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摘    要 

為了產生逼真的影像，我們需要了解光如何在物體表面反射，而雙向反射函數正能準確地

描述物體的反射特性。本論文提出一個方法由一個具任意形狀之物體在不同光照條件下的多張

影像中擷取出雙向反射函數，由於光照方向的數目有限，因此，在某些光照方向，可能沒有取

樣點可以使用，為解決此一問題，我們使用一個平滑的內插方法用捕捉到的取樣點來近似位未

捕捉到的取樣點。 
 
關鍵詞：雙向反射函數、擷取、內插方法、以影像為基礎之著色法 
 

Abstract 

      In order to create photorealistic images, we need to know how light is reflected from differ-
ent materials. The bidirectional reflectance distribution functions (BRDF) plays an important role in 
modeling the reflectance of materials. This paper presents a framework for extracting BRDF samples 
from multiple photographs, which are taken from the same viewpoint but under different lighting di-
rections, of an arbitrary object. After collecting samples, we use a smoothing interpolation to ap-
proximate the complete BRDF from the measured samples. 
 
 
Keyword：bidirectional reflectance distribution functions, acquisition, interpolation, image-based 
rendering 
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1. Introduction 
      It is an important issue to model and 
measure how light is reflected from surfaces of an 
object in computer graphics and computer vision. 
Take the movie "The Matrix Reloaded" as an ex-
ample, the special effect team tried to measure true 
reflectance of certain materials such as the actors' 
costumes. The measured data is then used in their 
rendering framework for realistic renderings [2]. 
      Bidirectional reflectance distribution func-
tions (BRDFs) are widely-used models for de-
scribing how the light is reflected when it interacts 
with the surface of a certain material. Generally, a 
BRDF is a function which returns the ratio of in-
coming and outgoing energy relative to a local 
orientation at the contact point. Additionally, the 
BRDF is wavelength dependent: lights of different 
wavelengths may have different reflectivities. In 
practice, we usually represent the wavelength term 
by using only three colors (red, green, and blue). 
Thus, for each color channel, a BRDF can be de-
fined as a four dimensional function, which is 
written as ( i o )μ ω ω, , where iω  is the incoming 
light direction and oω  is the outgoing direction. 
Both of iω  and oω  are defined in a polar coor-
dinate system. Therefore, a BRDF is defined as the 
ratio of the amount of light reflected in direction 

iω  to the amount of light illuminate at the surface 
from direction oω . In this paper, we use a sub-
class of BRDFs called isotropic BRDFs which ig-
nores the rotations about the surface normal and 
the dimension of BRDFs is reduced to three. 
 
1.1 Overview 
      There are several ways to acquire BRDFs. 
To simplify the problem, many methods require 

that the shape of the target object is known in ad-
vance. Furthermore, many image-based BRDF 
acquisition methods can only work for flat or 
spherical objects. However, in real world, most 
objects are not flat or spherical. Hence, it is not 
reasonable to make these objects into flat or 
spherical in order to get their BRDFs. Take human 
skin as an example, the shape of face is neither 
totally flat nor spherical. Furthermore, since it is 
impossible to change the shape of the face, we 
need to develop another method which allows 
BRDF acquisition for objects of arbitrary shapes. 
The key idea is, once the shape of the object is 
found (or estimated), we can straightly solve the 
reflectance of the material over the object. There-
fore, we can divide this problem into two parts: 
one is the recovery (estimation) of the shape, and 
the other is the measurement of reflectance. 

(a)                 (b)                   (c)                   (d) 
 
Figure 1.  An overview of image-based BRDF acquisition. (a) An object of arbitrary shape that we 
will capture the BRDF from. (b) A real photograph of cloth. (c) A synthetic image of the same cloth, 
but applied with the BRDF captured from (a). (d) A synthetic image under another lighting condition. 
 

