the interactive media technique in persuasive computing,

enabling the creation of a smart object that is not only aware of human behavior but

can also influence and shape human behavior through their natural interactions with the

object.

6.2 Motivation

Studies have shown that our dietary habits are developed during the first few years of

our childhood experiences with foods. Our preferences for specific foods come about

mainly through the following three factors: (1)the sensory flavor of the food, (2) the post-
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ingestional effects of the food, and (3) the frequency of the food eaten. Among them,

the frequency of the food eaten can be controlled by proper parenting. That is, a child

may obtain a dislike of a certain food because he/she has never tried to taste the food or

tried frequently enough to become accustomed to its taste, shape, color, texture, etc. Over

time, this dislike grows into a permanent dietary habit. Proper and smart parenting can

help to reverse such specific food aversions through appropriate verbal encouragement

and disciplines. However, most parental experiences can reflect that verbal persuasion

can be ineffective and overly time consuming for many young children. More often than

that, verbal communications turn into unpleasant confrontations between inpatient parents

and unrelenting young children.

To address this problem, we have designed and implemented an interactive game to

assist parents (or educators) in encouraging healthy dietary behavior of their young chil-

dren (3 5 years old). The interactive game is played over a sensor-augmented lunch tray

that can detect a child’s dietary behavior. In addition, a ceiling-mounted projector is used

to display the state of the interactive game on the lunch tray. Our design combines the

context-awareness concept in ubiquitous computing and the interactive media technique

in persuasive computing, creating a smart object that is not only aware of human (i.e., the

child’s) behavior, but can also influence and shape human behavior through their natural

interactions with the object. In this chapter, we would like to explore such an interface

design providing awareness and persuasiveness.

6.3 Design Considerations

Since our target users are young children, we have identified the following three design

considerations.

• The first design consideration takes into account that most young children are not
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capable of operating digital devices. Therefore, our game design relies on using

the child’s natural eating actions as inputs to this interactive game. This is in accord

with the vision of ubiquitous computing, where computing hardware and software

are hidden into familiar, everyday objects.

• The second design consideration is about minimizing the change on the lunch-ware

(objects) accustomed to young children during their normal eating routines. This

is to prevent our installed sensors from adversely affecting the young children’s

normal eating. To find out the usual lunch-ware used by young children, we have

conducted a survey with local day care centers and found that food is usually served

in a lunch tray. The lunch tray contains two or more rows of smaller cups serv-

ing different food items. Young children can either use forks/spoons, or sometime

hands, to transfer already-cut food from cups to their mouth. To mimic their usual

lunch-ware, we have prototyped a smart lunch tray. Underneath the smart lunch tray

contains an array of weight sensors that can track what and how much food is eaten

by a young child from these cups. This smart lunch tray is a scaled down version

of our prior work on a diet-aware dining table [10]. A child’s natural eating actions

can be recognized by the smart lunch tray and used as inputs to the interactive game.

• The third design consideration takes into account the limited cogitative level of

young children. The design of our interactive game must be simple enough for them

to understand and attractive enough to draw and maintain their attention. More im-

portantly, the game must have a persuasive ingredient in encouraging the desirable

behavior - eating and finishing all the food items placed on the lunch tray. The

game design adapts a common strategy used in behavior modifications - apply-

ing a positive reinforcement to the desired behavior. The game design is based on

a simple coloring of the young child’s favorite cartoon character. Note that this

positive reinforcement has been verified by the young child’s parents to be effec-
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Figure 6.1: A child eats on an awareness-enhanced smart lunch tray with a media-
feedback projector above.

tive. The cartoon character is projected on an empty area of the lunch tray through a

ceiling-mounted projector. If the young child finishes all the food items, the cartoon

characters will be fully colored and look gorgeous. On the other hand, if the young

child avoids eating a specific food item, the color corresponding to that food item

will be missing and the cartoon character will look incomplete and unattractive.

The remainder of this description is organized as follows. We first present the design

and implementation of this persuasive game over the smart lunch tray. Secondly, we

describe our preliminary experiment. Finally, we draw conclusion and our future work.

6.4 Design and Implementation

The design of our system is shown in Fig. 6.1. A child eats on an awareness-enhanced

smart lunch tray with a media-feedback projector mounted on top of the ceiling. The smart

lunch tray is made up of an array of weighing sensors embedded underneath the bottom

shown in Fig. 6.2. The smart lunch tray contains software components to recognize

tabletop dietary behavior of a child. The recognized behavior are then fed as inputs to the
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interactive game to provide persuasive feedback. We will describe the smart lunch tray

first, followed by eating activity recognition over the smart lunch tray.

