
A Genetic Algorithm for Database Query Optimization

Jomg-Tzong Horng*, Cheng-Yan Kao**+ , and Baw-Jhiune Liu*
*Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan

**Department of Computer Science & Information Engineering, National Central University, Chungli, Taiwan
cykao@csman.csie.ntu.edu.tw

+ All correspondences should be sent to the author Cheng-Yan Kao.
Abstract

Numerous decision support applications have been
modeled as set covering and partitioning problems. We
propose an extension to the database query language
SQL to enable applications of these problems to be
stated and solved directly by the database system. This
will lead to the benefits of improved data independence,
increased productivity and better performance. Six
operators, namely cover, mincover, sumcover, partition,
minpartition, and sumpartition are extended. In this
paper, we presented genetic algorithms for the
implementation of access routines for the proposed
operators. We found that our genetic algorithm approach
for extended operations and query optimization
performed well both on the computational effort and the
quality of the solutions through a variety of test
problems. This approach makes it possible for a DBMS
to respond to queries involving the proposed operators in
a predicate restricted amount of time.

1 Inroduction
Genetic algorithms [lo, 111 are becoming a widely
accepted method for several famous difficult
optimization problems. In' this paper, we describe a
genetic algorithm for the implementation of the proposed
operators in database query optimization. In order to
give a detailed formulation of our genetic algorithm, we
first briefly describe this particular application.

Relational database languages, due to their
flexibility, power and simplicity, are playing an
increasingly important role in the development of
information systems. SQL [5, 24, 7, 4, 61 is the best
known of these and has become the ANSI standard for
relational DBMSs [25]. However, SQL is not adequate
for certain important application domains like decision
support systems. As an example, suppose suppliers,
parts, and quantities are stored in the SP(s#, p#, qty)
relation of a database. The SP relation gives a shipment
of parts p# by the supplier s# and the shipment quantity
is qty. We might want to determine a set of suppliers
with minimum total cost who can supply all kinds of
parts. In this example, we assume a cost is associated

with a supplier for some subset of the parts he supplies.
Moreover, we require not only a set of suppliers with
minimum total cost who can supply all kinds of parts but
also no two of them supply the same kind of part.
Currently, to obtain these rather natural results, we need
to use query statements of existing relational database
systems embedded in a programming language. Thus,
application programmers or users need to make some
extra efforts to obtain the required information.

Investigations from the above examples, we found
these situations can be modeled as set covering and
partitioning problems. Set covering and partitioning
problems are both theoretically and practically important
in decision support systems. Numerous situations have
been modeled as set covering and partitioning problems
[9, 221. We propose an extension to the database query
language SQL to enable applications of these problems
to be stated and solved directly by the database system.

The key to the success of a database management
system (DBMS), especially of one based on the
relational model [3], is the effectiveness of the query
optimization module of the system. Query optimization
has been an active area of research ever since the
beginning of the development of relational DBMSs.
Pertinent works on query optimization can be found
elsewhere [15, 171. Each DBMS typically has a number
of general database access routines, which are written to
implement operations or combinations of operations. We
discuss the genetic algorithms which implement the
access routines of the proposed operations for processing
queries involving the proposed operators. The set
covering and partitioning problems are NP-hard. Many
algorithms [9, 1, 22, 19, 25, 161 were proposed to solve
them. Recently, randomized algorithms are used in query
optimization. Simulated Annealing, Iterative
Improvement, Two-Phase Optimization, and Genetic
Algorithm have already been successfully tried on query
optimization [18, 12, 13, 2, 141. This gives us ample
reasons to believe that genetic algorithms will perform
well in the proposed operations too.

This paper is organized as follows. The extended
SQL operators are defined in Section 2. The semantics

0-7803-1899-4194 $4.00 01994 IEEE 350

and syntax of the extended operators are described. The
genetic algorithms used by access routines to implement
the proposed operators are described in Section 3. A
summary is given in Section 4.

2 Database Operators for Set Covering and

In this section, we described formulation of set covering
and partitioning problems in SQL. We define special
operators for the “WHERE” clause of SQL expressions
to give a shorthand notation of such problems. Six
constructs, namely, cover, mincover, sumcover,
partition, minpartition, and sumpartition are defined. The
semantics and syntax of the extended operators are
described.

