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Abstract 
In this paper, we introduce a genetic algorithm ap- 
proach for set covering problems. Since the set cov- 
ering problems are constrained optimization prob- 
lems we utilize a new penalty function to handle 
the constraints. In addition, we propose a muta- 
tion operator which can approach the optima from 
both sides of feasible/infeasible borders. We ex- 
periment with our genetic algorithm to solve several 
instances of computationally difficult set covering 
problems that arise from computing the l-width of 
the incidence matrix of Steiner triple systems. We 
have found better solutions than the currently best- 
known solutions for two large test problems. 

1 Introduction 
Set Covering Problems (SCPs) [5] are difficult zero- 
one optimization problems. They are often encoun- 
tered in a wide area of applications such as resource 
allocation [12] and scheduling [l, 21. 

Fulkerson et al. [5] have given two empirically 
difficult set covering problems arising from S teiner 
triple systems. F'ulkerson et al. suggest that these 
are good problems for evaluating the computational 
efficiency of integer programming and set covering 
algorithms because they have far fewer variables 
than numerous solved problems in literature; how- 
ever, experience shows that they are hard to com- 
pute and verify. 

The @-width of a (0,l)-matrix A is the minimum 
number of columns that can be selected from A such 
that all row sums of the resulting submatrix of A are 
at least p. Here /3 is an integer parameter ranging 
from zero to the smallest row sum of the matrix A. 
The l-width of A is: 

w(A)  = mineTz 

subject to Ax 2 e,, (1) 

z E (0, 1 Y ,  
where e,, is an n-vector of ones and e,,, an m-vector 
of ones. The l-width is a set covering problem. The 
incidence matrix A that arises from Steiner triple 
systems has precisely 3 ones in each row. This ma- 
trix is also characterized as follow: for every pair of 
columns j and IC there is exactly one row i for which 
aij = a;k = 1. The incidence matrix of Steiner triple 
systems can be constructed by a recursive formula- 
tion 151. 

computational experience with Ag, A15, A27 and 
A45. They are able to solve A9 with a cutting plane 
code after generating 44 cuts, but this cutting plane 
method is unsuccessful on the three larger prob- 
lems. In contrast, using an implicit enumeration 
algorithm similar to one developed by Geoffrion [6], 
they are able to solve A15 and by further inspecting 
the optimal solution, A27 can be solved in reason- 
able computer time. But several attempts at solv- 
ing the problem A45 fail. Table 1 summarizes sev- 
eral instances of the Steiner triple systems, showing 
that the sizes of optimal covers are known for few 
of them. 

F'ulkerson, Nemhauser and Trotter [5] d' lSCUSS 

2 Related Works 
Karmarkar [8] gives an interior-point approach to 
solving 0-1 integer programming problems. Such 
problems, which are NP-complete in general, are 
converted to nonconvex quadratic programs over 
polytopes. He experiments with the Steiner triple 
systems using his approach in [9] and produces the 
best known covers for all test instances. Because 
of nonconvex programming, some local optima 
may be encountered during solution and the effect 
caused by the local optima becomes much more se- 
rious as the problem size is larger. This fact can 
be found from his result that his approach takes 
only about 6 minutes for problem As1 while over 
56 hours and 226 hours for problems A135 and A243 
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respectively. 
Fe0 and Resende [4] pursue a non-deterministic 

method for solving the difficult Steiner triple sys- 
tems. The procedure is based on Chvatal’s itera- 
tive cost to  benefit greedy approach [3]. In order 
to improve upon ChvStal’s heuristic they introduce 
randomization. This heuristic also provides the best 
known solutions to all instances attempted in liter- 
ature. However, our results are better than those of 
Fe0 and Resende. 

Liepins et al. [IO, 111 investigate genetic algo- 
rithms for set covering problems with two types 
of crossover operators in conjunction with three 
penalty functions and two multi-objective formula- 
tions. They do not experiment on the Steiner triple 
systems. Their results are encouraging and point to 
the greedy crossower, tight upper bounds for cost of 
completion of covers (as a penalty function P3) ,  and 
Pareto based selection of the gene pool as promising 
techniques. 

