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1. Let R be the collection of all real numbers, and R*> = R x R x R.
Suppose f(z,y,2) = (z 4+ 3> + 100z, 2 + 3y — 100z, e~*T10%") " for
(z,9,2) € R®.

(1a) Find the determinent of Jacobian matrix of f at the point (0, 0,0).

(1b) Could you find an open neighborhood of (0, 0,0), so that f is one-
to-one in this open set? If your answer is yes, find it. If your answer is

no, give the reason.

Solution of (1a):

Difi(x) Dafi(x) Dsfi(x)
Jr(x) = D fo(x) D2f2(x) fa(x)
Dif3(x) Dafs(x) f3(x)
1 1
= 2y 3 QOOye’Z“OOy
100 —100 = +100y?
Thus
1 1 0
J£(0,0,0) =] 0 3 0
100 —100 -1

Solution of (1b): The answer is yes. Let

r4+y*+100z = u
r+3y—100z2 = v

o7 +100y? eV e —y 4 100y2 —w



and p = (0,0,0). Also we consider (z,y,2) € B.(p) for some ¢ > 0.
Hence
—202¢ < 20001y* — 3y < 202€.

Note that g(y) = 20001y? — 3y is strictly decreasing if y < 107°. Hence
we take
e< 1078,

Hence we can solve a unique y from g¢(y) if (z,y,2) € B,(p) where

r =107%. Thus z and z can also solve uniquely. Therefore,
BlO_S (0, 0, O)

is our desired open neighborhood of (0,0,0).

. Let (a,b) be a nonempty open set contained in R, and f be a function

from (a,b) to R. We have the following two definition:

(A1) Let zo € (a,b). We say f is continuous at x iff for any € > 0, there
exists § > 0 so that (z¢o—9, zo+d) C (a,b) and for any y € (xo—6, xo+0),
we have

[f(y) = f(zo)| <e.

(A2) Let xy € (a,b). We say f is continuous at z, iff for any sequence

W 102, C (a,b) satisfying lim,, .. ¥y, = =g, we have
Y n=1 ymg Y

lim f(yn) = f($0)

n—oo

Show that (A1) is equivalent to (A2).
Proof: (Al) = (A2): Suppose each {y,}>°, C (a,b) satisfying

lim y, = .

n—0o0



Then for any ¢ > 0 there exists N such that |y, — zo| < € whenever
n > N. Also, for any € there exists 0 > 0 so that (xg—d,z0+9) C (a,b)
and for any y € (xo — 6,29 + 0), we have

[f(y) = flxo)| <e.

We take ¢ = 4, and then y,, € (xg — §, 29+ d) for all n > N. Thus

[f (yn) — flo)| <€

for all n > N. Hence

lim f(yn) = f(CUO)

n—oo

(A2) = (A1): Suppose (A1) does not hold. There exists ¢, such that for
every 0 > 0, |f(x)— f(xo)| > € holds if |z — x| < 6 for some z € (a,b).
Take § = 1/n for all n € N, then there exists z,, € (xg—1/n, 29+ 1/n)
such that |f(z,) — f(zo)| > 1/n. Note that {z,} — x, but

lim |f(zn) = f(2z0)] = €0 >0

n—oo

if lim,, .o | f(x,) — f(20)] exists, a contradiction. Hence (A2) implies

(A1).

. We give the following axiom.

(Axiom of completeness for real numbers): Let S be a nonempty subset
contained in R. If S has an upper bound in R, then S has the least
upper bound in R.

By using this axiom, first show that

(3a) If T = {a,}>2, is an increasing sequence contained in R and T
has an upper bound, then lim,_ . a, exists and is equal to the least

upper bound of T'.
Then show that



(3b) Any Cauchy sequence contained in R is a convergent sequence.

Proof of (3a): By the axiom of completeness for real numbers, since
T is nonempty and T" has an upper bound, then 7" has the least upper
bound in R, say L. Since L is the least upper bound of T', for any
€ > 0, there exists NV such that L —ay > €. Note that T is increasing,
and thus

L—-—ay<L—-anyy1 <L—any< .

