National Chung Cheng University
 Admission Exam for Advanced Calculus, 1998

Written by Men-Gen Tsai email: b89902089@ntu.edu.tw

1. Let R be the collection of all real numbers, and $R^{3}=R \times R \times R$. Suppose $f(x, y, z)=\left(x+y^{2}+100 z, x+3 y-100 z, e^{-z+100 y^{2}}\right)$, for $(x, y, z) \in R^{3}$.
(1a) Find the determinent of Jacobian matrix of f at the point $(0,0,0)$.
(1b) Could you find an open neighborhood of $(0,0,0)$, so that f is one-to-one in this open set? If your answer is yes, find it. If your answer is no, give the reason.

Solution of (1a):

$$
\begin{aligned}
J_{f}(\mathbf{x}) & =\left[\begin{array}{ccc}
D_{1} f_{1}(\mathbf{x}) & D_{2} f_{1}(\mathbf{x}) & D_{3} f_{1}(\mathbf{x}) \\
D_{1} f_{2}(\mathbf{x}) & D_{2} f_{2}(\mathbf{x}) & D_{3} f_{2}(\mathbf{x}) \\
D_{1} f_{3}(\mathbf{x}) & D_{2} f_{3}(\mathbf{x}) & D_{3} f_{3}(\mathbf{x})
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 y & 3 & 200 y e^{-z+100 y^{2}} \\
100 & -100 & -e^{-z+100 y^{2}}
\end{array}\right]
\end{aligned}
$$

Thus

$$
J_{f}(0,0,0)=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & 0 \\
100 & -100 & -1
\end{array}\right]
$$

Solution of (1b): The answer is yes. Let

$$
\begin{aligned}
x+y^{2}+100 z & =u \\
x+3 y-100 z & =v \\
e^{-z+100 y^{2}} & =e^{w} \Leftrightarrow-z+100 y^{2}=w
\end{aligned}
$$

and $\mathbf{p}=(0,0,0)$. Also we consider $(x, y, z) \in B_{\epsilon}(\mathbf{p})$ for some $\epsilon>0$. Hence

$$
-202 \epsilon<20001 y^{2}-3 y<202 \epsilon
$$

Note that $g(y)=20001 y^{2}-3 y$ is strictly decreasing if $y<10^{-5}$. Hence we take

$$
\epsilon<10^{-8} .
$$

Hence we can solve a unique y from $g(y)$ if $(x, y, z) \in B_{r}(\mathbf{p})$ where $r=10^{-8}$. Thus x and z can also solve uniquely. Therefore,

$$
B_{10^{-8}}(0,0,0)
$$

is our desired open neighborhood of $(0,0,0)$.
2. Let (a, b) be a nonempty open set contained in R, and f be a function from (a, b) to R. We have the following two definition:
(A1) Let $x_{0} \in(a, b)$. We say f is continuous at x_{0} iff for any $\epsilon>0$, there exists $\delta>0$ so that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset(a, b)$ and for any $y \in\left(x_{0}-\delta, x_{0}+\delta\right)$, we have

$$
\left|f(y)-f\left(x_{0}\right)\right|<\epsilon .
$$

(A2) Let $x_{0} \in(a, b)$. We say f is continuous at x_{0} iff for any sequence $\left\{y_{n}\right\}_{n=1}^{\infty} \subset(a, b)$ satisfying $\lim _{n \rightarrow \infty} y_{n}=x_{0}$, we have

$$
\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f\left(x_{0}\right) .
$$

Show that (A1) is equivalent to (A2).
Proof: $(\mathrm{A} 1) \Rightarrow(\mathrm{A} 2)$: Suppose each $\left\{y_{n}\right\}_{n=1}^{\infty} \subset(a, b)$ satisfying

$$
\lim _{n \rightarrow \infty} y_{n}=x_{0}
$$

Then for any $\epsilon^{\prime}>0$ there exists N such that $\left|y_{n}-x_{0}\right|<\epsilon^{\prime}$ whenever $n \geq N$. Also, for any ϵ there exists $\delta>0$ so that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset(a, b)$ and for any $y \in\left(x_{0}-\delta, x_{0}+\delta\right)$, we have

$$
\left|f(y)-f\left(x_{0}\right)\right|<\epsilon .
$$

We take $\epsilon^{\prime}=\delta$, and then $y_{n} \in\left(x_{0}-\delta, x_{0}+\delta\right)$ for all $n \geq N$. Thus

$$
\left|f\left(y_{n}\right)-f\left(x_{0}\right)\right|<\epsilon
$$

for all $n \geq N$. Hence

$$
\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f\left(x_{0}\right) .
$$