3 A GA for Set Covering Prob- 
lems 

Genetic Algorithms (GAS) are search and optimiza- 
tion algorithms based on the mechanics of natural 
selection and natural genetics. The genetic search 
proceeds over a number of generations. “Survival 
of the fittest” provides the pressure for populations 
to  develop increasingly fit individuals. The primary 
monograph on the topic is Holland’s [7] Adaptation 
in Natural and Artificial Systems. Having been es- 
tablished as a valid approach to  problems requiring 
efficient and effective search, genetic algorithms are 
now finding more widespread applications in busi- 
ness, scientific, and engineering. 

In order to apply GAS to a particular problem, 
we first need to  select an internal string representa- 
tion for the solution space. Set covering problems 
seem to have a highly desirable string representa- 
tion, namely, binary strings of length N in which 
the j - th  bit represents whether the j - t h  set Pj is 
in the cover or not. Further implementation of our 
approach is described below. 

Selection Strategy 

The purpose of selection in a genetic algorithm is to 
give more reproductive chances to those population 
members that are better fit. Our mechanism for 
selective pressure is the linear function described 

by Whitley [15]. 

index = POPULATION-SIZE x 
(bias - sqrt(bias x bias - 4.O(bias - 1 )  x random())) 
/2.0/(bias - 1 ) .  

( 2 )  
where the function random() returns a random frac- 
tion between 0 and 1. A bias of 1.5 implies that the 
top ranked individual in the population is 1.5 times 
more likely to reproduce (on one reproductive cycle) 
than the median individual in the population. 

Crossover Operator 

Instead of Liepins’ greedy crossover we adopt the 
uniform crossover operator proposed by Syswerda 
[14]. Syswerda suggests that the probability of 1’s 
in the mask string be 0.5. But we find that prob- 
ability of 0.6 results in better performance for our 
algorithms. This probability is fixed for all trials. 

Penalty Function 

Richardson et al. [13] suggest that the penalty func- 
tion approach is the most suitable approach for con- 
strained optimization problems such a.s set covering 
problems. Their illustration also convinces us that 
the infeasible solutions should provide information 
and not just be thrown away, especially the “next- 
door neighbors” of the optima in Hamming space. 
In view of this, we define a new penalty function 
P3’ as follows: 

Let A be the incidence matrix of the original set 
covering problem with columns pj and associated 
costs cj. 

P3’: 
If S is a cover, then cost = c c j .  

If S fails to be a cover, then 
JES 

1. Set S‘ to S. Set total-cost to 0. 
2. Strike each column, say p’, in S’ and the 

rows covered by p1 from A. Add the cost 
associated with p’ to the total-cost. Let 
this new matrix be A’ and set A to A’. 

3. For the unused columns and uncov- 
ered rows, calculate the cost-ratios (cost 
1 number-of-rows-uncovered = cj num- 
be r-o f-ro ws-un col iered) . 

4. Append to S’ the column, say p 2 ,  with 
the least cost-ratio (break ties ran- 
domly). Add the cost associated with 
p2  to the total-cost. 

5. Strike column p2 and the rows covered 
by p2 from A. Let this new matrix be 
A’. 
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6. If S' is a cover, return total-cost as the 
cost of S. Otherwise set A to A' and go 
to step 3. 

We note that P3' is more complex than P3 and pro- 
ceeds in a column-by-column manner instead of the 
row-by-row manner of P3. This column-by-column 
manner can estimate the Hamming distance from 
the optimum more accurately. Thus P3' is able to 
collect more information from the neighborhood of 
the optimal solutions. 

Muta t ion  Opera tor  

Richardson et al. [13] not only establish some guide- 
lines for penalty function, they also suggest that 
good search should approach the optima from both 
sides of the feasible/infeasible border. But they do 
not explain clearly how to  approach the optima. 

To achieve this, we propose a mutation opera- 
tor. Our mutation operator first randomly selects 
a bit, say b j ,  from a chromosome and then mutates 
bj  based on some mutation rate. Whether the se- 
lected bit is mutated or not also depends upon the 
feasibility of the chromosome to be applied on. Our 
mutation operator is explained below. Note that we 
assume each cost cj associated with each column j 
is non-negative 2 0). Note that there are two mu- 
tation rates use 6 with our mutation operator. 

0 If the chromosome is feasible, then 

mutation-rate = 0.85. 

mutat ionsate  = 0.1. 