Hence L — a, < € for all n > N. Since € is arbitrary,

lim a,, = L.

n—oo

Proof of (3b): Let {a,} be a Cauchy sequence contained in R. First
we prove that {a,} is bounded. Take € = 1, there exists N such that

la, — am| < 1

whenever n,m > N. Put m = N, then |a, —an| < 1if n > N. Thus
ay — 1 <a, <ay+ 1. Put

M = max(aq, as, ...,an,an + 1),
and thus {a,} is bounded by M. Let
Sn:{ak:k:EN,an}?

and S, C S; is also bounded for all n € N. Thus by the axiom of
completeness for real numbers, S, has a least upper bound b, and a
greatest lower bound ¢, for all n.. Note that ¢, < a, < b, for all
n. Also, since S,41 C S, for all n, {b,} is decreasing and {c,} is
increasing. Also, b, > byim > Copim > ¢ for all m,n € N, that is,
{b,} and {¢,} are bounded. By (3a) we can let

b=inf{b, :n € N}, ¢ =sup{c,:n € N}.

4



First we prove that b = ¢. For any ¢ > 0 there is an integer N such

that a, — € < a,, < a, + € whenever m,n > N. Let
Ey={an:m> N}, Ey={a,+e:n>N}.
Thus inf F; < sup E,. Hence
by <cny + e

Since
0<b—c<by—cy<e

for any arbitrary € > 0, therefore b = ¢. Finally, we prove {a,} con-
verges to b or c. For any € > 0, we can find by, such that by, < b+ €
for some N;. Also, we can find cy, such that cy, > b — € for some Ns.
Take N = max(Ny, Ny), then

bn

IA

le <b+€

¢n > cn, >b—e

Thus
b—e<c, <a,<b,<b+e

Since € is arbitrary, {a,} is a convergent sequence.

Note: I did not use Bolzano-Weierstrass Theorem since I was very

boring.

. Let f be a continuous function from [0, 1] to R, and

"k

S|

n=1,2,3,.... Show that

(4a) {S,}52, is a convergent sequence.



Then show that
(4b) Suppose f(xz) > 0 for all x € [0,1], and f(z¢) > 0 for some xy €

[0,1]. Also, f is continuous on [0, 1]. Then we have lim,_,, S, > 0.

(To show (4a) and (4b), you may use the property that if f is continuous

on [0,1], then f is uniformly continuous on [0, 1].)

Proof of (4a): Let ¢ > 0 be given. Choose n > 0 so that
(b—a)n <e.

Since f is continuous on the compact set [0, 1], then f is uniformly

continuous on it. Hence there exists a § > 0 such that

[f(@) = f(O] <n

if z € [0,1], and |z —¢| < 6. If P is any partition of [0, 1] such that
Ax; <9 for all 7, then

and therefore

U(P, f)— L(P, f) = Z(Mi —m;)Ax;

Hence f is Riemann-integrable. Note that

2
P=10,—,—,..,1
{7 7n7 7}

is a partition of [0, 1] such that Az; = 1/n for all . Thus L(P, f) <
Sp <U(P, f) for n > 1/6. Hence L(P, f) < S, < L(P, f) + ¢. Hence

S|

sup L(P, f) < S, <supL(P, f) + ¢

6



for large enough n. Hence {S,}2, is a convergent sequence.
Proof of (4b): We prove the following exercise equivalently.

Suppose f > 0, f is continuous on [a, b], and [ f(z)dz = 0. Prove that
f(z) =0 for all z € [a,b]. (Compare this with Exercise 1.)

Proof of the exercise: Suppose not, then there is p € [a, b] such that
f(p) > 0. Since f is continuous at = = p, for € = f(p)/2, there exist
d > 0 such that |f(z) — f(p)| < € whenever z € (x — §,z + ) N|a, b],
that is,

0< 31) < 1) < 2

for x € B.(p) C [a,b] where r is small enough. Next, consider a
partition P of [a, b] such that

r r
P - {avp_ 77p+ 77b}'

2 2
Thus 1
L)z L) =12
Thus
s L(P.f) = L(P ) = TP -,

a contradition since [° f(z)dx = sup L(P, f) = 0. Hence f = 0 for all
x € [a,b].