6.4.1 Smart Lunch Tray

Our current smart lunch tray prototype has a dining surface of 30x45cm2, which is about

the size of a small lunch tray for children. The tray is divided into a matrix of 2x3 cells,

each with the size of 15x15cm2. Each cell contains a weighing sensor, and the weight

sensor detects how much weight a child eats from the food container placed on the cell.

The weighing sensor is attached to a weight indicator with a resolution of 0.5 gram which

can output weight readings through a serial port at a frequency of 8 samples per second.

Since this work is focus on the interaction of a persuasive game rather than the dietary

behavior recognition in our previous work [10], we have made a simplified prototype

without installing a passive RFID antenna underneath each cell. Instead of identifying

food content by RFID-tagged containers, we add a restriction that each food container is

affixed on one and only one cell. This is done by simply gluing the food container to a

corresponding cell. The mapping between the food content and each container is entered

manually into our system by the child’s parents. We also assume that a child can use a

fork/spoon or hands to pick up food from a food container and puts into mouth directly.

A child’s eating activity is recognized by the Weight Change Detector shown in Fig.

6.3. It performs two tasks: (1) it aggregates weight samples collected from each of the 6

weighing sensors; and (2) it reports Weight-Change events of food containers by filtering

out noises in the stream of weight samples. These weight change events are interpreted

into the amount (weight) of food consumed by a child from these food cups on the tray.

These weight change events are then fed as inputs to the Persuasive Game component

described next.
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Figure 6.2: The smart lunch tray. The tray is divided into 2x3 cells, and each cell is
embedded with a weight sensor. Only one food container can be put on a single cell.

Figure 6.3: System architecture of persuasive game.

6.4.2 Persuasive Game

To persuade children to eat all food items on the lunch tray, we take the strategy of pos-

itive, just-in-time feedback. The positive feedback isn’t just about giving praises, but it

also means rewards and incentives. Just as adults are motivated to work, in part, for the

paycheck, children need to be motivated toward a reward like a back rub or an extra bed-

time story, for trying to eat food items which they dislike. Experts say that the positive

feedback is the most powerful tool parents have to improve their children’s behavior [32].

By sensing a desirable behavior and then providing just-in-time feedback, a computer

system can help a child easily learn the causal relationship between a desirable behavior,
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e.g. finishing all food items on the lunch tray, and a positive feedback. In addition, as the

targets of our work are children, we have added the ingredient of fun in the persuasion,

by making it an interactive game.

Based on the idea of positive feedback, we have designed a game to let a child play

while they are eating as shown in Fig. 6.4. The game is to color the picture of a child’s

favorite cartoon character. The positive feedback of our persuasive game is turning their

favorite character into a pretty and colorful one. Specifically, each food item corresponds

to a particular crayon color, and the color will be drawn on the character when the corre-

sponding food item is eaten. The amount of coloring depends on the amount of weight of

the food consumption. For example, if a child only consumes 1/10 of the apple and apple

corresponds to the red crayon shown in Fig. 6.4, he/she will see only 1/10 of the mouth

area being colored on the cartoon character. To make his/her favorite cartoon character

colorful, a child is then motivated to eat and finish all food items on the table, including

food items that he/she dislikes.

Figure 6.4: The persuasive game: a child can color his/her favorite cartoon character by
eating food on the tray.
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6.5 Preliminary Experiment

We have tested our prototype implementation on a child (Alicia) who is 3 years and 8

months old. We have placed 5 cups of fruits shown in Fig. 4, containing small bites of

apples, bananas, papayas, wax apples (tropical fruit), and dragon fruits (tropical fruit).

Alicia’s parents have told us that (1) she does not like dragon fruit and banana, (2) she

enjoys coloring cartoon character very much, and (3) her favorite cartoon character is a

tiger-like character shown in the upper middle block of Fig. 6.4. Our experiment was done

in a lab. Given the unfamiliarity of the laboratory setting, Alicia was shy at the beginning

and unwilling to grab fruit directly from the table. Instead, Alicia stood beside the table

and asking her nanny to transfer fruits of her choices from the table to her small cup held

by her hand. Then, she ate from her small cup. The result showed that she comprehended

the game and was willing to eat different fruits to color her favorite character.

6.6 Summary

We describes the design and implementation of a persuasive game to encourage healthy

dietary behavior of young children. By leveraging the idea of just-in-time, positive re-

inforcements, we envision children to develop healthy dietary habits while playing the

game. In the future, we will perform detailed experiments and evaluations on this game

and compare its effectiveness with traditional verbal persuasion. In addition, we would

like to address the monitoring and persuasion of other long-term eating habits, such as

eating in rush and over-eating.
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Application II: Smart Kitchen

7.1 Abstract

We present a smart kitchen that can promote healthy cooking by raising user’s awareness

of healthy food ingredients and healthy cooking methods. Our smart kitchen is augmented

with sensors to detect activities related to cooking process. Then it provides feedbacks to

recommend healthy cooking alternatives.