- if bj  = 1 then mutate bj  based on 

- otherwise (i.e., bj = 0), mutate bj based on 

0 If the chromosome is infeasible, then 
- if bj = 0 then mutate b, based on 

- otherwise (i.e., bj = 1) , mutate bj based on 

Our genetic algorithms use the generational replace- 
ment. The best solution is copied into the next gen- 
eration and replaces the worst solution. For all tri- 
als the population size is 80 and the crossover rate 
is 1.0. There are two generation sizes used, 250 and 
400, depending upon the quality of the results. 

mutation-rate = 0.85. 

m u t a t i o n r a t e  = 0.1. 

4 Results and Comparisons 

All empirical experiments are implemented in C and 
the tests are carried out on SUN SPARC Station 2. 
The C compiler is used to  compile the codes with 
- 0 2  optimization level. The computational experi- 
ment tests the genetic algorithms on five set cover- 
ing problems that arise from Steiner triple systems: 

A27, A45, Asl, A135 and A243. These test problems 
are obtained in the same way as in [4] and [9]. 

We compare our genetic algorithm with the 
greedy genetics of Liepins et al. Their main im- 
plementation issues include greedy crossover, 
penalty function P3, and no  mutat ion.  Four 
genetic algorithms were investigated here to com- 
pare relative performance: (1) greedy-p3: greedy 
crossover with penalty function P3, (2) greedy-p3p: 
greedy crossover with penalty function P3', (3) uni- 
form-p3: uniform crossover with penalty function 
P3, and (4) uniform-p3p: uniform crossover with 
penalty function P3'. All do not use mutation. The 
selection strategy used is the linear selection mech- 
anism instead of the Pareto based selection used by 
Leipins et al. 

Table 2 to  Table 5 summarize the computational 
results of the above four genetic formulations on 
problem A27 whose optimal cover size is 18. The 
first row of these tables (i.e., bias) is the bias value 
in equation (2) and takes the values 1.2, 1.4, 1.6, 
1.8 and 2.0. The second row (i.e., stability) is the 
proportion of optima found; i.e., stability means 
that the program meets optima m times in n runs. 
The third row (i.e., least generations) dedicates the 
smallest number of generations when the best so- 
lution is found. The fourth row shows the least 
amount of time required to identify the best solu- 
tion. Below each table there is also shown how many 
generations the corresponding formulation runs and 
the average total time it takes. From these we can 
compare the relative efficiency of all formulations. 

From Table 2 to Table 5 we find that uniform 
crossover is about 10 times faster than greedy 
crossover and can produce more stable results than 
the greedy crossover; thai is, uniform crossover can 
find optima more quickly and easily than greedy 
crossover. In fact the greedy crossover is a little bet- 
ter than the ill-performed ChvAtal's heuristic men- 
tioned in [4]. 

We add our proposed mutation into uniform-p3p, 
resulting in a more complex genetic algorithm- 
mut -uniform-p3p. 

Table 6 summarizes the computational results of 
mut-uniform-p3p on problems A27 to A243. The 
third column denotes the best cover size that 
mut-uniform-p3p finds corresponding to each bias 
value. Please notice that the fourth column (i.e., 
stability) is the proportion of cases when the op- 
timal or best known covers described in Table 1 
are found. The fifth column dedicates the small- 
est number of generations when the best cover is 
found. The sixth row shows the least amount of 
time in which the best solution is identified. Here 
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we set generation size to 400 for problem A81 and 
250 for the others. 

One important fact found in Table 6 is that 
mut-uniform-p3p finds a cover size 104 for A135. 
This cover size is better than the currently best 
known solution 105. Here the stability includes the 
cases when cover size is 104 or 105. But it’s a pity 
that only one such case for 104 occurs in the 10 runs 
when bias is 1.6 or 1.8. Also note that in Table 6 
mut-uniform-p3p finds a cover size 203 for A243. 
This cover size is also better than the currently best 
known solution 204. The stability includes the cases 
when cover size is 203 or 204. But it’s a pity that 
only one such case for 203 occurs in the 10 runs 
when bias is 1.8 or 2.0. Our best solutions for A135 

and A243 are shown in the Appendix. 