      This paper is organized as follows. In Sec-
tion 2, we briefly introduce the related work on 
modeling and measuring of reflectance. In Section 
3, we describe the acquisition process, which con-
tains an introduction of the devices we used and 
how to perform lighting calibration. In Section 4, 
we describe how to convert the measured data into 
BRDFs in different coordinate systems. In Section 
5, in order to recover the whole BRDF from scat-
tered samples, we describe an interpolation 
method which invokes approximate nearest 
neighbor (ANN) for fast search. In Section 6, we 
demonstrate several results including objects with 
single or multiple materials. Finally, Section 7 
summarizes our contributions and states the future 
work. Figure 1 shows a typical result of our sys-
tem. 
 
2. Related Work 
      Sometimes we need to obtain direct meas-

  

 



urements of given materials. Traditionally, BRDFs 
are measured by a gonioreflectometer which con-
sists of a light source and a detector. A BRDF 
sample is measured at each movement of the light 
source and the detector. It is very time consuming 
sometimes impractical to measure dense data using 
this device. To improve the efficiency of meas-
urement device, Ward [16] measured the BRDF by 
using a hemisphere mirror and a fish-eye lens to 
gather BRDF samples from a flat material. Dana 
[3] used an off-axis parabolic mirror to obtain 
BRDF samples. Currently, image-based BRDF 
acquisition becomes more and more popular. Lots 
of the BRDF samples can be acquired from a sin-
gle image. Marschner et al. [10] directly measured 
an object with known shape. For each acquired 
image, lots of the BRDF samples are acquired and 
the efficiency is greatly improved. Matusik et al. 
[11,12] acquired dense BRDF samples from 
spherical objects of more than 100 materials. The 
whole process only takes about 3 hours to acquire 
the BRDF for each material. 
 
3. Data Acquisition 
      In this section, we describe the BRDF data 
acquisition process of our system. For each capture 
session, we need to calibrate relative intensity and 
direction of each light. After lighting calibration, 
we can take multiple images under different light-
ing conditions by moving the light sources. Our 
system assumes that the camera is orthographic 
and the light sources are distant lights. Each pixel 
in the captured images can be regarded as a BRDF 
sample. 
 
3.1 Acquiring Images 

      Our acquisition system consists of a Canon 
EOS 20D digital camera controlled by a computer 
and a light stand with three LED light sources 
mounted on it. A real photograph of our system is 
shown in Figure 2. The distance from the object to 
the camera is about 2.5 meters and the distance 
from the object to the light stand is about 1.5 me-
ters. During the acquisition, we move the light 
stand around the object and capture images. We 
capture total of 36 images for each object, al-
though these images may not all be used. For the 
objects with high reflectivity, we need to capture 
multiple exposures of images to construct a high 
dynamic range image for each lighting direction. 
On the contrary, we only capture low dynamic 

range images for diffuse objects since LDR images 
are already accurate enough. Upon finishing the 
acquisition, all the images captured are adjusted by 
the scaling factors recovered by light calibration. 
 

 
 

Figure 2:  A snapshot of our acquisition system. 
 
3.2 Light Calibration 

      Before proceeding to the acquisition proc-
ess, the directions of the light sources to the object 
and their relative intensities need to be calibrated 
first. We use the method which is proposed by 
Goldman et al. [6] to calibrate the light sources. 
Two spheres are used for calibration: a steel one 
and a styrofoam one coated with white diffuse 
paint. For each light source, we capture one im-
ages of a steel sphere and another image of a sty-
rofoam sphere. The image of steel sphere is used 
to find the light directions and the image of styro-
foam sphere is used to figure out the relative in-
tensities of light sources. 
 
