
A Genetic Algorithm Approach for Set Covering Problems

Wen-Chih H u n g , Cheng-Yan Kao+ and Jorng-Tzong Horng*

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

*National Central University, Chungli, Taiwan

+ All correspondences should be sent to the sec-
ond author.

Abstract
In this paper, we introduce a genetic algorithm ap-
proach for set covering problems. Since the set cov-
ering problems are constrained optimization prob-
lems we utilize a new penalty function to handle
the constraints. In addition, we propose a muta-
tion operator which can approach the optima from
both sides of feasible/infeasible borders. We ex-
periment with our genetic algorithm to solve several
instances of computationally difficult set covering
problems that arise from computing the l-width of
the incidence matrix of Steiner triple systems. We
have found better solutions than the currently best-
known solutions for two large test problems.

1 Introduction
Set Covering Problems (SCPs) [5] are difficult zero-
one optimization problems. They are often encoun-
tered in a wide area of applications such as resource
allocation [12] and scheduling [l, 21.

Fulkerson et al. [5] have given two empirically
difficult set covering problems arising from S teiner
triple systems. F'ulkerson et al. suggest that these
are good problems for evaluating the computational
efficiency of integer programming and set covering
algorithms because they have far fewer variables
than numerous solved problems in literature; how-
ever, experience shows that they are hard to com-
pute and verify.

The @-width of a (0,l)-matrix A is the minimum
number of columns that can be selected from A such
that all row sums of the resulting submatrix of A are
at least p. Here /3 is an integer parameter ranging
from zero to the smallest row sum of the matrix A.
The l-width of A is:

w(A) = mineTz

subject to Ax 2 e,, (1)

z E (0, 1 Y ,
where e,, is an n-vector of ones and e,,, an m-vector
of ones. The l-width is a set covering problem. The
incidence matrix A that arises from Steiner triple
systems has precisely 3 ones in each row. This ma-
trix is also characterized as follow: for every pair of
columns j and IC there is exactly one row i for which
aij = a;k = 1. The incidence matrix of Steiner triple
systems can be constructed by a recursive formula-
tion 151.

computational experience with Ag, A15, A27 and
A45. They are able to solve A9 with a cutting plane
code after generating 44 cuts, but this cutting plane
method is unsuccessful on the three larger prob-
lems. In contrast, using an implicit enumeration
algorithm similar to one developed by Geoffrion [6],
they are able to solve A15 and by further inspecting
the optimal solution, A27 can be solved in reason-
able computer time. But several attempts at solv-
ing the problem A45 fail. Table 1 summarizes sev-
eral instances of the Steiner triple systems, showing
that the sizes of optimal covers are known for few
of them.

F'ulkerson, Nemhauser and Trotter [5] d' lSCUSS

2 Related Works
Karmarkar [8] gives an interior-point approach to
solving 0-1 integer programming problems. Such
problems, which are NP-complete in general, are
converted to nonconvex quadratic programs over
polytopes. He experiments with the Steiner triple
systems using his approach in [9] and produces the
best known covers for all test instances. Because
of nonconvex programming, some local optima
may be encountered during solution and the effect
caused by the local optima becomes much more se-
rious as the problem size is larger. This fact can
be found from his result that his approach takes
only about 6 minutes for problem As1 while over
56 hours and 226 hours for problems A135 and A243

0-7803-1899-4/94 $4.00 01994 IEEE 569

respectively.
Fe0 and Resende [4] pursue a non-deterministic

method for solving the difficult Steiner triple sys-
tems. The procedure is based on Chvatal’s itera-
tive cost to benefit greedy approach [3]. In order
to improve upon ChvStal’s heuristic they introduce
randomization. This heuristic also provides the best
known solutions to all instances attempted in liter-
ature. However, our results are better than those of
Fe0 and Resende.

