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Abstract 

Numerous decision support applications have been 
modeled as set covering and partitioning problems. We 
propose an extension to the database query language 
SQL to enable applications of these problems to be 
stated and solved directly by the database system. This 
will lead to the benefits of improved data independence, 
increased productivity and better performance. Six 
operators, namely cover, mincover, sumcover, partition, 
minpartition, and sumpartition are extended. In this 
paper, we presented genetic algorithms for the 
implementation of access routines for the proposed 
operators. We found that our genetic algorithm approach 
for extended operations and query optimization 
performed well both on the computational effort and the 
quality of the solutions through a variety of test 
problems. This approach makes it possible for a DBMS 
to respond to queries involving the proposed operators in 
a predicate restricted amount of time. 

1 Inroduction 
Genetic algorithms [lo, 111 are becoming a widely 
accepted method for several famous difficult 
optimization problems. In' this paper, we describe a 
genetic algorithm for the implementation of the proposed 
operators in database query optimization. In order to 
give a detailed formulation of our genetic algorithm, we 
first briefly describe this particular application. 

Relational database languages, due to their 
flexibility, power and simplicity, are playing an 
increasingly important role in the development of 
information systems. SQL [5, 24, 7, 4, 61 is the best 
known of these and has become the ANSI standard for 
relational DBMSs [25]. However, SQL is not adequate 
for certain important application domains like decision 
support systems. As an example, suppose suppliers, 
parts, and quantities are stored in the SP(s#, p#, qty) 
relation of a database. The SP relation gives a shipment 
of parts p# by the supplier s# and the shipment quantity 
is qty. We might want to determine a set of suppliers 
with minimum total cost who can supply all kinds of 
parts. In this example, we assume a cost is associated 

with a supplier for some subset of the parts he supplies. 
Moreover, we require not only a set of suppliers with 
minimum total cost who can supply all kinds of parts but 
also no two of them supply the same kind of part. 
Currently, to obtain these rather natural results, we need 
to use query statements of existing relational database 
systems embedded in a programming language. Thus, 
application programmers or users need to make some 
extra efforts to obtain the required information. 

Investigations from the above examples, we found 
these situations can be modeled as set covering and 
partitioning problems. Set covering and partitioning 
problems are both theoretically and practically important 
in decision support systems. Numerous situations have 
been modeled as set covering and partitioning problems 
[9, 221. We propose an extension to the database query 
language SQL to enable applications of these problems 
to be stated and solved directly by the database system. 

The key to the success of a database management 
system (DBMS), especially of one based on the 
relational model [3], is the effectiveness of the query 
optimization module of the system. Query optimization 
has been an active area of research ever since the 
beginning of the development of relational DBMSs. 
Pertinent works on query optimization can be found 
elsewhere [15, 171. Each DBMS typically has a number 
of general database access routines, which are written to 
implement operations or combinations of operations. We 
discuss the genetic algorithms which implement the 
access routines of the proposed operations for processing 
queries involving the proposed operators. The set 
covering and partitioning problems are NP-hard. Many 
algorithms [9, 1, 22, 19, 25, 161 were proposed to solve 
them. Recently, randomized algorithms are used in query 
optimization. Simulated Annealing, Iterative 
Improvement, Two-Phase Optimization, and Genetic 
Algorithm have already been successfully tried on query 
optimization [18, 12, 13, 2, 141. This gives us ample 
reasons to believe that genetic algorithms will perform 
well in the proposed operations too. 

This paper is organized as follows. The extended 
SQL operators are defined in Section 2. The semantics 

0-7803-1899-4194 $4.00 01994 IEEE 350 



and syntax of the extended operators are described. The 
genetic algorithms used by access routines to implement 
the proposed operators are described in Section 3. A 
summary is given in Section 4. 

2 Database Operators for Set Covering and 

In this section, we described formulation of set covering 
and partitioning problems in SQL. We define special 
operators for the “WHERE” clause of SQL expressions 
to give a shorthand notation of such problems. Six 
constructs, namely, cover, mincover, sumcover, 
partition, minpartition, and sumpartition are defined. The 
semantics and syntax of the extended operators are 
described. 

Partitioning Problems 

2.1 Definition of the Extended Operators in SQL 
We sometimes want to obtain specific objects of an 
attribute in a relation that relate to the objects of an 
attribute in another relation. We can formulate this query 
in SQL by means of a special construct. The syntax of 
the construct is defined as follows: 

SELECT attribute-list 
FROM R1,R2 
WHERE COVER((Ri.X, R1.Y1), R2.Y2) 

Where attributes Y1 in R1 and Y2 in R2 are defined on 
the same domain. Relation R1 describes the relationship 
between the instances of attributes X and Y1. The 
relationship between them is that each instance of X is 
related to a set of instances of Y 1 and each instance of 
Y 1 is also related to a set of instances of X. Each distinct 
instance of Y1 in R1 has a corresponding instance of Y2 
in R2. The semantics of this construct is formally 
defined as finding a cover of a set. 

