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Abstract 

This paper presents  a n  implemented  navigat ion 
s y s t e m  f o r  mobile  robots in d y n a m i c  environ-  
m e n t s .  In order t o  take  advantage of existing 
knowledge of t h e  world and t o  deal w i t h  u n k n o w n  
obstacles in real t i m e ,  our  s y s t e m  divides m o t i o n  
planning i n t o  global pa th  p lanning  and local re- 
active navigat ion.  T h e  f o r m e r  uses  genet ic  algo- 
rithm m e t h o d s  t o  f ind a collision-free path;  the  
lat ter  is implemented  using neural  ne twork  tech- 
n iques  t o  track the  p a t h  generated by t h e  global 
p lanner  while avoiding u n k n o w n  obstacles o n  t h e  
way .  A s  a result, t h e  s y s t e m  c a n  adapt t o  dy- 
n a m i c  env ironmenta l  changes. Our ezper iments ,  
both in s imula t ion  and  o n  a real robot, showed 
t h a t  t h e  s y s t e m  c a n  f ind a reasonably good free 
p a t h  an a f rac t ion  of t h e  t i m e  n e c e s s a y  t o  f ind  a n  
opt imal  free path ,  and  it c a n  effectively achieve 
its goal configurations wi thout  collision. 

1 Introduction 

A mobile robot accomplishes tasks by moving in the real 
world. M o t i o n  p lanning ,  namely, deciding what motions 
to perform in order to achieve goal arrangements of phys- 
ical objects, is one of the most important capabilities for 
a mobile robot. Although it may seem like a relatively 
simple job for humans, motion planning requires sophis- 
ticated integration of reasoning, perception and control. 
Many techniques for performing path planning and nav- 
igation have been developed over the years. On the one 
hand, most planning methods assume complete knowledge 
of the environment, and they emphasize on finding the 
optimal free paths [14]. On the other hand, navigation 
algorithms often assume that the world is completely un- 
known, and they focus on guaranteeing goal achievement 

and obstacle avoidance [15; 101. There are several existing 
navigation algorithms such as [15] that are complete, i.e. 
they guarantee t o  find a collision-free path in unknown 
environments if such paths exist. However, the resulting 
paths usually involve much extra tracking of the obstacles 
since prior knowledge about the obstacles were not taken 
into consideration. 

In reality, a mobile robot operates in a world with both 
static and dynamic properties. In order to take advan- 
tage of exiting knowledge of the world and t o  deal with 
unknown obstacles in real time, our system divides mo- 
tion planning into global p a t h  p lanning  and local reactive 
navigation. The former finds a collision free path; the lat- 
ter tracks the path generated by the global planner while 
avoiding unknown obstacles on the way. Due to  the dy- 
namic nature of the world, it is meaningless to spend too 
much time finding an optimal path that will be aban- 
doned whenever any unknown obstacle is encountered. 
The global planner should search for a feasible path ef- 
ficiently, and then incrementally refines and optimizes the 
path if time permits. Genetic algorithm was chosen for 
the global path planner, due to its ability to generate a 
reasonably good path in a fraction of the time necessary 
to find an optimal path based on the visibility graph ap- 
proach. The reactive navigation module was implemented 
as a neural network that was trained using examples from 
manually guiding a simulated robot and from running a 
hand-coded navigation and collision-avoidance algorithm. 
As a result, the system can effectively adapt to dynamic 
environmental changes. 

2 System Architecture 

The overall architecture of the two-phase navigation sys- 
tem is shown in Figure 1. Given an arbitrary initial point 
and any goal point, the system will start by calling the 
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genetic path planner. The initial collision-free path, con- 
sisting of several subgoal points, is then passed to  the 
navigation module that controls the robot to move along 
the planned path. If there is any unknown obstacle in the 
way while executing the task, the navigation controller will 
react to the environment based on its sensor readings in 
order to avoid collision. When the obstruction is cleared, 
the system will continue to achieve the task by moving to 
the nearest subgoal point on the originally planned path. 

Figure 1: Two-Phase Navigation System Architecture 

3 Global Genetic Path Planner 

There are many path planning methods that can generate 
a collision-free path for a robot to move from its initial 
position to its goal position on a given map [7]. One of 
the earliest methods is visibility graph, which has been 
widely used for mobile robots [14]. The principle idea is 
to construct a semi-free path composed of line segments 
connecting the initial point to the goal through vertices 
of obstacles. Constructing the visibility graph requires 
O(n3) time, where n is the total number of vertices of 
obstacles [9]. The standard A' algorithm, with the Eu- 
clidean distance as the heuristic evaluation function, can 
guarantee finding the shortest path if one exists. How- 
ever, finding the optimal path may be unnecessary if a 
robot has to modify its path in order to avoid collisions 
with unknown obstacles. Insteadiing of spending a lot of 
time finding the shortest path that will be changed later, 
it is a better idea to find a reasonable path quickly in a 
dynamic environment. 