Liepins et al. [IO, 111 investigate genetic algo-
rithms for set covering problems with two types
of crossover operators in conjunction with three
penalty functions and two multi-objective formula-
tions. They do not experiment on the Steiner triple
systems. Their results are encouraging and point to
the greedy crossower, tight upper bounds for cost of
completion of covers (as a penalty function P3) , and
Pareto based selection of the gene pool as promising
techniques.

3 A GA for Set Covering Prob-
lems

Genetic Algorithms (GAS) are search and optimiza-
tion algorithms based on the mechanics of natural
selection and natural genetics. The genetic search
proceeds over a number of generations. “Survival
of the fittest” provides the pressure for populations
to develop increasingly fit individuals. The primary
monograph on the topic is Holland’s [7] Adaptation
in Natural and Artificial Systems. Having been es-
tablished as a valid approach to problems requiring
efficient and effective search, genetic algorithms are
now finding more widespread applications in busi-
ness, scientific, and engineering.

In order to apply GAS to a particular problem,
we first need to select an internal string representa-
tion for the solution space. Set covering problems
seem to have a highly desirable string representa-
tion, namely, binary strings of length N in which
the j - th bit represents whether the j - t h set Pj is
in the cover or not. Further implementation of our
approach is described below.

Selection Strategy

The purpose of selection in a genetic algorithm is to
give more reproductive chances to those population
members that are better fit. Our mechanism for
selective pressure is the linear function described

by Whitley [15].

index = POPULATION-SIZE x
(bias - sqrt(bias x bias - 4.O(bias - 1) x random()))
/2.0/(bias - 1) .

(2)
where the function random() returns a random frac-
tion between 0 and 1. A bias of 1.5 implies that the
top ranked individual in the population is 1.5 times
more likely to reproduce (on one reproductive cycle)
than the median individual in the population.

Crossover Operator

Instead of Liepins’ greedy crossover we adopt the
uniform crossover operator proposed by Syswerda
[14]. Syswerda suggests that the probability of 1’s
in the mask string be 0.5. But we find that prob-
ability of 0.6 results in better performance for our
algorithms. This probability is fixed for all trials.

Penalty Function

Richardson et al. [13] suggest that the penalty func-
tion approach is the most suitable approach for con-
strained optimization problems such a.s set covering
problems. Their illustration also convinces us that
the infeasible solutions should provide information
and not just be thrown away, especially the “next-
door neighbors” of the optima in Hamming space.
In view of this, we define a new penalty function
P3’ as follows:

Let A be the incidence matrix of the original set
covering problem with columns pj and associated
costs cj.

P3’:
If S is a cover, then cost = c c j .

If S fails to be a cover, then
JES

1. Set S‘ to S. Set total-cost to 0.
2. Strike each column, say p’, in S’ and the

rows covered by p1 from A. Add the cost
associated with p’ to the total-cost. Let
this new matrix be A’ and set A to A’.

3. For the unused columns and uncov-
ered rows, calculate the cost-ratios (cost
1 number-of-rows-uncovered = cj num-
be r-o f-ro ws-un col iered) .

4. Append to S’ the column, say p 2 , with
the least cost-ratio (break ties ran-
domly). Add the cost associated with
p2 to the total-cost.

5. Strike column p2 and the rows covered
by p2 from A. Let this new matrix be
A’.

570

6. If S' is a cover, return total-cost as the
cost of S. Otherwise set A to A' and go
to step 3.

We note that P3' is more complex than P3 and pro-
ceeds in a column-by-column manner instead of the
row-by-row manner of P3. This column-by-column
manner can estimate the Hamming distance from
the optimum more accurately. Thus P3' is able to
collect more information from the neighborhood of
the optimal solutions.

Muta t ion Opera tor

Richardson et al. [13] not only establish some guide-
lines for penalty function, they also suggest that
good search should approach the optima from both
sides of the feasible/infeasible border. But they do
not explain clearly how to approach the optima.