The COVER operation of relation R1 on attributes 
X and Y and relation R2 on attribute Z- 
RI,  R2 WHERE COVER((R1 .X, R1 .Y), R2.Z) 
-is a relation with the heading (X) and the body is a 
smallest subset of R1 so that the tuples (X:x, Y:y) 
appears in R1 for all tuples (Z:z) appearing in R;?. 
The PARTITION operation is similar to the COVER 
operation. 

The cover operator is an efficient way of 
determining a minimum cover (the smallest number of 
sets) of a set, if one exists. However, one may, in 
addition, wish to take into account the cost of a cover. In 
this case, one is interested in a cover that minimizes the 
total cost of the cover. The MINCOVER operator is to 
find a cover of minimum cost. Finding an optimum 

solution of this operation is an NP-hard problem. It may 
take a very long time to find such a solution even for a 
small size problem. Hence, we provide an alternative 
operator for users. The alternative operator is to find sub- 
optimal feasible solutions instead of optimal solutions. 
The syntax of the construct is defined as follows: 

SELECT attribute-list 
FROM RI, R2, R3 
WHERE MINCOVER((R1 .X, R1 .Y), R2.Y, 
R3.Z), or SUMCOVERconst((Ri.X, R1.Y), R2.Y, 

Where const in the SUMCOVER operator is a constant 
value. Every distinct instance of X in R1 has a 
corresponding instance of Z in R3 and is used as a cost 
of the former instance. The semantics of the 
MINCOVER operation is formally defined as finding a 
cover of minimum cost, and that of the SUMCOVER 
operation is formally defined as finding a cover whose 
cost is less than the given constant value. 
The MINPARTITION and SUMPARTITION operations 
are similar to the MINCOVER and SUMCOVER 
operations. 

R3.Z) 

3 Access Routines for Query Processing 
Finding a solution of the COVER, MINCOVER, 
PARTITION, or MINPARTITION operation is NP-hard. 
To get a near-optimal solution instead of an optimal 
solution and reduce query evaluation time, we adopt 
genetic algorithms in our query processing algorithm. 

3.1 Genetic Algorithms for the COVER and 
MINCOVER(SUMC0VER) Operators 
A solution of the set covering problem can be easily 
encoded as a binary chromosome (0, 1, 1, 0, ...) which 
would be interpreted as the second and third columns are 
included in the solution, but the first and fourth are not. 
The fitness function F(x) is a large number MAX minus 
the sum of the cost of the columns used (i.e., the original 
objective function value) and a penalty for a failure to 
cover. Therefore, the fitness function is 

W,X, - P(x)q(x) 
n 

F(x) = MAX - 
i=l 

where xi and are binary with q(x) = 0 if the solution x is 
a cover and q(x) = 1 otherwise. P ( x )  is the penalty 
function procedure for the covering. The latter term 

2 w,x, + P(x)q(x) 
i=l 

will be referred to as ”cost.” 
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The penaltyfunction procedure P3 of 1191 is stated 
as follows: 
~ 3 :  If s is a cover, cost = C Wi 

i s S  

If S fails to be a cover, let R be the rows that remain 
uncovered. For each i E R, let Si be the columns that 
cover i. Let W*i = min {Wj} for j €Si. Then cost = 

C W i +  C W * i  
i s S  i E R  

In order to find a cover with lower cost, the above 
penalty function procedure P3 is simply modified to 
become P3' as follows: 
~ 3 ' :  If s is a cover, cost = Wi 

i s S  

If S fails to be a cover, let R be the rows that remain 
uncovered. For each jES, strike column j and the 
rows covered by j. For some i €  R, let Si be the 
unused columns that cover i. For each j€S i ,  
calculate the cost-ratioU)(wj / number-of- l's- 
uncovered in j). Let j* = min { cost-ratiou) } for 
jESi.  Append to S the column j*. The process is 
repeated until S becomes a cover. 

Where cost-ratio(i) is the cost of column j over the 
number of 1's in the column j. The greedy crossover in 
[ 191 is used in our genetic algorithm. 