Genetic algorithms are an effective parallel search tech- 
nique [3], and it can be used to find a collision-free path on 
a visibility graph within a relatively short time. In addi- 

tion, given more time, a genetic algorithm can refine the 
current solutions incrementally in search of the optimal 
solution. The proposed architecture uses a modified SGA 
(simple genetic algorithm) that can manipulate variable- 
length strings necessary to represent robot paths in the 
search process. 

3.1 Genetic representation 

Given a map containing all known objects in the envi- 
ronment, the planner assigns a number to each vertex of 
the obstacles, the initial point, and the goal point. A path 
consists of a sequence of vertices from the starting point to 
the end point. Each chromosome corresponds to a path 
represented by a sequence of numbers. Variable-length 
strings are used to represent chromosomes in order to deal 
with paths of arbitrary lengths. A population is then de- 
fined as a set of variable-length strings. For example, "pi : 
I 8 6 5 15" denotes a chromosome representing a path 
from point 1 to point 15 through vertices 8, 6, and 5. 

3.2 Reproduction operators 

Two reproduction operators, crossover and mutation, are 
used by the genetic planner. 

Crossover Given two parent strings from the current 
population, crossover is achieved by choosing a crossover 
point (denoted by @) and then swapping the substrings 
from both parents about the chosen point. Since the 
lengths of any two parent strings may be different, the 
crossover point is chosen based on the shorter string. 
By swapping the substrings of numbers following the 
crossover point, two new strings are created. A number 
may appear more than once in a new string created this 
way, indicating a loop in the corresponding path. In this 
case, the redundant numbers are removed. For example, 
consider two parent strings A I  and A2: 

parent A I :  I 8 6 @ 5 7 15 
parent A2: I 4 3 @I 6 15 
child C l  : I 8 6 15 
child C2 : I 4 3 5 7 15 

Mutation Three mutation operators are defined: 
replace,  add and de le te .  The replace operator updates 
a number with a new random number as defined in SGA. 
The add and delete operators are specially designed for 
this application. Add inserts the number corresponding to 
an arbitrary vertex into a randomly selected place; d e l e t e  

removes a randomly selected number except the first and 
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last numbers. As a result, new individuals of variable 
length can be generated, The results of the mutation op- 
erators on a chromosome (the point at which mutations 
take place is indicated by *) are shown below: 

Current: 1 8 6 f 5 7 15 
Replace: 1 8 6 2 7 15 
Add : 1 8 6 4 5 7 1 5  
Delete : 1 8 6 7 15 

3.3 Natural selection 

The genetic planner uses a combination of the standard 
roulette wheel parent selection technique and the elitist 
strategy. The random selection technique dictates that 
an individual chromosome's chance of being selected is 
proportional to its fitness. On the other hand, the elitist 
strategy copies the fittest individual(s) into the new gen- 
eration in order to avoid losing the best chromosome(s) of 
the old generation by accident. 

3.4 Fitness function 

There are two criteria for deciding the quality of a candi- 
date path: the percentage of free segments and the overall 
path length. Given two vertices vi and v, ,  the path seg- 
ment between them is free if and only if the straight line 
";vj does not intersect with any obstacles, and the path 
length is defined as the Euclidean distance between .y. and 
v j .  The Euclidean distance of a chromosome is the sum- 
mation over path length of every segment in the path. 

Given a chromosome z in the population, its fitness 
evaluation function is defined as the weighted sum of these 
two criteria as follows: 

where p ( z )  is the percentage of free segments in z, Pma2 is 
maxi p ( z i )  in the current population, d ( z )  is the Euclidean 
distance of the chromosome z, and Dma2 is max;d(zi) 
in the current population. Maximizing fitness therefore 
entails finding individuals with freest path and shortest 
path length. Tuning the relative weight of these two cri- 
teria plays an important role in finding a good quality 
path within a short time. At the beginning, the weight 
is set to be high in order to gather more feasible paths 
in the population. Once a free path has been found, the 
weight is decreased gradually so that the search will fo- 
cus more on finding the shortest paths. The strategy is 
based on two observations. First, the path between two 

vertices that are closest together is not always collision- 
free. Secondly, once a population contains enough free 
paths, future generations will continue to be mostly free. 
The process terminates when the relative error of two gen- 
erations is below a threshold value. If the fitness of the 
resulting population is not satisfactory, i.e. a local max- 
imum, the system should increase the mutation rate and 
continue the process. 

3.5 Tabling 

In general, the cost of path planning is dominated by the 
cost of constructing the visibility graph, which requires 
O(n3) in a straightforward implementation [9]. Given the 
assumption that the world may change dynamically, the 
genetic planner is only interested in finding a good path 
rather than the optimal path. I t  is therefore not neces- 
sary to construct the complete visibility graph in advance. 
In the proposed architecture, the visibility graph is gener- 
ated incrementally at run time. The freeness and distance 
between any pair of vertices are recorded in two separate 
tables in order to reduce repeated computation. 