7.2 Motivation

A kitchen can be viewed as a playground for family members to enjoy the process of

preparing lunch and dinner. Most people consider food preparation as a joyful and self-

accomplishing process, rather than just a daily routine or hard work. More importantly,

they regard food preparation as an act of caring for a whole family. Through cooking

healthy food for their beloved family members, they receive self satisfaction in promoting

health and reduce risks of chronic diseases in the family. For example, if a family member
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is diabetic, special cares should be given to prepare meals with lower fat, protein, and

sodium [6].

Many research efforts [8] [17] [35] [33] have focused on augmenting kitchens with

a variety of digital media to create rich, interactive experiences for users cooking in the

kitchen. Some work has focused on providing awareness to support multi-tasking activi-

ties in the kitchen. For example, Counter Intelligence project from MIT [8] has augmented

a kitchen with ambient interfaces to improve usability of a physical environment. Their

augmented reality kitchen can assist users in determining temperatures, finding things,

following recipes, and timing intermediate steps during meal preparation. Other work

has focused on capturing or using digital interactive recipes that can guide users through

a step-by-step cooking process. For example, Siio et al. [33] automates the creation of

web-ready multimedia recipes in a kitchen. By operating one of the foot-switches, a user

can capture images of the cooking workplace with voice memos and organize into a mul-

timedia recipe. Such digital recipes can provide a more interactive experience than that

from reading a paper-based recipe book. The CounterActive project [17] utilizes digital

recipe to teach people how to cook by projecting multimedia recipes onto a touch panel-

like interactive kitchen counter.

Rather than augmenting kitchens with a variety of digital media to create interactive

cooking experiences, our smart kitchen is focused on promoting healthy cooking by rais-

ing awareness of healthy food ingredients and healthy cooking methods. Our kitchen is

augmented with sensors to detect activities in the cooking process. Then it can infer how

well these activities conform to healthy cooking, and provide corresponding feedbacks to

raise healthy cooking awareness and recommend healthy cooking alternatives. For exam-

ple, while a user is making a beef & broccoli stir-fry disk, our kitchen can detect when

he/she is adding too much red meat or cooking the broccoli for too long. The kitchen

shows the amount of fat from the red meat or the loss of vital vitamins and minerals in the
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Figure 7.1: Setup of a Smart Kitchen.

broccoli from lengthy cooking time. The kitchen can recommend replacing some meat

with vegetables and reducing cooking time on the vegetables.

7.2.1 Healthy Cooking

Nursal et al. [25] and Willet [38] have identified the following key factors in healthy

cooking: type and amount of food ingredients and cooking methods. Furthermore, quality

of a healthy cooking method depends on several factors, such as cooking temperature,

cooking duration, and cooking styles (e.g., fried, boiled, searing, microwaving, etc.).

7.3 Design

To detect food ingredients and cooking methods, we have designed a smart kitchen shown

in Fig. 7.1. The smart kitchen consists of a smart counter, a smart cabinet, a smart

fridge, and a smart stove. It also contains a LCD display and a speaker system to provide

awareness feedbacks to users.
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We illustrate the design of our system through a simplified cooking scenario. In gen-

eral, the first step of meal preparation is to gather food ingredients on a kitchen counter. A

user takes out containers holding food ingredients from the fridge and/or the cabinet, and

then places them on the kitchen counter. We assume that all food ingredients are stored or

packaged in RFID-tagged containers, in which RFID tags include food nutritional labels.

In addition, our fridge, cabinet, and counter are augmented with a smart sensor surface

consisting of RFID antennas/readers and weight sensors. This sensor surface enables de-

tection and tracking of food ingredients among the kitchen fridge, cabinet, and counter.

In addition, our kitchen can recognize the type and amount of food ingredients placed on

the kitchen counter.

The second general step involves a user chopping and mixing food ingredient in some

containers on the kitchen counter. Given food ingredients on the kitchen counter, our

kitchen can raise user’s awareness on healthy quality of food ingredients through LCD

and the speaker, as well as provide recommendation on the healthy cooking alternatives.

The third step involves cooking mixed ingredients on a stove. The stove contains a

variety of sensors to detect cooking temperature, cooking duration, and cooking styles

(fried, boiled, etc.). Additional awareness and recommendation about alternative cooking

styles can be provided to the user.