Partitioning Problems

2.1 Definition of the Extended Operators in SQL
We sometimes want to obtain specific objects of an
attribute in a relation that relate to the objects of an
attribute in another relation. We can formulate this query
in SQL by means of a special construct. The syntax of
the construct is defined as follows:

SELECT attribute-list
FROM R1,R2
WHERE COVER((Ri.X, R1.Y1), R2.Y2)

Where attributes Y1 in R1 and Y2 in R2 are defined on
the same domain. Relation R1 describes the relationship
between the instances of attributes X and Y1. The
relationship between them is that each instance of X is
related to a set of instances of Y 1 and each instance of
Y 1 is also related to a set of instances of X. Each distinct
instance of Y1 in R1 has a corresponding instance of Y2
in R2. The semantics of this construct is formally
defined as finding a cover of a set.

The COVER operation of relation R1 on attributes
X and Y and relation R2 on attribute Z-
RI, R2 WHERE COVER((R1 .X, R1 .Y), R2.Z)
-is a relation with the heading (X) and the body is a
smallest subset of R1 so that the tuples (X:x, Y:y)
appears in R1 for all tuples (Z:z) appearing in R;?.
The PARTITION operation is similar to the COVER
operation.

The cover operator is an efficient way of
determining a minimum cover (the smallest number of
sets) of a set, if one exists. However, one may, in
addition, wish to take into account the cost of a cover. In
this case, one is interested in a cover that minimizes the
total cost of the cover. The MINCOVER operator is to
find a cover of minimum cost. Finding an optimum

solution of this operation is an NP-hard problem. It may
take a very long time to find such a solution even for a
small size problem. Hence, we provide an alternative
operator for users. The alternative operator is to find sub-
optimal feasible solutions instead of optimal solutions.
The syntax of the construct is defined as follows:

SELECT attribute-list
FROM RI, R2, R3
WHERE MINCOVER((R1 .X, R1 .Y), R2.Y,
R3.Z), or SUMCOVERconst((Ri.X, R1.Y), R2.Y,

Where const in the SUMCOVER operator is a constant
value. Every distinct instance of X in R1 has a
corresponding instance of Z in R3 and is used as a cost
of the former instance. The semantics of the
MINCOVER operation is formally defined as finding a
cover of minimum cost, and that of the SUMCOVER
operation is formally defined as finding a cover whose
cost is less than the given constant value.
The MINPARTITION and SUMPARTITION operations
are similar to the MINCOVER and SUMCOVER
operations.

R3.Z)

3 Access Routines for Query Processing
Finding a solution of the COVER, MINCOVER,
PARTITION, or MINPARTITION operation is NP-hard.
To get a near-optimal solution instead of an optimal
solution and reduce query evaluation time, we adopt
genetic algorithms in our query processing algorithm.

3.1 Genetic Algorithms for the COVER and
MINCOVER(SUMC0VER) Operators
A solution of the set covering problem can be easily
encoded as a binary chromosome (0, 1, 1, 0, ...) which
would be interpreted as the second and third columns are
included in the solution, but the first and fourth are not.
The fitness function F(x) is a large number MAX minus
the sum of the cost of the columns used (i.e., the original
objective function value) and a penalty for a failure to
cover. Therefore, the fitness function is

W,X, - P(x)q(x)
n

F(x) = MAX -
i=l

where xi and are binary with q(x) = 0 if the solution x is
a cover and q(x) = 1 otherwise. P (x) is the penalty
function procedure for the covering. The latter term

2 w,x, + P(x)q(x)
i=l

will be referred to as ”cost.”

35 1

The penaltyfunction procedure P3 of 1191 is stated
as follows:
~ 3 : If s is a cover, cost = C Wi

i s S

If S fails to be a cover, let R be the rows that remain
uncovered. For each i E R, let Si be the columns that
cover i. Let W*i = min {Wj} for j €Si. Then cost =

C W i + C W * i
i s S i E R

In order to find a cover with lower cost, the above
penalty function procedure P3 is simply modified to
become P3' as follows:
~ 3 ' : If s is a cover, cost = Wi

i s S

If S fails to be a cover, let R be the rows that remain
uncovered. For each jES, strike column j and the
rows covered by j. For some i € R, let Si be the
unused columns that cover i. For each j€S i ,
calculate the cost-ratioU)(wj / number-of- l's-
uncovered in j). Let j* = min { cost-ratiou) } for
jESi. Append to S the column j*. The process is
repeated until S becomes a cover.

Where cost-ratio(i) is the cost of column j over the
number of 1's in the column j. The greedy crossover in
[191 is used in our genetic algorithm.