Lighting Direction: We locate the brightest pixel 

maxp  in the ith image, , to calculate the direc-
tion of the light source. Since the object is sphere 
and the camera is orthographic, we can compute 
the normal vector at 

iI

maxp , which is donated as 
(

maxp x yn n n )z= , ,n . The lighting direction, , is 
recovered by reflecting the viewing vector about 

. Since the viewing vector is , then 

iL

maxpn (0 0 1), ,

 
2(2 2 2 1)i x z y z zn n n n n= , , −L .      (1) 

 
Lighting Intensity: If the lighting direction  is 
known, the intensity of the diffuse sphere at pixel 

iL

  

 



p  in image  is iI ( ) (i p i p i )ρ, = ⋅I E n L , where 

ρ  is the diffuse albedo and  is the lighting 
intensity. We can recover the relative intensity by 
solving the following equation 

iE

 
( )i pp

i T
p ip

ρ
,

=
∑
∑

I
E

n L
.          (2) 

 
      Because the paint used on the styrofoam 
sphere may not be totally diffuse, We can not ap-
ply all the pixels to solve i ρE . For each pixel p  
with its normal  and the lighting direction , 
three rules are used to remove outliers. The pixel 

pn iL

p  is removed when 
 

1.  is not in the interval , T
p in L 1 2[ ]t t,

2. The angle between the viewing vector  
and the reflection vector  is above , 

V
R 3t

3. The intensity of the point  is below , ( )i p,I 4t
 

where , ,  and  are thresholds set em-
pirically. The rules 1 and 2 are used to remove 
pixels in the specular highlights and the rule 3 is 
used to remove dark pixels. After light calibration 
is done, scaling factors of three color channels are 
known and images are scaled accordingly. 

1t 2t 3t 4t

 
4. Arranging BRDF Measurements 

from Acquired Images 
4.1 Computing Surface Orientation 

      To convert the captured samples into 
BRDF data, we need to compute normals of the 
surface. Here, we used standard Lambertian 
photometric stereo [17]. Although this method can 
not work well if there are specular highlights or 
shadows, we get around these limitations by taking 
multiple images into consideration and rejecting 
highlight and shadow pixels. 
      Suppose we have  images of an arbi-
trary object taken under various lighting conditions. 
Let  be a vector of the 

intensity at the point 

n

(1 ) (2 ) ( )[ T
p p p n p, , ,= , ,...,I I I I

 

]

p  and . 
Assuming that the material is diffuse, the follow-
ing equation holds: 

1 2[ T
n= , ,...L L L L ]

p

p

|

T
p ρ=I L n .                   (3) 

 
Then we can solve the resulting linear system to 
obtain . Because  is an unit vec-

tor, we have  and 

1
pρ −=n L I pn

1| pρ −= L I 11
p ρ

−=n L pI . In our 
implementation, because we always have more 
than three images to recover the normals, we use 
SVD to solve  and the problem becomes a 
least-square fitting to a set of linear equations. 

pn

 
 

4.2 Outlier removal 
      To obtain good surface normals, we have 
to remove pixels in specular highlight or shadows. 
The simplest method is to let users manually 
choose intensity thresholds to remove the outliers. 
However, the quality of the normal map will to-
tally depend on these thresholds. To improve the 
quality, we have tried other two methods: 
two-steps outlier removal and RANSAC method. 
 
Two-steps Outlier Removal. This method is 
based on finding the best pixel combination. We 
need at least three measurements to solve Equation 
3. There are  combinations if we randomly 
choose three measurements from . The first 

step is, for each combination 

3
nC

pI

jC , 31 nj C≤ ≤ , we 

compute the diffuse factor jρ . The jC  is not 
valid if jρ  is not within a given range. After re-
moving the outliers, we apply Lambertian photo-
metric stereo on the remaining pixels to find the 
normal  and the diffuse factor pn ρ . Although 
we get a recommendable set of pixels for normal 
recovery, there may still be outliers in this set. 
Thus, the second step is to remove these outliers 
by examining how far away they are from the line 
created at the previous step. Finally, we use Lam-
bertian photometric stereo again to get the final 
result. 
 
Random Sample Consensus Algorithm. Random 
sample consensus algorithm (RANSAC) [4] is an 
algorithm for robust fitting of models in the pres-
ence of outliers. Since our inputs are a small num-
ber of images, we modify the original RANSAC 
algorithm to fit our requirements. First, similar to 

  

 



the two-steps outlier removal, we choose three 
pixels at one time and there are totally  com-
binations to be examined instead of choosing three 
pixels randomly. The algorithm includes the fol-
lowing steps: 

3
nC

 
1. For each combination jC  of measurements, 

we fit a line to it. Then, we compute the error 
term which is the sum of the distances of all 
measurements to the fit line. 