To achieve this, we propose a mutation opera-
tor. Our mutation operator first randomly selects
a bit, say b j , from a chromosome and then mutates
bj based on some mutation rate. Whether the se-
lected bit is mutated or not also depends upon the
feasibility of the chromosome to be applied on. Our
mutation operator is explained below. Note that we
assume each cost cj associated with each column j
is non-negative 2 0). Note that there are two mu-
tation rates use 6 with our mutation operator.

0 If the chromosome is feasible, then

mutation-rate = 0.85.

mutat ionsate = 0.1.

- if bj = 1 then mutate bj based on

- otherwise (i.e., bj = 0), mutate bj based on

0 If the chromosome is infeasible, then
- if bj = 0 then mutate b, based on

- otherwise (i.e., bj = 1) , mutate bj based on

Our genetic algorithms use the generational replace-
ment. The best solution is copied into the next gen-
eration and replaces the worst solution. For all tri-
als the population size is 80 and the crossover rate
is 1.0. There are two generation sizes used, 250 and
400, depending upon the quality of the results.

mutation-rate = 0.85.

m u t a t i o n r a t e = 0.1.

4 Results and Comparisons

All empirical experiments are implemented in C and
the tests are carried out on SUN SPARC Station 2.
The C compiler is used to compile the codes with
- 0 2 optimization level. The computational experi-
ment tests the genetic algorithms on five set cover-
ing problems that arise from Steiner triple systems:

A27, A45, Asl, A135 and A243. These test problems
are obtained in the same way as in [4] and [9].

We compare our genetic algorithm with the
greedy genetics of Liepins et al. Their main im-
plementation issues include greedy crossover,
penalty function P3, and no mutat ion. Four
genetic algorithms were investigated here to com-
pare relative performance: (1) greedy-p3: greedy
crossover with penalty function P3, (2) greedy-p3p:
greedy crossover with penalty function P3', (3) uni-
form-p3: uniform crossover with penalty function
P3, and (4) uniform-p3p: uniform crossover with
penalty function P3'. All do not use mutation. The
selection strategy used is the linear selection mech-
anism instead of the Pareto based selection used by
Leipins et al.

Table 2 to Table 5 summarize the computational
results of the above four genetic formulations on
problem A27 whose optimal cover size is 18. The
first row of these tables (i.e., bias) is the bias value
in equation (2) and takes the values 1.2, 1.4, 1.6,
1.8 and 2.0. The second row (i.e., stability) is the
proportion of optima found; i.e., stability means
that the program meets optima m times in n runs.
The third row (i.e., least generations) dedicates the
smallest number of generations when the best so-
lution is found. The fourth row shows the least
amount of time required to identify the best solu-
tion. Below each table there is also shown how many
generations the corresponding formulation runs and
the average total time it takes. From these we can
compare the relative efficiency of all formulations.

From Table 2 to Table 5 we find that uniform
crossover is about 10 times faster than greedy
crossover and can produce more stable results than
the greedy crossover; thai is, uniform crossover can
find optima more quickly and easily than greedy
crossover. In fact the greedy crossover is a little bet-
ter than the ill-performed ChvAtal's heuristic men-
tioned in [4].

We add our proposed mutation into uniform-p3p,
resulting in a more complex genetic algorithm-
mut -uniform-p3p.

Table 6 summarizes the computational results of
mut-uniform-p3p on problems A27 to A243. The
third column denotes the best cover size that
mut-uniform-p3p finds corresponding to each bias
value. Please notice that the fourth column (i.e.,
stability) is the proportion of cases when the op-
timal or best known covers described in Table 1
are found. The fifth column dedicates the small-
est number of generations when the best cover is
found. The sixth row shows the least amount of
time in which the best solution is identified. Here

57 1

we set generation size to 400 for problem A81 and
250 for the others.