3.2 Genetic Algorithms for the PARTITION and
MINPARTITION(SUMPARTITION)
Operations

The genetic algorithm starts by checking whether an
individual violates the definition of partition. That is to
say, no element is covered by more than one set. If an
individual violates the definition of set partitioning
problem, then a mutation operator is repeatedly applied
until no individual violates the definition of set
partitioning problem. Then the algorithm computes the
fitness of all valid individuals by using the given penalty
function procdure PP and uses the greedy crossover of
[191 to generate the offspring. Finally, the algorithm
examines whether the partition solution covers all
elements. If the partition solution does not cover all
elements, then it attempts to improve the partition
solution obtained. The penalty function procedure PP is
described below:
PP: if s is a partition, cost = C wi

id
If S fails to be a partition , let R be the rows that
remain uncovered. For each j E S, strike column j and
the rows covered by j. In addition, for each j E S ,

every column k # j such that aij=aik=l (i=l, ..., m)
must be deleted. For some i E R, let Si be the unused
column that cover i. If Si is an empty set, let cost= 00.

Otherwise, for each j E Si, calculate the cost-
ratio(i)(wj / number-of-l's-uncovered in j). Let j* =
min { cost-ratioCj) } for j E Si. Append to S the
column j*. The process is repeated until S is a partition
or the cost is 00.

The penalty function procedure PP is used for
fitness evaluation. The genetic algorithm for partition,
sumpartition, and minpartition is described below.
1. If any row r of A has all 0's , there is no solution since

constraint r cannot be satisfied.
2. Choose a desired population size n and initialize the

starting population P randomly.
3. Check whether a chromosome of the population P

violates the definition of set partitioning problem. If
any chromosome violates the definition, mutate a
randomly chosen bit of 1's of this chromosome. The
step is repeated until no chromosomes of population P
violate the definition of set partitioning problem.

4. Evaluate fitness of each individual according to the
penalty function procedure PP.

5. If the fitness of all individuals is equal to 0, there is no
partition solution. The algorithm returns "No
Partition.So1ution" and terminates.

6. If termination-condition held, go to Step 7; else
probabilistically select a pair of individuals (
according to their fitness determined by the penalty
function procedure PP) to generate the offspring using
greedy crossover. The step is repeated until n offspring
are generated. Return to step 3.

7. If the resultant solution, say S, contains a partition
solution, the algorithm terminates. If S fails to be a
partition, let R be the rows that remain uncovered. For
each j€S, strike column j and the rows covered by j.
In addition, for each j€S, every column k f j such
that aij=aik=l (k l , ..., m) must be deleted. For some
i E R , let Si be the unused columns that cover i. If Si
contains only one column, append to S the column (
say column c). Strike column c and the rows covered
by c. Otherwise, for each j€Si , calculate the cost-
ratioCj) (wj / number-of-l's-uncovered in j). Let j* =
min{cost-ratioCj)} for jESi. Append to S the column
j*. The step is repeated until S is a partition.

Step 7 in the algorithm attempts to improve the partition
solution obtained in step 6 by applying the procedure
like the penalty function procedure. After applying this

352

local fix-up procedure of step 7, feasible solutions have
been always produced.

3.3 Experiments and Results
Simulations have been performed for the set covering
problem on 18 test problems, and for the set partitioning
problem on 15 test problems. The problem size of set
covering problems was obtained from the work [21].
The problem size of set partitioning problems 1-5 was
obtained from [l]. The reamining problem sizes were
designed by the authors. The examined instances have
been generated as follows. The A matrix for all set
covering and set partitioning problems was obtained
from a matrix generator. All the test problems have
coefficient matrices whose density varies from 1% to
20%. If a row or a column of A does not contain 1 in the
row or the column then one 1 is added in any entry of
the row or column. That is, each row or column must at
least contain one 1. Following the work of [l], the
coefficient of the objective function was equal to the
number of ones in the corresponding column plus a
random variable between 0 and 1. Information on these
test problems, as well as on the computational results, is
presented in Tables I and 11. The genetic algorithms
were programmed in C and run on a DEC station
5000/200.

Computational Results with Genetic Algorithm for
TABLE I

Se? Covering Problems

No. m n CPU time* cost rate**(%)

1 15
2 30
3 30
4 30
5 30
6 30
7 30
8 30
9 200

10 200
11 50
12 36
13 104
14 200
15 46
16 26
17 50
18 134

32 0.060 22.132 47.5
30 0.156 48.089 60.2
40 0.218 43.152 43.8
50 0.316 40.230 34.1
60 0.339 46.789 55.9
70 0.476 44.121 47.0
80 0.546 44.265 47.5
90 0.437 40.984 36.6
300 17.281 375.320 87.6
413 24.580 367.645 83.8
450 4.402 66.269 32.5
455 3.706 41.410 15.0
498 10.731 161.914 55.6
500 23.350 396.976 98.4
683 7.921 54.867 19.2
777 4.890 28.910 11.1
905 12.041 58.920 17.8
1642 62.554 211.726 58.0

*DEC station 5000/200 (Seconds), ** rate=
Im - cost1

m
, the rate of worst case error estimate.

