

Interactive Computer Graphics

Term Project --
3D Mosaic by LEGOTM

B89902040 沈允中

B89902094 李沛倫

Abstract
In our childhood, we played a toy like bricks named LEGOTM bricks. It’s really

interesting and amazing. And in the homework NO.1 and NO.2, we have already
learned how to build some models such as CSIE’s department building etc. So we
think why can we try to build such models by LEGOTM bricks. That is, in this term
project, we want to present a method for converting a regular 3-dimensional model
into LEGOTM bricks.

Introduction
LEGOTM is a kind of brick. It’s 7.8mm in width, 7.8mm in length, and 11.4mm

in height (including its head). But unlike regular building blocks, LEGOTM bricks
can be assembled together tightly in the top-bottom direction without toppling down.
They also come with lots of variety. You can reasonably and easily combine them to
form any shape you wand. But the combination is really a NP-hard problem. So in
order to simplify this problem, we only use the basic cubic bricks (Figure. 1).

 Figure. 1

The Problem
The goal is to truly build our models by really LEGOTM bricks. So we must

convert a triangle model into LEGOTM bricks which connected as tightly as possible.

Such problem can be stated formally as follows:

 Statement: Given a set of triangles {T_i} and an integer d, find a set of bricks
{B_j} such that
 * each B_j consists n_j by m_j unit bricks {C_k} of the same color;
 * each C_k is of fixed size and scale, positioned in a grid measured
 by its size, intersected with some triangles in {T_i}, and of the
 same color with one of the triangle it intersects with; and
 * B_j connects each other as tightly as possible.

Originally we want to define a function to evaluate how tightly connected the
{B_j} we found and maximize that function. But in consideration of the efficiency and
complexity, we did not implement this method. Instead we use an approximative
algorithm which has pretty good results. And we will describe this algorithm below.

 Algorithms
The algorithm we use takes two steps. First, the original model is dividing into

unit bricks. Second, neighbor bricks of the same color are assembled into bigger
bricks as best as possible.

In the first step, the algorithm we use is a little like the inverse of volume
rendering’s algorithm. We use the technique of Bounding Box. So in dividing the
original model, a smallest axis-alighed bounding box contains it is first computed.
According the parameter d, the box is divided into 8: 10: 8(x: y: z) unit cubes, of
which the largest number of unit cubes in one dimension is equal to d. Each unit
cubes is then calculated whether there is a triangle intersects with it. If so, it is labeled
with the color of the triangle.

Let n be the number of triangle, m be the number of unit cubes. The brute-force
approach takes n x m times of cube-triangle intersection tests.

To reduce this cost, we divide the problem into n one-triangle models. That is to
say, we calculate the bounding box (consists unit cubes of the same size) containing
each triangle and only the cubes in the bounding box of the triangle is tested. So the
average time complexity is n x average number of cubes of bounding box of a
triangle.
 The cube (more correctly, axis-alighed bounding box)-triangle intersection test
algorithm consider three cases:

1. if the cube C_k contains one of the vertices of the triangle T_i, return true;
2. if one of the edges of C_k intersects T_i, return true;
3. if one of the edges of T_i intersects one of the surfaces of C_k, return true;
and if all three cases failed, return false.

 The neighbor-cubes assembly algorithm is as follows:
1. take a brick B_j randomly.
2. take a direction(+x or +z) dir randomly.
3. if the bricks next to B_j in the dir direction is connectable(Figure. 2), assemble

them into one brick.
4. repeat the algorithm several times.

Figure. 2
 (a) (b) Cases of bricks that can
connect.
 (c) (d) Cases of bricks that cannot
connect.

 As you can see, we did not even test if the set of bricks {B_j} is
fully-connected, nor did how tightly they connected. There are several reasons:
1. Some models are impossible to be connected tightly at all. For example,
 The floor of csie model or the wings of fighter model, which are flat
 surfaces lack of connecting points.
2. The possibility of fully connection for a given model which is possible to
 be fully-connected is pretty high. And the larger the model, the higher
 this possibility.
 So, consider above reasons, we decide to use the random algorithm
currently in use rather than maximize a evaluation function.

Implementation

We implement this project on the OpenGL platform using GLUT library with C
language. We also add the animation of the construction and destruction of the bricks
to make it fancier.

References
1. In ACM SIGGRAPH 2000(?), AT&T presented a LEGO morphing animation.

It is where we got the idea of this project.

Our Results

Figure. 3 csie.tri

Figure. 4 kangaroo.tri

Figure. 5 patchair.tri

Figure. 6 teapot.tri

Conclusion And Future Work
We have presented a method to convert a triangle model into descrete LEGOTM

bricks. The method is efficient while easy to implement. And the result is
good enough to our expectation.
 But there are still several directions to improve. First, the overall structure
of the bricks is correct but not perfect. In human's view, sometimes it needs
to be added or removes some of the bricks or modify the color to make it more
symmetric. Second, as discussed in previous section, we can introduce the
evaluation function for a configuration, for which further study is needed.