5 Discussions 

P3‘ does occasionally have difficulty finding solu- 
tions on smaller bias values. We have found several 
ignored rows (i.e., denoted by X )  in Table 6, indi- 
cating that using penalty function P3’ may produce 
a fittest (least-cost) solution which is not feasible 
at all. However we find that this occurrs only on 
smaller bias values and P3’ consistently finds lower 
cost solutions than P3.  This fact suggests that more 
accurate estimates of the completion cost make bet- 
ter penalties. 

In Table 6 we also find that when solving problem 
A27,  mut-uniform-p3p produces more stable results 
than uniform-p3p in Table 5. That is, our proposed 
mutation operation can increase the stability of uni- 
form-p3p. It is the same for larger problems. 

From Table 6 we discover that 
mut-uniform-p3p found cover sizes which are 
smaller t han  t h e  current ly  best  known sizes 
for bo th  problems A135 and  A243. Compared 
with the results of Karmarkar’s interior-point ap- 
proach, our genetic algorithm is not as seriously af- 
fected by the local optima. The quality of solution 
found is highly related to  the bias value. For ex- 
ample, when solving problem A243, it takes over 8 
hours to find cover size 204 on bias 1.6 while less 
than 4 hours to  find cover size 203 on bias 1.8 and 
2.0. 

6 Conclusions 

In this paper, we have introduced a genetic algo- 
rithm approach for set covering problems. We have 

In addition we demonstrate that uniform crossover 
is more efficient than the greedy crossover. We also 
propose a mutation operator that accelerates the 
convergence to the optimal solutions. 

To illustrate the effectiveness of our resulting al- 
gorithm, mut-uniform-p3p, we apply it to  solve sev- 
eral instances of computationally difficult set cover- 
ing problems. We have found optimal covers for two 
instances, A27 and A45, with known optimal solu- 
tions and the best known covers for instances vary- 
ing in size from 81 variables and 1080 constraints 
to  243 variables and 9801 constraints, i.e., A135 

and A243, while taking much less time than the Kar- 
markar approach experimented on the same set of 
test problems. In addition our genetic algorithm 
can find better solutions than the currently best 
known solutions for the two larger problems. Ear- 
lier best approaches, including mathematical and 
stochastic algorithms, for these two problems were 
always trapped into a worse local optimum. This 
means that the ability of exploration and exploita- 
t ion of genetic algorithms is much better than those 
of traditional optimization algorithms. 

Appendix: 

Best Solution of A135: 

zj = 0, if j E { 3, 13, 14, 17, 23, 28, 34, 36, 48, 52, 
53, 62, 66, 68, 70, 75, 76, 78, 80, 81, 94, 97, 101, 
104, 105, 106, 118, 120, 121, 125, 134 }, optimal 
cover sizez104. 

Our Best Solutions for A135 

and A243 

Best Solution of A243: 

zj = 0, i f j  E { 5, 7, 9, 12, 13, 39,41, 48, 52, 59, 60, 
63, 75, 79, 81, 89, 93, 99, 101, 102, 111, 119, 126, 
129, 136, 143, 155, 194, 196, 200, 203, 209, 221, 
223, 225, 227, 234, 235, 239, 240 }, optimal cover 
size=203. 
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Table 6: Summary of results of mut-uniform-p3p 
- 

least generation to 
find best cover 

least time to 
find best cover 

2 0.24s 
3 0.47s 
4 0.62s 
10 1.29s 
15 1.84s 
124 71.89s 
91 51.08s 
60 33.09s 
46 24.82s 
39 20.61s 
273 16m 33.47s 
142 8m 8.68s 
83 4m 38.27s 
63 3m 26.61s 
73 4m 13.40s 

239 l h  34m 41.73s 
144 51m 39.08s 
126 49m 47.11s 
57 20m 7.73s 

202 
194 8h 17m 31.63s 
93 3h 55m 26.47s 
89 3h 29m 14.57s 

X X 

X X 

Problem bias size of best stability 
cover found 

Ais6 

A z r s  

- G 1.4 105 
104 1.6 

1.8 104 
2.0 105 10 

1.2 X X 

1.4 205 
1.6 204 
1.8 203 - 
2.0 203 10 

- 
Y - 
- 

0 - so 
Y 
- '40 

- 
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