Also, we compared the genetic algorithms with the
interior point algorithm of linear programming 1161 on
two set covering problems: A27, A45 whose optimal
solutions are known. Problems A27 and A45 are taken
from [8]. These two problems are difficult set covering
problems [16]. Table 111 shows the test problems, the
size of the best known cover for each, and the size of the
cover obtained from the proposed genetic algorithms.

For most examples, we can see that the rate of worst
case error estimate is poor even when the solution is
optimal. This is because the optimal solution is not
known and the value of the number of constraints is used
in the error estimate instead.

Computational Results with Genetic Algorithm for
TABLE I1

Set Partitioning Problems

NO. m n cputime* cost rate**(%)

1 13 87 0.269 15.854 21.9
2 13 63 0.191 16.755 28.8
3 14 71 0.246 17.848 27.4
4 12 75 0.292 15.894 32.4
5 13 88 0.312 15.879 22.1

6 50 200 20.049 62.940 25.8
7 100 300 102.908 126.060 26.0
8 100 400 108.020 130.235 30.2
9 100 500 127.571 127.814 27.8
10 100 600 159.875 129.429 29.4
11 150 700 696.775 183.920 22.6
12 200 800 773.126 241.176 20.5
13 200 900 830.743 245.133 22.5
14 100 loo0 476.942 113.852 13.8
15 200 lo00 1996.273 242.022 21.0

Note:m=Number of constraints, n=Number of variables
*, ** have the same meaning as in Table I

TABLE 111
Problem Set

Problem Integer program IPA* GA** Optimal
variables/constraints

A27 2711 16 18 18 Yes
A45 45/330 30 31 yes

Note: *IPA=interior point algorithm [161
* *GA=genetic algorithms

Note: m=Number of constraints, n=Number of variables

353

The processing time of these test problems is presented
in Figure 1, where the x-axis represents the product of
the number of constraints and the number of variables,
and the y-axis represents the processing time in seconds.
The results show that the CPU time is nearly
proportional to the product of the number of constraints
and the number of variables for the set covering
problems. The CPU time for set partitioning problems is
larger than that for the set covering problems. This is to
be expected since the penalty function of set partitioning
problems is much more complicated than that of set
covering problems. We are currently working on the
problem of reducing the processing time of the set
partitioning problems, possibly by adopting the
Annealing Genetic algorithm of Lin, Kao, and Hsu [20].

n

C

0

$ 70
o 60
Q) 50 ’ 40

30 E = 20
3 10
0 0
P

t

0 100000 200000300000

m * n

n

$ 2000

$ 1500 ’
1000

E
500

a
P
0 0

e
0

Q)

.-

0 100000 200000

m * n

Figure 1: Average Processing time: (a) for set covering
problems and (b) for set partitioning problems

As can be expected, if the product of the number of
constraints and the number of variables is small, the

execution time is small too. Therefore, to reduce
execution time in query processing, algebraic operations
should be performed as early as possible.

4 CONCLUSIONS
We described formulation of set covering and

partitioning problems in SQL. We define special
operators for the “WHERE” clause of SQL expressions
to give a shorthand notation of such problems. We have
presented genetic algorithms for the implementation of
the access routines for the proposed operators. At
present, our major works are centered in the extension of
DBMS operators and the derivation of the penalty
function procedures for the proposed extended DBMS
operators. We found that our genetic algorithm approach
performed quite well both on the computational effort
and the solution quality through a variety of test
problems. These algorithms are bounded by a
polynomial time. Therefore, this approach makes it
possible for a DBMS to respond to queries involving the
proposed operators in a restricted amount of time in real-
time applications. In the future, we plan to adopt
annealing genetic approach [20] to implement the access
routines for the proposed operators in query
optimization. In addition, we plan to modify the greedy
crossover for better performance.

References
[11 E. Balas and C.H. Martin, “Pivot and Complement -

A Heuristic for 0-1 Programming,” Management
Science 26(1), pp. 86-96, January 1980.

[2] K. Bennett, M. C. Ferris, and Y. E. Ioannidis, “A
Genetic Algorithm for Database Query
Optimization,” Proceedings of the Fifth
International Conference on Genetic Algorithms,
1991.

