NONRECURSIVE ALGORITHMS FOR RECONSTRUCTING
A BINARY TREE FROM ITS TRAVERSALS

G. H. Chen, M. S. Yu, and L. T. Liu

Department of Computer Science and Information Engineering,
National Taiwan University,
Taipei, Taiwan, China

Abstract

Given the inorder traversal of a binary tree, along with one of
its preorder or postorder traversals, the original binary tree can
be uniquely identified. Previous algorithms, recursive or
nonrecursive, need O(N2) time to reconstruct the original
binary tree. In this paper, we present two nonrecursive
reconstruction algorithms; one, which requires O(N) time, is
time optimal but space inefficient and the other requires
O(NloghN) time and O(N) space.

In i

It is well-known that given the inorder traversal of a binary
tree, along with one of its preorder or postorder traversals, the
original binary tree can be uniquely identified. It is not
difficult to write a recursive algorithm to reconstruct the binary
tree [4]. The computation time required is O(NV2) where N is
the number of nodes in the tree. Recently, Burgdorff et al. [1]
presented a nonrecursive algorithm for solving this problem:.
They reconstructed the binary tree from its inorder-preorder
sequence (i-p sequence for short) [2] and their algorithm needs
also O(N2) computation time. In this paper, we propose two
nonrecursive reconstruction algorithms; one, which requires
O(N) time, is time optimal but space inefficient and the other
requires O(MogN) time and O(N) space.

n rsi ruction algorith

In this section we present two nonrecursive algorithms for
reconstructing the original binary tree from its inorder and
preorder traversals. The algorithms proceed in two stages.
First, the i-p sequence is constructed from the inorder and
preorder traversals. Then, the original binary tree is
reconstructed from the i-p sequence.

Definition. [2] The i-p sequence of a binary tree with N
nodes is the numeric sequence output by the following
algorithm:

(1) Label the nodes of the tree as accessed in inorder by
consecutive integers 1,2, ... ,N;

(2) Output these numeric labels as the nodes are accessed in
preorder.

For example, let us refer to Figure 1(a) where a binary tree
is shown. The numeric labels of nodes and the i-p sequence
are shown in Figure 1(b) and Figure 1(c) respectively. The i-p
sequence is also known as tree-permutation [3]. Further, there
is a one-to-one correspondence between the set of all (ordered)

CH2611-2/88/0000/0490$01.00 © 1988 IEEE

490

binary trees with N nodes and the set of all i-p sequences of
length N [1].

Let I[1..N] and P[1..N] be the two sequences that
represent the inorder traversal and the preorder traversal of the
given binary tree, respectively. Without loss of generality,
assume that nodes are represented by distinct alphanumeric
labels. Also, let IP[1..N] represent the corresponding i-p
sequence. In fact, IP[i]=I-1[P[{]], 1<i<N. We have two
approaches to implement the mapping I'l. The first approach
is to sort I and then construct IP by searching for each P[/] in
I, 1<j<N. If binary search is used, the computation time and
space required are O(NlogN) and O(N) respectively. The
second approach uses the technique of hashing [5] to
accelerate the searching. That is, we first store I[i]'s into
hashing table according to their contents and then directly
search for each P[] in the hashing table by its value. The
computation time required is O(V), which is optimal within a
constant factor. But, the space required is as large as the size
of the hashing table.

Before presenting the reconstruction algorithm, let us look
at Figure 1(c) again. For each node, all its descendants
immediately follow it in the preorder sequence, and moreover,
its left descendants are prior to its right descendants. Also, its
numeric label is less (greater) than the numeric labels of its left
(right) descendants. This property does not just hold for
Figure 1; it is a property of the i-p sequence. The following
lemma is an immediate result from the definition of the i-p
sequence.

Lemma 1. Let P[i] be a nonleaf node and s (s>0) be the
number of its descendants. Then, IP[{]>IP[}] for i<j<k and
IP[i]<IP(j] for k<j<i+s iff P[i+1], ... ,P[k-1] are the left
descendants of P[i] and P[k], ... ,P[i+s] are the right
descendants of P[{]. Moreover, P[i+1] is the left child of P[i]
and P[] is the right child of P[].

According to lemma 1, we can reconstruct the binary tree
by sequentially examining array P. For each nonleaf node
P[i], if s is known, we can find its left child and right child
(if they exist) as stated by lemma 1. Let S[i], 1<i<N, denote
the cardinality of the set {j ! j<i and IP[j]<IP[i]}. S[i] is the
number of nodes that precede P[i] in both the inorder and the
preorder sequences. Array S will be used in the reconstruction
algorithm and can be computed according to the following
lemma, with S[1]=0 initially.

Lemma 2. Let P[] be the parent of P[i]. If P[i] is the left
child of P[], then S[{]=S[/]. If P[i] is the right child of P[j],
then S[{]=IP[].