One important fact found in Table 6 is that
mut-uniform-p3p finds a cover size 104 for A135.
This cover size is better than the currently best
known solution 105. Here the stability includes the
cases when cover size is 104 or 105. But it’s a pity
that only one such case for 104 occurs in the 10 runs
when bias is 1.6 or 1.8. Also note that in Table 6
mut-uniform-p3p finds a cover size 203 for A243.
This cover size is also better than the currently best
known solution 204. The stability includes the cases
when cover size is 203 or 204. But it’s a pity that
only one such case for 203 occurs in the 10 runs
when bias is 1.8 or 2.0. Our best solutions for A135

and A243 are shown in the Appendix.

5 Discussions

P3‘ does occasionally have difficulty finding solu-
tions on smaller bias values. We have found several
ignored rows (i.e., denoted by X) in Table 6, indi-
cating that using penalty function P3’ may produce
a fittest (least-cost) solution which is not feasible
at all. However we find that this occurrs only on
smaller bias values and P3’ consistently finds lower
cost solutions than P3. This fact suggests that more
accurate estimates of the completion cost make bet-
ter penalties.

In Table 6 we also find that when solving problem
A27, mut-uniform-p3p produces more stable results
than uniform-p3p in Table 5. That is, our proposed
mutation operation can increase the stability of uni-
form-p3p. It is the same for larger problems.

From Table 6 we discover that
mut-uniform-p3p found cover sizes which are
smaller t han t h e current ly best known sizes
for bo th problems A135 and A243. Compared
with the results of Karmarkar’s interior-point ap-
proach, our genetic algorithm is not as seriously af-
fected by the local optima. The quality of solution
found is highly related to the bias value. For ex-
ample, when solving problem A243, it takes over 8
hours to find cover size 204 on bias 1.6 while less
than 4 hours to find cover size 203 on bias 1.8 and
2.0.

6 Conclusions

In this paper, we have introduced a genetic algo-
rithm approach for set covering problems. We have

In addition we demonstrate that uniform crossover
is more efficient than the greedy crossover. We also
propose a mutation operator that accelerates the
convergence to the optimal solutions.

To illustrate the effectiveness of our resulting al-
gorithm, mut-uniform-p3p, we apply it to solve sev-
eral instances of computationally difficult set cover-
ing problems. We have found optimal covers for two
instances, A27 and A45, with known optimal solu-
tions and the best known covers for instances vary-
ing in size from 81 variables and 1080 constraints
to 243 variables and 9801 constraints, i.e., A135

and A243, while taking much less time than the Kar-
markar approach experimented on the same set of
test problems. In addition our genetic algorithm
can find better solutions than the currently best
known solutions for the two larger problems. Ear-
lier best approaches, including mathematical and
stochastic algorithms, for these two problems were
always trapped into a worse local optimum. This
means that the ability of exploration and exploita-
t ion of genetic algorithms is much better than those
of traditional optimization algorithms.

Appendix:

Best Solution of A135:

zj = 0, if j E { 3, 13, 14, 17, 23, 28, 34, 36, 48, 52,
53, 62, 66, 68, 70, 75, 76, 78, 80, 81, 94, 97, 101,
104, 105, 106, 118, 120, 121, 125, 134 }, optimal
cover sizez104.

Our Best Solutions for A135

and A243

Best Solution of A243:

zj = 0, i f j E { 5, 7, 9, 12, 13, 39,41, 48, 52, 59, 60,
63, 75, 79, 81, 89, 93, 99, 101, 102, 111, 119, 126,
129, 136, 143, 155, 194, 196, 200, 203, 209, 221,
223, 225, 227, 234, 235, 239, 240 }, optimal cover
size=203.

References
[l] Arabeyre, J. P., Fearnley, J., Steiger, F. C. and Teather,

W., “The airline crew scheduling problem: a survey”,
Transportation Science 3, pp.140-168, 1969.

[2] Aubin, J., “Scheduling Ambulances”, Interfaces 22,
pp.1-10, 1992.

[3] Chvbtd, V., “A greedy heuristic for the set cover-
ing problem”, Mathematics of Operations Research 4,
pp.233-235, 1979.