2. We use the combination which has minimum 
error as the best initial fit. Then we check on 
all the pixels and find the valid pixels which 
have small enough error within a given 
threshold. 

3. We use photometric stereo again to recover 
the normal from these valid pixels as the final 
result. 

 
      For every object, we generate three normal 
maps using these three methods and choose the 
best one to use. However, in some cases, highlight 
pixels still affect the result and are not removed 
totally. For these cases, we just manually select 
these regions where highlight pixels exist and es-
timate normals in these regions by smoothing out 
neighboring normals. 
 
4.3 Segmentation for Objects with Multiple 

Materials 
      In general, the objects we desire to capture 
may consist of multiple materials. We design a 
method to capture multiple materials from a single 
object at once. In our system, we segment the ob-
ject into several regions manually according to 
their diffuse colors. We also assume that the 
boundaries of the material regions are distinct 
enough to simplify the problem. However, there 
are always pixels at the boundaries of the regions 
which may be composed of multiple materials. 
Thus, we separate each region into two parts: inner 
part and boundary part, and only take inner parts 
for BRDF acquisition. This assumption does limit 
the scope of our system from measuring objects 
with very complex materials on their surfaces and 
need to be addressed in the future. 
 
4.4 Coordinate System 
      After image acquisition and recovery of 
normal maps, we have to convert the captured 

samples into BRDF data. The goal is, for each 
sample, to use the normal map to find the corre-
sponding location in the BRDF space, and put the 
data into a BRDF table. 
 

 
 

Figure 3:  Rusinkiewicz coordinate system. 
 
Natural Coordinate. For isotropic BRDFs, the 
BRDF values will be the same when rotating about 
the normal of the surface. Based on this character-
istic, we can define isotropic BRDFs using natural 
coordinate system as 

 

(n i o d )μ θ θ φ, , ,            (4) 
 

where d i oφ φ φ= −  is used to represent the rota-
tion invariant. Here we describe how to convert 
captured data into a BRDF in natural coordinate 
system. For a BRDF sample at pixel p  with the 
normal ( )p x y zn n n= , ,n  under the conditions that 
the lighting direction is  and the viewing direc-
tion is , we can derive the new lighting and 
viewing direction 

L
V

′L  and  relative to  by 
the following equations: 

′V pn

 

arccos( )zu nR ,′ =L L ,            (5) 

arccos( )zu nR ,′ =V V ,            (6) 
 

where (0 0 1)N = , ,  is the up vector in the tangent 
space, pu N= ×n , uR θ,  is a  transforma-
tion matrix that rotates by an angle 

3 3×

θ  about an 
arbitrary direction . Then  and  are fur-
ther transformed into polar coordinates, 

u ′L ′V

(i i i )ω θ φ= ,  and ( )o o oω θ φ= , . We then assign the 
BRDF sample to the ( )n i o dμ θ θ φ, , .  

  

 



 
Rusinkiewicz Coordinate: Although natural co-
ordinate system can easily be made out, there is a 
disadvantage of using it. For materials with specu-
lar characteristics, features of specular peaks can 
not be preserved by interpolation methods because 
we only have sparsely sampled BRDF data. Thus, 
we use a different coordinate system which is 
proposed by Rusinkiewicz [14], which is shown in 
Figure 3. Unlike natural coordinate system, a 
BRDF is parameterized as a function of a halfway 
vector and a difference vector:  

 

(r h d d )μ θ θ φ, , .            (7) 
 

With this coordinate, specular reflection will be 
aligned with the dθ  axis and the shape of peaks 
will preserved while using interpolation on the 
sampled data. Converting sample data into Rus-
inkiewicz coordinate is also quite simple. Given 
the lighting direction L  and viewing direction 