7.4 Detecting Context

The surface of each smart counter and smart cabinet is constructed from a weighing sensor

and a RFID reader/antenna embedded underneath the surface shown in Fig. 7.2. This

surface design is similar to our work in diet-aware dining table. The smart surface is

divided into cells, and each cell is installed with a weighing sensor and a RFID sensor to

observe food transfer actions. Regarding each smart counter and cabinet as a cell, they



7.4. DETECTING CONTEXT 53

Figure 7.2: The sensors of a smart counter. The counter surface is embedded with a
weighing sensor and a RFID reader/antenna.

can collaboratively recognize interaction of transferring food ingredients from the smart

cabinet to a food mixer bowl on the smart counter. This can be done by matching the

equal amount of the weight decrease of a food container from the smart cabinet and the

weight increase of the food mixer bowl on the smart counter.

7.4.1 Benefits for Diet-aware Dining Table

Moreover, it is feasible to calculate the nutritional value of a meal by this design. Through-

out the entire process of cooking a meal, by recording the three situations which consist of

information of the food ingredients, the nutritional value of a meal is obtainable by sum-

ming up nutritional values of food ingredients added while cooking. As a result, there

is a significant kitchen automation benefit: it strengthens the RFID assumption made in

Section 3.1 that every food container on the diet-aware dining table is tagged with a RFID

tag and there is a mapping database between a tag-id and nutritional value. The reason is

that if a meal is prepared in the smart kitchen, the mapping database can be automatically

build and there is no need for a cooking person to manually input the meal’s content as

the meal is placed onto the dining table.
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Figure 7.3: System architecture of Smart Kitchen.

7.5 Summary

We describes the design of a smart kitchen to achieve healthy cooking. By generalizing

the method used diet-aware dining table, we regard a smart counter and a smart cabi-

net installed as two cells to collaboratively recognize cooking situations, such as adding

food ingredients. A LCD and speaker system then give healthy-cooking advices to a

cooking person. We believe those situations being aware of in this system well demon-

strates the idea of smart kitchen to promote healthy cooking. Further extension the idea

of situation-awareness by adding new situations to be aware could make a kitchen of the

future realizable and approachable.

We are planning to prototype the smart kitchen and develop an effective user interface

to promote healthy cooking. Since users are typically busy during their cooking process,

the design of the interface should be simple and intuitive as not requiring high cognitive

load on users. We are interested in exploring what is the appropriate amount of awareness

information presented to users, and what are the best times of delivering such information.

We will invite experienced household cooks to participate in the design and evaluation of

our kitchen environment.
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Conculsion and Future Work

We are what we eat. This paper describes the design and implementation of our diet-

aware dining table. We have augmented an ordinary dining table with two layers of sensor

surfaces underneath the table - the RFID surface and the weighing surface. Given certain

assumptions, the diet-aware dining table automatically tracks what and how much each

individual eats from the dining table over the course of a meal. We have performed several

experiments, including live dining scenarios (afternoon tea and Chinese-style dinner),

multiple dining participants, and random concurrent activity sequences. Our experimental

results have shown reasonable recognition accuracy of around 80%, which is at least as

good as the accuracy of the traditional dietary assessment methods.

Our future work will further improve the recognition accuracy, address some of the

main causes of inaccuracy from our experimental results, and relax some of the assump-

tions and restrictions. Note that some of the restrictions can be solved by making simple

design changes. For examples, the current prototype does not allow hands or elbows on

the table. To relax this restriction, we can add a slightly protruding frame around the edge

of table, so that users can rest their elbows on the frame without affecting our system. We

also believe in multi-sensor approach. For example, by deploying a video camera above
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the table, it is possible to observe events that cannot be detected by RFID and weighing

surfaces.

Furthermore, the design of diet-aware dining table is able to be further generalized as

a smart surface that two more applications in the area of healthcare are investigated. Since

this table can track tabletop person-food interactions in real time, it’s feasible build just-

in-time persuasive feedbacks to encourage better healthy dining behaviors. As a result,

we have explored the design of an interactive, persuasive game to assist adult parents to

improve dietary behavior of their young children. The persuasive game is played over a

smart lunch tray, extended from our diet-aware dining table. In addition, we have designed

a smart kitchen which is installed with a smart counter and a smart cabinet, extended from

our diet-aware dining table as well, to aware what and how much food a user is cooking.

After recognizing cooking behaviors, a LCD display and speaker system will guide the

user to healthy cooking. The smart kitchen also calculates the nutritional value of a meal

which is build into a RFIDtag-nutrition mapping database for diet-aware dining table.

This initiates the automation from a kitchen to a dining table.

The smart kitchen application is now in the design phase, and we will start to build

it. In addition, for these two applications, further user study is required. Responses from

the users could help inventing better interface to persuade healthy dining and cooking

behaviors.
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