[4] Feo, T. A. and Resende, M. G. C., “A probabilis-
tic heuristic for a comDutationally difficult set cover-

described in detail the Procedure for generating a ing problem”, Operations Research Letters 8, pp.67-71,
1989. new penalty function which generates better results.

572

[SI Z ” n , D. RI Nunhauser, G. L., md %ta, Jr.,
L. E., ‘Two computrtioluny daficplt set cc+ng.prab-
Laru that arise in computing the I-width of madace
matrices d skinu triple sy”L=, Afothmrcrkcal - p r o -
gramming Studv 2, pp.72-8lIl974.

[SI GdEion, A. M., “An improved implicit enumeration
approach for integer prog - 2, openations Re-
r e a d 17, pp.43744, 1969.

[7] Holland, J. H., Adaption in Natud and Artificial Sys-
t em, Ann Arbor: The University of Michigan Press,
1975.

[SI Karmarhu, N., “An intuior-poirtt approach to NP-
complete Problems--Part P’ , Contemporary Mathemat-
icr 114, Lagarins, J. C. and Todd, M. J., editom, Amer-
ican Mathematied Society, pp.297-308, 1990.

[Q] Karmarhu, N., Reoende, M. G. C. and Ramakrishnan,
K. G., “An interior point algorithm to solve computa-
tionally diScult set covering problemsa, Mathematid
Pmgmmming 52, pp.697-618, 1991.

(101 Liepins, G. E., Hilliard, M. R., Palmer, M. and Monow,
M., “Greedy genetics”, in Grdenstettc J. J., editor, Ge-
netic Algorithm and Their Applications: P d i n g s
of the Snd Internationd Conference on Genetic Algo-
rithms, July 1987.

[ll] Liepins, G. E., Hilliard, M. R., Richardson, J. and
Palmer, M., “Genetic algorithms applications to set cov-
ercing and traveling salesman problems”, in Brown (ed),
Operations Research and Artificial Intelligence: The In-
tegration of Problem-Solving Stmtegies, Kluwer Aca-
demic Publishers, 1990.

[12] Revelle, C. D., Marks, D. and Liebman, J. C., “An anal-
ysis of private and public sector facilities location mod-
els”, Management Science 16, pp.692-707, 1970.

[13] Richardson, J. T., Palmer, M. R., Liepins, G. and
Hilliard, M., “Some guidelines for genetic algorithms
with penalty functions”, in SchaiTer D., editor, Proceed-
ings of the 3rd Intemational Conference on Genetic Al-
gorithms, June 1989.

[14] Syswerda, G., “Uniform crossover in genetic a lge
rithms”, in Schaffer D., editor, Proceedings of the 3rd
International Conference on Genetic Algorithms, June
1989.

[15] Whitley, D., “The GENITOR algorithm and selection
pressure: why rank-based allocation of reproductive tri-
als is best”, in SchaRer D., editor, Proceedings of the 3rd
International Conference on Genetic Algorithms, June
1989.

Table 3: Result of greedy-p3p: A27

Table 4: Result of uniform-p3: A27

573

Table 6: Summary of results of mut-uniform-p3p
-

least generation to
find best cover

least time to
find best cover

2 0.24s
3 0.47s
4 0.62s
10 1.29s
15 1.84s
124 71.89s
91 51.08s
60 33.09s
46 24.82s
39 20.61s
273 16m 33.47s
142 8m 8.68s
83 4m 38.27s
63 3m 26.61s
73 4m 13.40s

239 l h 34m 41.73s
144 51m 39.08s
126 49m 47.11s
57 20m 7.73s

202
194 8h 17m 31.63s
93 3h 55m 26.47s
89 3h 29m 14.57s

X X

X X

Problem bias size of best stability
cover found

Ais6

A z r s

- G 1.4 105
104 1.6

1.8 104
2.0 105 10

1.2 X X

1.4 205
1.6 204
1.8 203 -
2.0 203 10

-
Y -
-

0 - so
Y
- '40

-

574