3.2 Genetic Algorithms for the PARTITION and 
MINPARTITION( SUMPARTITION) 
Operations 

The genetic algorithm starts by checking whether an 
individual violates the definition of partition. That is to 
say, no element is covered by more than one set. If an 
individual violates the definition of set partitioning 
problem, then a mutation operator is repeatedly applied 
until no individual violates the definition of set 
partitioning problem. Then the algorithm computes the 
fitness of all valid individuals by using the given penalty 
function procdure PP and uses the greedy crossover of 
[ 191 to generate the offspring. Finally, the algorithm 
examines whether the partition solution covers all 
elements. If the partition solution does not cover all 
elements, then it attempts to improve the partition 
solution obtained. The penalty function procedure PP is 
described below: 
PP: if s is a partition, cost = C wi 

id 
If S fails to be a partition , let R be the rows that 
remain uncovered. For each j E S, strike column j and 
the rows covered by j. In addition, for each j E S , 

every column k # j such that aij=aik=l (i=l, ..., m) 
must be deleted. For some i E R, let Si be the unused 
column that cover i. If Si is an empty set, let cost= 00. 

Otherwise, for each j E Si, calculate the cost- 
ratio(i)(wj / number-of-l's-uncovered in j). Let j* = 
min { cost-ratioCj) } for j E Si. Append to S the 
column j*. The process is repeated until S is a partition 
or the cost is 00. 

The penalty function procedure PP is used for 
fitness evaluation. The genetic algorithm for partition, 
sumpartition, and minpartition is described below. 
1. If any row r of A has all 0's , there is no solution since 

constraint r cannot be satisfied. 
2. Choose a desired population size n and initialize the 

starting population P randomly. 
3. Check whether a chromosome of the population P 

violates the definition of set partitioning problem. If 
any chromosome violates the definition, mutate a 
randomly chosen bit of 1's of this chromosome. The 
step is repeated until no chromosomes of population P 
violate the definition of set partitioning problem. 

4. Evaluate fitness of each individual according to the 
penalty function procedure PP. 

5. If the fitness of all individuals is equal to 0, there is no 
partition solution. The algorithm returns "No 
Partition.So1ution" and terminates. 

6. If termination-condition held, go to Step 7; else 
probabilistically select a pair of individuals ( 
according to their fitness determined by the penalty 
function procedure PP) to generate the offspring using 
greedy crossover. The step is repeated until n offspring 
are generated. Return to step 3. 

7. If the resultant solution, say S, contains a partition 
solution, the algorithm terminates. If S fails to be a 
partition, let R be the rows that remain uncovered. For 
each j€S,  strike column j and the rows covered by j. 
In addition, for each j€S, every column k f j such 
that aij=aik=l ( k l ,  ..., m) must be deleted. For some 
i E R , let Si be the unused columns that cover i. If Si 
contains only one column, append to S the column ( 
say column c). Strike column c and the rows covered 
by c. Otherwise, for each j€Si ,  calculate the cost- 
ratioCj) (wj / number-of-l's-uncovered in j). Let j* = 
min{cost-ratioCj)} for jESi. Append to S the column 
j*. The step is repeated until S is a partition. 

Step 7 in the algorithm attempts to improve the partition 
solution obtained in step 6 by applying the procedure 
like the penalty function procedure. After applying this 
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local fix-up procedure of step 7, feasible solutions have 
been always produced. 

3.3 Experiments and Results 
Simulations have been performed for the set covering 
problem on 18 test problems, and for the set partitioning 
problem on 15 test problems. The problem size of set 
covering problems was obtained from the work [21]. 
The problem size of set partitioning problems 1-5 was 
obtained from [l]. The reamining problem sizes were 
designed by the authors. The examined instances have 
been generated as follows. The A matrix for all set 
covering and set partitioning problems was obtained 
from a matrix generator. All the test problems have 
coefficient matrices whose density varies from 1% to 
20%. If a row or a column of A does not contain 1 in the 
row or the column then one 1 is added in any entry of 
the row or column. That is, each row or column must at 
least contain one 1. Following the work of [l], the 
coefficient of the objective function was equal to the 
number of ones in the corresponding column plus a 
random variable between 0 and 1. Information on these 
test problems, as well as on the computational results, is 
presented in Tables I and 11. The genetic algorithms 
were programmed in C and run on a DEC station 
5000/200. 