, the halfway vector  is derived by  V H
 

| |
+

=
+

L VH
L V

,            (8) 

 
and the difference vector  is derived by  D

 

h hv uR Rθ φ,− ,−=D L

T Z

,          (9) 
 

where  is the left vector in the tangent 
space, , and . Then,  
and  are further transformed into polar coordi-
nates, 

(0 1 0)T = , ,

pv = ×n pu = ×n H
D

( )h h hω θ φ= ,  and ( )d d dω θ φ= , . We then 
assign the BRDF sample to the ( )r h d dμ θ θ φ, , . 
There is another advantage of using Rusinkiewicz 
coordinate. In our system, we assume that the 
camera is orthogonal and the light sources are par-
allel projected. Hence, all the pixels in the same 
image will have the same dθ , since 

. Therefore, we can treat each 
acquired image as a “slice” in the BRDF space. 

arccos( )T
dθ = H L

 
5. Interpolation Scheme 
      If we acquire BRDF samples from spheri-
cal objects similar to the work by Matusik et al. 
[11,12], we can get high quality measurements 
since the shape of the object is known and we can 

acquire all possible normals from a sphere. The 
major difficulty we face is that both shape and re-
flectance model are unknown. In previous two 
sections, we have described how to recover the 
shape of the object from photographs and how to 
convert the captured data into different BRDF co-
ordinate system. Now the problem is, since we 
have scattered BRDF data, we need to interpolate 
the data to recover the complete BRDF. Scattered 
data interpolation techniques are very useful in 
many areas, such as chemistry, physics, and engi-
neering. In computer graphics, it also can be used 
for model reconstruction from scanned data points 
[13]. There are many ways to interpolate scattered 
data. Lee et al. [8] proposed an algorithm for in-
terpolation and approximation using multilevel 
B-splines. Radial basis functions (RBFs) are also 
used for interpolation and approximation of scat-
tered data [5].  
 
5.1. The Epanechnikov Kernel 

      In our system, a local smoothing method is 
used to interpolate the acquired data. We treat a 
BRDF as a probability density function and the 
measured data are sample points of the probability 
density function. To estimate the complete func-
tion, we use a non-parametric estimator called 
Epanechnikov kernel [15]. This kernel is a discon-
tinuous parabola function of the following form:  

 
23 (1 ) 1 1

( ) 4
0

u u
h x

otherwise

⎧ − − < <⎪= ⎨
⎪⎩

,    (10) 

 
where ix x

hu −= ,  is the bandwidth and h ix  are 
the values of the variable in the data. In our system, 
we use the distance from input values to measured 
data as ix x− , then we can interpolate BRDF 
values at any position.  
 
5.2. Search Strategy 

      Originally, we need to do an exhaustive 
search on all the BRDF data to find the interpo-
lated result. But we find that it is not necessary to 
search every data point since most of them have no 
contribution to the interpolated value because of 
the bandwidth. Hence, to improve the performance 
of search, we used an approximated solution. We 
build an ANN search structure [1] for the data and 

  

 



query the value through it. We only find the  
nearest neighbors for interpolation, and the band-
width will automatically changed according the 
minimum and maximum distances of the data to 
ensure that we can always find an interpolated 
value. Figure 4 shows the results using different 

. We can get a smoother result by choosing a 
larger , but it also takes longer to compute.  

k

k
k

 
6. Results 
      In this section, we present results using the 
technique we have described including captured 
images, corresponding estimated normal maps, 
and the reconstructed images. We first use our 
system to retrieve BRDF from objects with a sin-
gle material. Figure 5 (a) and (b) shows the results 
of acquisition and reconstruction of BRDFs for 
two teapots. From left to right, we show the esti-
mated normal map, one of the input image for 
some lighting direction and the reconstructed im-
age using the recovered normal map and interpo-
lated BRDF data under the same lighting direction. 
t is noticeable that, due to the shape of the teapots, 
they cast self-shadows on their surface. Our algo-
rithm can detect self-shadows and do not take 
these illegal samples into account. Figure 5 (c) and 
(d) show more results of acquisition and recon-
struction of BRDFs for a leaf and a green T-shirt. 
To test out system on objects with multiple mate-
rials, we also captured a plastic dog, which is 
shown in Figure 6. Because we use a smoothing 
method to retrieve BRDF values, the brightness of 
highlight pixels may be darker than captured im-
age. The RANSAC algorithm performs better be-
cause there are both white and black regions and it 
is not easy to choose suitable thresholds for other 
two methods. 
      To demonstrate the capability of material 
transfer, we capture a plastic monster doll (Figure 

