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1. Let R be the collection of all real numbers, and R3 = R × R × R.

Suppose f(x, y, z) = (x + y2 + 100z, x + 3y − 100z, e−z+100y2
), for

(x, y, z) ∈ R3.

(1a) Find the determinent of Jacobian matrix of f at the point (0, 0, 0).

(1b) Could you find an open neighborhood of (0, 0, 0), so that f is one-

to-one in this open set? If your answer is yes, find it. If your answer is

no, give the reason.

Solution of (1a):

Jf (x) =


D1f1(x) D2f1(x) D3f1(x)

D1f2(x) D2f2(x) D3f2(x)

D1f3(x) D2f3(x) D3f3(x)



=


1 1 0

2y 3 200ye−z+100y2

100 −100 −e−z+100y2


Thus

Jf (0, 0, 0) =


1 1 0

0 3 0

100 −100 −1


Solution of (1b): The answer is yes. Let

x + y2 + 100z = u

x + 3y − 100z = v

e−z+100y2

= ew ⇔ −z + 100y2 = w
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and p = (0, 0, 0). Also we consider (x, y, z) ∈ Bε(p) for some ε > 0.

Hence

−202ε < 20001y2 − 3y < 202ε.

Note that g(y) = 20001y2−3y is strictly decreasing if y < 10−5. Hence

we take

ε < 10−8.

Hence we can solve a unique y from g(y) if (x, y, z) ∈ Br(p) where

r = 10−8. Thus x and z can also solve uniquely. Therefore,

B10−8(0, 0, 0)

is our desired open neighborhood of (0,0,0).

2. Let (a, b) be a nonempty open set contained in R, and f be a function

from (a, b) to R. We have the following two definition:

(A1) Let x0 ∈ (a, b). We say f is continuous at x0 iff for any ε > 0, there

exists δ > 0 so that (x0−δ, x0+δ) ⊂ (a, b) and for any y ∈ (x0−δ, x0+δ),

we have

|f(y)− f(x0)| < ε.

(A2) Let x0 ∈ (a, b). We say f is continuous at x0 iff for any sequence

{yn}∞n=1 ⊂ (a, b) satisfying limn→∞ yn = x0, we have

lim
n→∞

f(yn) = f(x0).

Show that (A1) is equivalent to (A2).

Proof: (A1) ⇒ (A2): Suppose each {yn}∞n=1 ⊂ (a, b) satisfying

lim
n→∞

yn = x0.
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Then for any ε′ > 0 there exists N such that |yn − x0| < ε′ whenever

n ≥ N . Also, for any ε there exists δ > 0 so that (x0−δ, x0 +δ) ⊂ (a, b)

and for any y ∈ (x0 − δ, x0 + δ), we have

|f(y)− f(x0)| < ε.

We take ε′ = δ, and then yn ∈ (x0 − δ, x0 + δ) for all n ≥ N . Thus

|f(yn)− f(x0)| < ε

for all n ≥ N . Hence

lim
n→∞

f(yn) = f(x0).

(A2)⇒ (A1): Suppose (A1) does not hold. There exists ε0 such that for

every δ > 0, |f(x)−f(x0)| ≥ ε0 holds if |x−x0| < δ for some x ∈ (a, b).

Take δ = 1/n for all n ∈ N , then there exists xn ∈ (x0− 1/n, x0 +1/n)

such that |f(xn)− f(x0)| ≥ 1/n. Note that {xn} → x0, but

lim
n→∞

|f(xn)− f(x0)| ≥ ε0 > 0

if limn→∞ |f(xn) − f(x0)| exists, a contradiction. Hence (A2) implies

(A1).

3. We give the following axiom.

(Axiom of completeness for real numbers): Let S be a nonempty subset

contained in R. If S has an upper bound in R, then S has the least

upper bound in R.

By using this axiom, first show that

(3a) If T = {an}∞n=1 is an increasing sequence contained in R and T

has an upper bound, then limn→∞ an exists and is equal to the least

upper bound of T .

Then show that
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(3b) Any Cauchy sequence contained in R is a convergent sequence.

Proof of (3a): By the axiom of completeness for real numbers, since

T is nonempty and T has an upper bound, then T has the least upper

bound in R, say L. Since L is the least upper bound of T , for any

ε > 0, there exists N such that L− aN > ε. Note that T is increasing,

and thus

L− aN ≤ L− aN+1 ≤ L− aN+2 ≤ ...

Hence L− an < ε for all n ≥ N . Since ε is arbitrary,

lim
n→∞

an = L.