$(\mathrm{A} 2) \Rightarrow(\mathrm{A} 1)$: Suppose (A1) does not hold. There exists ϵ_{0} such that for every $\delta>0,\left|f(x)-f\left(x_{0}\right)\right| \geq \epsilon_{0}$ holds if $\left|x-x_{0}\right|<\delta$ for some $x \in(a, b)$. Take $\delta=1 / n$ for all $n \in N$, then there exists $x_{n} \in\left(x_{0}-1 / n, x_{0}+1 / n\right)$ such that $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geq 1 / n$. Note that $\left\{x_{n}\right\} \rightarrow x_{0}$, but

$$
\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geq \epsilon_{0}>0
$$

if $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|$ exists, a contradiction. Hence (A2) implies (A1).
3. We give the following axiom.
(Axiom of completeness for real numbers): Let S be a nonempty subset contained in R. If S has an upper bound in R, then S has the least upper bound in R.

By using this axiom, first show that
(3a) If $T=\left\{a_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence contained in R and T has an upper bound, then $\lim _{n \rightarrow \infty} a_{n}$ exists and is equal to the least upper bound of T.

Then show that
(3b) Any Cauchy sequence contained in R is a convergent sequence.
Proof of (3a): By the axiom of completeness for real numbers, since T is nonempty and T has an upper bound, then T has the least upper bound in R, say L. Since L is the least upper bound of T, for any $\epsilon>0$, there exists N such that $L-a_{N}>\epsilon$. Note that T is increasing, and thus

$$
L-a_{N} \leq L-a_{N+1} \leq L-a_{N+2} \leq \ldots
$$

Hence $L-a_{n}<\epsilon$ for all $n \geq N$. Since ϵ is arbitrary,

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

Proof of (3b): Let $\left\{a_{n}\right\}$ be a Cauchy sequence contained in R. First we prove that $\left\{a_{n}\right\}$ is bounded. Take $\epsilon=1$, there exists N such that

$$
\left|a_{n}-a_{m}\right|<1
$$

whenever $n, m \geq N$. Put $m=N$, then $\left|a_{n}-a_{N}\right|<1$ if $n \geq N$. Thus $a_{N}-1<a_{n}<a_{N}+1$. Put

$$
M=\max \left(a_{1}, a_{2}, \ldots, a_{N}, a_{N}+1\right),
$$

and thus $\left\{a_{n}\right\}$ is bounded by M. Let

$$
S_{n}=\left\{a_{k}: k \in N, k \geq n\right\},
$$

and $S_{n} \subset S_{1}$ is also bounded for all $n \in N$. Thus by the axiom of completeness for real numbers, S_{n} has a least upper bound b_{n} and a greatest lower bound c_{n} for all n.. Note that $c_{n} \leq a_{n} \leq b_{n}$ for all n. Also, since $S_{n+1} \subset S_{n}$ for all $n,\left\{b_{n}\right\}$ is decreasing and $\left\{c_{n}\right\}$ is increasing. Also, $b_{n} \geq b_{n+m} \geq c_{n+m} \geq c_{m}$ for all $m, n \in N$, that is, $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are bounded. By (3a) we can let

$$
b=\inf \left\{b_{n}: n \in N\right\}, c=\sup \left\{c_{n}: n \in N\right\} .
$$

First we prove that $b=c$. For any $\epsilon>0$ there is an integer N such that $a_{n}-\epsilon<a_{m}<a_{n}+\epsilon$ whenever $m, n \geq N$. Let

$$
E_{1}=\left\{a_{m}: m \geq N\right\}, E_{2}=\left\{a_{n}+\epsilon: n \geq N\right\} .
$$