[3] E.F. Codd, A Relational Model of Data for Large
Shared Data Banks, CACM, 13(6):377-387, 1970.

[4] E.F. Codd, The Relational Model for Database
Management, Version 2. Reading, MA: Addison-
Wesley, 1990.

[5] C. J. Date, A Guide to the SQL Standard, Addison-
Wesley, Reading, Mass., 1987.

[6] C. J. Date, “An Introduction to Database Systems,”
Volume I, Fifth Edition, Reading, MA: Addison-
Wesley, 1990.

[7] R. Elmasri and S.B. Navathe, “Fundamentals of
Database Systems,” The BenjaminKummings

354

Publishing Company, Inc., 390 Bridge Parkway,
Redwood City, California, 1989.

[8] D. R. Fulkerson, G. L. Nemhauser and L. E. Trotter
Jr., "Two Computationally Difficult Set Covering
Problems that Arise in Computing the l-Width of
Incidence Matrices of Steiner Triple Systems,"
Mathmatical Programming Study 2 (1 974) 72-8 1.

[9] R. S. Garfinkel and G. L. Nemhauser, "Integer
Programming," John Wiley & Sons, 1972.

[lo] D. E. Goldberg, "Genetic Algorithms in Search,
Optimization, and Machine Learning," Addison-
Wesley, 1989.

[l 11 J. H. Holland, "Adaption in Natural and Artificial
Systems," Ann Arbor: The University of Michigan
Press, 1975.

[12] Y. E. Ioannidis and E. Wong, "Query Optimization
by Simulated Annealing," in Proc. of the 1987
ACM-SIGMOD Conference on the Management
of Data, San Francisco, CA, May 1987, pp. 9-22.

[13] Y. E. Ioannidis and Y. C. Kang, "Randomized
Algorithms for Optimizing large Join Queries," in
Proc. of the 1987 ACM-SIGMOD Conference on
the Management of Data, Allantic City, NJ, May

[14] Y. E. Ioannidis and Y. C. Kang, "Left-Deep vs.
Bushy Trees: An Analysis of Strategy Spaces and
Its Implications for Query Optimization," in Proc.
of the 1991 ACM-SIGMOD Conference on the
Management of Data, May 1991, pp. 168-177.

[15] M. Jarke and J. Koch, "Query Optimization in
Database Systems," ACM Computing Surveys,
16(2):111-152, June 1984.

[16] N. Karmarker, M.G.C. Resende and K.G.
Ramakrishnan, "An Interior Point Algorithm to
Solve Computationally Difficult Set Covering
Problems," Mathmatical Programming 52 (199 1)

[17] W. Kim, D. Reiner, and D. Batory, Query
Processing in Database Systems. Springer Verlag,
N. Y., 1986.

[181 S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,
"Optimization by Simulated Annealing," Science
220,4598 (May 1983), pp. 671-680.

[19] G.E. Liepins, M.R. Hilliard, J. Richardson, and M.
Palmer, "Genetic Algorithms Applications to Set
Covering and Traveling Salesman Problems," in
Operations Research and Artificial Intelligence:
The Integration of Problem-Solving Strategies,

1990, pp. 312-321.

597-618.

edited by D.E. Brown, C. White, 111, Kluwer
Academic Publishers, 1990.

[20] F.T. Lin, C.Y. Kao, and C.C. Hsu, "Applying the
Genetic Approach to Simulated Annealing in
Solving Some NP-Hard Problems," To Appear in
IEEE Trans. on Systems, Man, Cybernetics, 23(3),
May 1993.

[21] H.M. Salkin and R.D. Koncal, "Set Covering by an
All Integer Algorithm: Computational
Experience," Journal of ACM, 20(2): 189-193,
April 1973.

[22] H.M. Salkin and K. Mathur, Foundations of Integer
Programming, Elsevier Science Publishing Co.,
Inc., 1989.

[23] A. Swami and A. Gupta, "Optimization of Large
Join Queries," In Proc. of the 1988 ACM-
SIGMOD Conference on the Management of Data,
pp. 8-17, Chicago, IL, June 1988.

[24] R.F. van de Lans, "Introduction to SQL," Addison-
Wesley, 1988.

[25] V. Zissimopoulos, V. Th. Paschos, and F. Pekergin,
"On the Approximation of NP-complete Problems
by Using the Boltzmann Machine Method: the
Cases of Some Covering and Packing Problems,"
IEEE Trans. on Computers, 40(12):1413-1418,
December 199 1.

355