Proof of (3b): Let {an} be a Cauchy sequence contained in R. First

we prove that {an} is bounded. Take ε = 1, there exists N such that

|an − am| < 1

whenever n,m ≥ N . Put m = N , then |an − aN | < 1 if n ≥ N . Thus

aN − 1 < an < aN + 1. Put

M = max(a1, a2, ..., aN , aN + 1),

and thus {an} is bounded by M. Let

Sn = {ak : k ∈ N, k ≥ n},

and Sn ⊂ S1 is also bounded for all n ∈ N . Thus by the axiom of

completeness for real numbers, Sn has a least upper bound bn and a

greatest lower bound cn for all n.. Note that cn ≤ an ≤ bn for all

n. Also, since Sn+1 ⊂ Sn for all n, {bn} is decreasing and {cn} is

increasing. Also, bn ≥ bn+m ≥ cn+m ≥ cm for all m, n ∈ N , that is,

{bn} and {cn} are bounded. By (3a) we can let

b = inf{bn : n ∈ N}, c = sup{cn : n ∈ N}.
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First we prove that b = c. For any ε > 0 there is an integer N such

that an − ε < am < an + ε whenever m,n ≥ N . Let

E1 = {am : m ≥ N}, E2 = {an + ε : n ≥ N}.

Thus inf E1 ≤ sup E2. Hence

bN ≤ cN + ε.

Since

0 ≤ b− c ≤ bN − cN ≤ ε

for any arbitrary ε > 0, therefore b = c. Finally, we prove {an} con-

verges to b or c. For any ε > 0, we can find bN1 such that bN1 < b + ε

for some N1. Also, we can find cN2 such that cN2 > b− ε for some N2.

Take N = max(N1, N2), then

bn ≤ bN1 < b + ε

cn ≥ cN2 > b− ε.

Thus

b− ε < cn ≤ an ≤ bn < b + ε.

Since ε is arbitrary, {an} is a convergent sequence.

Note: I did not use Bolzano-Weierstrass Theorem since I was very

boring.

4. Let f be a continuous function from [0, 1] to R, and

Sn =
1

n

n∑
k=1

f(
k

n
),

n = 1, 2, 3, .... Show that

(4a) {Sn}∞n=1 is a convergent sequence.
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Then show that

(4b) Suppose f(x) ≥ 0 for all x ∈ [0, 1], and f(x0) > 0 for some x0 ∈
[0, 1]. Also, f is continuous on [0, 1]. Then we have limn→∞ Sn > 0.

(To show (4a) and (4b), you may use the property that if f is continuous

on [0, 1], then f is uniformly continuous on [0, 1].)

Proof of (4a): Let ε > 0 be given. Choose η > 0 so that

(b− a)η < ε.

Since f is continuous on the compact set [0, 1], then f is uniformly

continuous on it. Hence there exists a δ > 0 such that

|f(x)− f(t)| < η

if x ∈ [0, 1], and |x − t| < δ. If P is any partition of [0, 1] such that

∆xi ≤ δ for all i, then

Mi −mi ≤ η (i = 1, ..., n)

and therefore

U(P, f)− L(P, f) =
n∑

i=1

(Mi −mi)∆xi

≤ η(b− a)

< ε.

Hence f is Riemann-integrable. Note that

P = {0, 1

n
,
2

n
, ..., 1}

is a partition of [0, 1] such that ∆xi = 1/n for all i. Thus L(P, f) ≤
Sn ≤ U(P, f) for n > 1/δ. Hence L(P, f) ≤ Sn ≤ L(P, f) + ε. Hence

sup L(P, f) ≤ Sn ≤ sup L(P, f) + ε
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for large enough n. Hence {Sn}∞n=1 is a convergent sequence.

Proof of (4b): We prove the following exercise equivalently.

Suppose f ≥ 0, f is continuous on [a, b], and
∫ b
a f(x)dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b]. (Compare this with Exercise 1.)

Proof of the exercise: Suppose not, then there is p ∈ [a, b] such that

f(p) > 0. Since f is continuous at x = p, for ε = f(p)/2, there exist

δ > 0 such that |f(x) − f(p)| < ε whenever x ∈ (x − δ, x + δ)
⋂

[a, b],

that is,

0 <
1

2
f(p) < f(x) <

3

2
f(p)

for x ∈ Br(p) ⊂ [a, b] where r is small enough. Next, consider a

partition P of [a, b] such that

P = {a, p− r

2
, p +

r

2
, b}.

Thus

L(P, f) ≥ r · 1

2
f(p) =

rf(p)

2
.

Thus

sup L(P, f) ≥ L(P, f) ≥ rf(p)

2
> 0,

a contradition since
∫ b
a f(x)dx = sup L(P, f) = 0. Hence f = 0 for all

x ∈ [a, b].
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