Thus $\inf E_{1} \leq \sup E_{2}$. Hence

$$
b_{N} \leq c_{N}+\epsilon
$$

Since

$$
0 \leq b-c \leq b_{N}-c_{N} \leq \epsilon
$$

for any arbitrary $\epsilon>0$, therefore $b=c$. Finally, we prove $\left\{a_{n}\right\}$ converges to b or c. For any $\epsilon>0$, we can find $b_{N_{1}}$ such that $b_{N_{1}}<b+\epsilon$ for some N_{1}. Also, we can find $c_{N_{2}}$ such that $c_{N_{2}}>b-\epsilon$ for some N_{2}. Take $N=\max \left(N_{1}, N_{2}\right)$, then

$$
\begin{aligned}
& b_{n} \leq b_{N_{1}}<b+\epsilon \\
& c_{n} \geq c_{N_{2}}>b-\epsilon
\end{aligned}
$$

Thus

$$
b-\epsilon<c_{n} \leq a_{n} \leq b_{n}<b+\epsilon .
$$

Since ϵ is arbitrary, $\left\{a_{n}\right\}$ is a convergent sequence.
Note: I did not use Bolzano-Weierstrass Theorem since I was very boring.
4. Let f be a continuous function from $[0,1]$ to R, and

$$
S_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right),
$$

$n=1,2,3, \ldots$. Show that
(4a) $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence.

Then show that
(4b) Suppose $f(x) \geq 0$ for all $x \in[0,1]$, and $f\left(x_{0}\right)>0$ for some $x_{0} \in$ $[0,1]$. Also, f is continuous on $[0,1]$. Then we have $\lim _{n \rightarrow \infty} S_{n}>0$.
(To show (4a) and (4b), you may use the property that if f is continuous on $[0,1]$, then f is uniformly continuous on $[0,1]$.)

Proof of (4a): Let $\epsilon>0$ be given. Choose $\eta>0$ so that

$$
(b-a) \eta<\epsilon .
$$

Since f is continuous on the compact set $[0,1]$, then f is uniformly continuous on it. Hence there exists a $\delta>0$ such that

$$
|f(x)-f(t)|<\eta
$$

if $x \in[0,1]$, and $|x-t|<\delta$. If P is any partition of $[0,1]$ such that $\Delta x_{i} \leq \delta$ for all i, then

$$
M_{i}-m_{i} \leq \eta \quad(i=1, \ldots, n)
$$

and therefore

$$
\begin{aligned}
U(P, f)-L(P, f) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i} \\
& \leq \eta(b-a) \\
& <\epsilon .
\end{aligned}
$$

Hence f is Riemann-integrable. Note that

$$
P=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}
$$

is a partition of $[0,1]$ such that $\Delta x_{i}=1 / n$ for all i. Thus $L(P, f) \leq$ $S_{n} \leq U(P, f)$ for $n>1 / \delta$. Hence $L(P, f) \leq S_{n} \leq L(P, f)+\epsilon$. Hence

$$
\sup L(P, f) \leq S_{n} \leq \sup L(P, f)+\epsilon
$$

for large enough n. Hence $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence.
Proof of (4b): We prove the following exercise equivalently.
Suppose $f \geq 0, f$ is continuous on $[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$. (Compare this with Exercise 1.)

Proof of the exercise: Suppose not, then there is $p \in[a, b]$ such that $f(p)>0$. Since f is continuous at $x=p$, for $\epsilon=f(p) / 2$, there exist $\delta>0$ such that $|f(x)-f(p)|<\epsilon$ whenever $x \in(x-\delta, x+\delta) \cap[a, b]$, that is,

$$
0<\frac{1}{2} f(p)<f(x)<\frac{3}{2} f(p)
$$

for $x \in B_{r}(p) \subset[a, b]$ where r is small enough. Next, consider a partition P of $[a, b]$ such that

$$
P=\left\{a, p-\frac{r}{2}, p+\frac{r}{2}, b\right\} .
$$

Thus

$$
L(P, f) \geq r \cdot \frac{1}{2} f(p)=\frac{r f(p)}{2}
$$

Thus

$$
\sup L(P, f) \geq L(P, f) \geq \frac{r f(p)}{2}>0
$$

a contradition since $\int_{a}^{b} f(x) d x=\sup L(P, f)=0$. Hence $f=0$ for all $x \in[a, b]$.