Proof. We prove this lemma by counting the number of
nodes that precede P[i] in both the inorder and the preorder

sequences. Two cases are discussed in the following.

case 1. P[i] is the left child of P[j]. Since P[i] is the left child
of P[j1, then a node v precedes P{j] in both the inorder and the
preorder sequences iff v precedes P[] in both the inorder and
the preorder sequences. Thus, S[{]=S[/] is implied.

case 2. P[i] is the right child of P[j]. Since P[i] is the right
child of P[j], the nodes that precede P[i] in the inorder
sequence fall into three classes: left descendants of P[i], P[/],
and the nodes that precede P[/] in the inorder sequence. The
nodes belonging to the first class follow P[i] in the preorder
sequence, while the others still precede P[i] in the preorder
sequence. Therefore, S[i] equals the number of nodes
belonging to the second and the third classes, which is exactly
IP[j]. Q.E.D.

Let [L1[]..L2[i]] be the range of array P where the left
descendants of P[i] are located and [R1[i]..R2[{]] be the range
of array P where the right descendants of P[i] are located. If
L1[{]1>L2[{] (R1[i{]>R2[i]), then P[i] has no left (right)
descendants. Initially, L1[1]=2, L2[1]=IP[1], and R2[1]=N.
Also, R1[1]=L2[1]+1 if L1[1]<L2[1], R1[1]=2 otherwise.
Let P[j] (j<i) be the parent of P[i]. L1[i], L2[i], R1[i], and
R2[i] are computed as follows:

L1{i] := i+1;

L2[{] := i+IP[i)-S[i]-1;

R1[{] := if L1[i]<L.2[i] then L2[i]+1 else i+1;
R2[i] := if P[i]is the right child of P[j] then R2[j]

else L2[/].

The computations of LI1[i], R1[i], and R2[i] are
straightforward; the computation of L2[i] is based on the
following lemma.

Lemma 3. The number of left descendants of P[i] equals
IP[i]-S[i]-1.

Proof. The nodes that precede P[i] in the inorder sequence
fall into two classes. The left descendants of P[i] belong to the
first class. The others belong to the second class. Each node
in the first class follows P[i] in the preorder sequence; each
node in the second class precedes P[i] in the preorder
sequence. Thus, the number of left descendants of P[i] equals
the number of nodes preceding P[i] in the inorder sequence
minus the number of nodes preceding P[i] in both the inorder
and the preorder sequences, which is IP[i]-S[i]-1. Q.E.D.

In the following, we present the reconstruction algorithm.

L1[1]:=2; L2[1]:=1IP[1];
R1[1] :=if L1[1]<L2[1] then L2{1]+1 else 2;
R2[1] :=N; S[1]:=0;
if L1[1]<L2[1] then P[L1[1]] is the left child of P[1];
if R1[1]<R2[1] then P[RI1[1]] is the right child of P[1];
for i:=2 to N do
begin {Assume P[/] is the parent of P[i]}
S{i]1:=if P[i] is the left child of P[] then S[/]
else IP[j];
L1[i] :=i+1;
L2[i] := i+IP[i]-S[i]-1;
R1[i) :=if L1[i]<L2[i] then L2[i]+1 else i+1;
R2[i] :=if P[i] is the right child of P[] then R2[j]
else L2[j];
if L1[i]<L2[i] then P[LI1[i]] is the left child of P[i];
if R1[i]<R2[i] then P[R1[{]] is the right child of P[i]
end

The computation time and space requied for executing the
reconstruction algorithm are O(). Figure2 shows the

491

contents of S, L1, L2, R1, and R2 when Figure 1 is taken as
the input problem instance.

3. Concluding remarks

In this paper, we proposed two nonrecursive algorithms
for reconstructing the original binary tree from its inorder and
preorder traversals. The proposed algorithms proceed in two
stages; the first stage establishes the i-p sequence and the
second stage reconstructs the binary tree from the i-p
sequence. If sorting and binary search are used, then the
space required is optimal within a constant factor. If, instead,
hashing is used, the computation time required is optimal
within a constant factor. Besides, simple modification of the
proposed algorithm can be used to reconstruct the original
binary tree from its inorder and postorder traversals. An
interested reader will work out the details without much effort.

References

[1] H.A. Burgdorff, S. Jajodia, F. N. Springsteel, and Y.
Zalcstein, "Alternative methods for the reconstruction of
trees from their traversals,” BIT, vol. 27, no. 2, p. 134,
1987.

[2] T. Hikita, "Listing and counting subtrees of equal size of a
binary tree," Inform. Process. Lett., vol. 17, no. 4, p.
225, 1983.

[31 G.D. Knott, "A numbering system for binary trees,"
Comm. ACM, vol. 20, no. 2, p. 113, 1977.

[4] D.E. Knuth, The Art of Computer Programming, Vol. I1:
Fundamental Algorithms, Addison-Wesley, Reading,
Mass., 1973.

[5]1 D.E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.

inorder : B D A I G E H C
labels: 1 2 3 4 5

®)
preorder : A B b C E G I H F
i-p sequence : 3 1 2 8 6 5 4 7 9

Figure 1. An example: (a) a binary tree; (b) the numeric labels of
the nodes; (c) the i-p sequence.

i 1 2 3 4 5 6 7
Pi: A B D C E G I
Si: 0 0 1 3 3 3 3

LIG: 2 3 4 5 6 7 8
L2i 3 2 3 8 7 T 7
RIG: 4 3 4 9 8 8 8
R2G: 9 3 3 9 8 7 7

Figure 2. The contents of the arrays S, L1, L2, R1, and R2 if the input

is the problem instance shown in Figure 1.

® © o w©w O &

o

10

10

492