Computational Results with Genetic Algorithm for 
TABLE I 

Se? Covering Problems 

No. m n CPU time* cost rate**(%) 

1 15 
2 30 
3 30 
4 30 
5 30 
6 30 
7 30 
8 30 
9 200 

10 200 
11 50 
12 36 
13 104 
14 200 
15 46 
16 26 
17 50 
18 134 

32 0.060 22.132 47.5 
30 0.156 48.089 60.2 
40 0.218 43.152 43.8 
50 0.316 40.230 34.1 
60 0.339 46.789 55.9 
70 0.476 44.121 47.0 
80 0.546 44.265 47.5 
90 0.437 40.984 36.6 
300 17.281 375.320 87.6 
413 24.580 367.645 83.8 
450 4.402 66.269 32.5 
455 3.706 41.410 15.0 
498 10.731 161.914 55.6 
500 23.350 396.976 98.4 
683 7.921 54.867 19.2 
777 4.890 28.910 11.1 
905 12.041 58.920 17.8 
1642 62.554 211.726 58.0 

*DEC station 5000/200 (Seconds), ** rate= 
Im - cost1 

m 
, the rate of worst case error estimate. 

Also, we compared the genetic algorithms with the 
interior point algorithm of linear programming 1161 on 
two set covering problems: A27, A45 whose optimal 
solutions are known. Problems A27 and A45 are taken 
from [8]. These two problems are difficult set covering 
problems [16]. Table 111 shows the test problems, the 
size of the best known cover for each, and the size of the 
cover obtained from the proposed genetic algorithms. 

For most examples, we can see that the rate of worst 
case error estimate is poor even when the solution is 
optimal. This is because the optimal solution is not 
known and the value of the number of constraints is used 
in the error estimate instead. 

Computational Results with Genetic Algorithm for 
TABLE I1 

Set Partitioning Problems 

NO. m n cputime* cost rate**(%) 

1 13 87 0.269 15.854 21.9 
2 13 63 0.191 16.755 28.8 
3 14 71 0.246 17.848 27.4 
4 12 75 0.292 15.894 32.4 
5 13 88 0.312 15.879 22.1 

6 50 200 20.049 62.940 25.8 
7 100 300 102.908 126.060 26.0 
8 100 400 108.020 130.235 30.2 
9 100 500 127.571 127.814 27.8 
10 100 600 159.875 129.429 29.4 
11 150 700 696.775 183.920 22.6 
12 200 800 773.126 241.176 20.5 
13 200 900 830.743 245.133 22.5 
14 100 loo0 476.942 113.852 13.8 
15 200 lo00 1996.273 242.022 21.0 

Note:m=Number of constraints, n=Number of variables 
*, ** have the same meaning as in Table I 

TABLE 111 
Problem Set 

Problem Integer program IPA* GA** Optimal 
variables/constraints 

A27 2711 16 18 18 Yes 
A45 45/330 30 31 yes 

Note: *IPA=interior point algorithm [ 161 
* *GA=genetic algorithms 

Note: m=Number of constraints, n=Number of variables 
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The processing time of these test problems is presented 
in Figure 1, where the x-axis represents the product of 
the number of constraints and the number of variables, 
and the y-axis represents the processing time in seconds. 
The results show that the CPU time is nearly 
proportional to the product of the number of constraints 
and the number of variables for the set covering 
problems. The CPU time for set partitioning problems is 
larger than that for the set covering problems. This is to 
be expected since the penalty function of set partitioning 
problems is much more complicated than that of set 
covering problems. We are currently working on the 
problem of reducing the processing time of the set 
partitioning problems, possibly by adopting the 
Annealing Genetic algorithm of Lin, Kao, and Hsu [20]. 
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Figure 1: Average Processing time: (a) for set covering 
problems and (b) for set partitioning problems 

As can be expected, if the product of the number of 
constraints and the number of variables is small, the 

execution time is small too. Therefore, to reduce 
execution time in query processing, algebraic operations 
should be performed as early as possible. 

4 CONCLUSIONS 
We described formulation of set covering and 

partitioning problems in SQL. We define special 
operators for the “WHERE” clause of SQL expressions 
to give a shorthand notation of such problems. We have 
presented genetic algorithms for the implementation of 
the access routines for the proposed operators. At 
present, our major works are centered in the extension of 
DBMS operators and the derivation of the penalty 
function procedures for the proposed extended DBMS 
operators. We found that our genetic algorithm approach 
performed quite well both on the computational effort 
and the solution quality through a variety of test 
problems. These algorithms are bounded by a 
polynomial time. Therefore, this approach makes it 
possible for a DBMS to respond to queries involving the 
proposed operators in a restricted amount of time in real- 
time applications. In the future, we plan to adopt 
annealing genetic approach [20] to implement the access 
routines for the proposed operators in query 
optimization. In addition, we plan to modify the greedy 
crossover for better performance. 
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