1(a)) and acquire its grey diffuse material. We then 
render the captured material with the recovered 
normal map of a cloth (Figure 1(b)) to make the 
cloth plastic as shown in Figure 1(c) and (d). The 
acquired materials can also be rendered onto syn-
thetic objects. Figure 7(a) is the normal map for a 
geometric model of a statue. We map the acquired 
material onto its surface to give it different looks 
like grey plastic (Figure 7(b)), green cloth (Figure 
7(c)) and leaf under two different lighting condi-
tions (Figure 7(d) and (e)).  

(a)                        (b)                        (c) 
 

Figure 4.  Results of using different  nearest neighbors. (a) k 5k = . (b) . (c) . 25k = 100k =
 

 
7. Conclusions and Future Work 
      To create photorealistic images, it is better 
to use measured data instead of an analytical 
model to preserve the details of the material. In 
this paper, we build an image-based acquisition 
system to measure BRDFs from real objects. Al-
though there are still some flaws in the results due 
to the error of light calibration and surface orienta-
tion estimator, the system itself is robust and easy 
to use. A local smoothing method is used to reduce 
the noise in data acquisition to create images of 
different viewpoints from original captured images. 
In the future, we would like to explore the follow-
ing directions.  
 
Precise Surface Normal Estimation. So far, the 
reconstructed BRDF can still not be very accurate 
at highlight pixels because the estimated normal 
maps are not accurate enough especially near the 
edges of the objects. Hertzmann et al. [7] use a 
captured reference sphere to estimate the normals 
of the object, but their method suffers from the 
existence of self-shadow. We may solve this prob-
lem by using a partial matching algorithm in the 
future. Mallick et al. [9] also propose a method to 
reconstruct specular surfaces without explicit re-
flectance model or reference objects.  

  

 



 
BRDF Measurement for Objects with Complex 
Shapes. To improve the generality of this system, 
the ability to measure BRDF data from complex 
objects is necessary. How can we acquire the 
BRDF data from a strange-shaped object with 
multiple materials? The existence of self-shadows 
is a thorny problem for us to cluster the materials. 
All we need is a segmentation algorithm to sepa-
rate different materials even if there are shadow or 
highlight pixels. 
 
Reflectance Representation. If we want to use 
the measured BRDF data for rendering, we need to 
look it up in the BRDF database and find the query 
result for each pixel. This process is really 
time-consuming and hence not suitable for 
real-time rendering. Thus, we would like to reduce 
the amount of data to save both storage space and 
computation time. Principal components analysis 
(PCA) might be a good starting point to compress 
the BRDF data. 
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(a) 

 
(b) 

 
(c) 
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Figure 5.  Results of image-based BRDF acquisition. At the left, the recovered normal map; at 
the center, one of the source image; at the right, a synthetic image rendered under the same 
lighting condition. (a) A red teapot. (b) A brown teapot, (c) A leaf. (d) A T-shirt. 
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Figure 6.  Results of image-based BRDF acquisition for a object with multiple materials. (a) 
The recovered normal map. (b) The segmentation map. (c) One of the source image. (d) A syn-
thetic image rendered under the same lighting condition. 
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Figure 7.  The top of (a) is the normal map for a geometric model of a statue. The bottom is the 
normal map for a sphere. We map the acquired material onto the surface of the statue to give it 
different looks of grey plastic (b), green cloth (c) and leaf under two different lighting condi-
tions ((d) and (e)). The bottom shows the renderings of the reference balls of these materials. 
 

  

 