3.6 Performance analysis 

The performance of the genetic path planner (GA) was 
compared with that of the visibility graph using A* 
search method (VG). Two criteria were evaluated: the 
time to find a path and the distance of the resulting 
path. The results are shown in Table 1. Each col- 
umn of the table records the average performance of VG 
and GA over ten randomly generated maps, each with n 
numbers of obstacles. The experiment was repeated for 
n=10,12,14,16,18,20. In comparison with GA, the time 
required by GV grows rapidly as the number of obsta- 
cles increases, while the resulting distance is only slightly 
shorter than that of GA. As a result, GA can better cope 
with real-time requirements when the number of obstacles 
is large. 

Table 1: Performance Comparison 
* Time is mearured in 0.01 second 
* Distance is measured in 0.1 inch 
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4 Local NN Navigation System 

The local navigation module extracts features from raw 
sensor data. The processed data are then used as input 
patterns to the neural network controller that selects an 
appropriate action for the robot to perform in response 
to the current sensor readings. Figure 2 shows the overall 
operation cycle. 

size of State is 43 with the infrared data being stored in 
StateCil to StateC161 and the sonar data being stored 
in Statecl71 to StateC321. Figure 4 illustrates the or- 
ganization of the infrared and sonar regions on the robot. 
In addition, the current position coordinates 2, y can be 

Sensor Data Preprocessing 

Input 
Pattern 

Action Command NN Navigation 

L I 

Figure 2: Operation cycle of the NN Controller 

4.1 Robot hardware configuration 

The Nomad 200 mobile robot used in our experiments is 
shown in Figure 3. It is composed of a circular omni- 
directional three-wheeled base and four sensory modules 
including infrared, ultrasonic, and tactile sensors, as well 
as a 2D laser ranger. 

- 

Figure 3: The Nomad 200 mobile robot. 

Figure 4: Sensor organization 

found in State1341 and State1351, the steering angle 
of the robot is in Statec361; and the bumper state is in 
State1331 (State1331 # 0 indicates that the robot has 
collided with some objects.). 

4.2 Preprocessing of sensor data 

Due to the large amount of sensor data, it is necessary to 
preprocess the data in order to  minimize network topology 
as well as training time. The mobile robot uses infrared 
for short-range object detection and sonar for long-range 
object detection, which complement each other. Based on 
the circular arrangement of the sensors, obstacle avoidance 
and boundary tracing were implemented by segmenting 
the space around the robot into relevant sensory regions 
(see Figure 5) .  The area in front of the robot was divided 

In this research, only the first three modules were used. 
The infrared module consists of a ring of 16 sensors each 
of which returns a value from 0 to 30 inches. The ul- 
trason module consists of a ring of 16 sensors each of 
which returns a value from 17 to 255 inches. The sensor 
data is returned through an array variable - State. The 

Figure 5: Classification of sensor regions 

into tworegions: the danger zone and the safetysone. The 
zone dividing threshold of 20 inches was derived from the 
robot’s velocity and the minimumsonar range of Illinchea. 
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- - It guarantees that at  least a subset of sensor data will be 
available before reaching an obstacle, thus decreasing the 
probability of any collision. 

There are a total of 10 inputs to the neural network 
controller. Each input indicates a specific feature in the 
environment. Each input can be defined by a combination 

+ o  
Parallel_to-lcff_obstacle fl 

0 
Parallel-to>&-obstacle 

of sonar, infrared and bumper data in the following way. 

Frontsafehy_sonardetection: This input feature 
indicates if the front is clear based on sonar sensors. That 
is , 

Frontsafehyinfrareddetection: This input fea- 
ture indicates that the front is clear based on infrared 
sensors. That is, 

Figure 6: Parallel to obstacle 

moving into an obstacle, as is shown in Figure 6.  The 
input features can be defined as O if mini=1,2,3,15,16(State[i]) < 20 or 

I 2  = [ mini=4,14(State[i]) 5 6 
( 1 otherwise 

The second condition for the “0” case is necessary because 
the robot is not a point robot, and it may bump into 
obstacles on the side even if the front sensors do not detect 

I s = {  

any obstacle. I6  = 

1 

0 otherwise 

’ 1 

if min;=l2,l,l4(State[i]) < 20 and 
mini,g,lo,ll(State[i]) 2 20 

if mini=r,s,s(state[i]) < 20 and 
mini,.r,s,g(state[i]) 2 20 

0 otherwise 

0 b s t a c l e i n r i g h t  d a n g e r l o n e  A w a y f r o m r i g h t a b s t  acle 
Obstacleinleftdangersone: Intuitively, the mobile Awayfromleft-obstacle: These two input features 
robot are used to signal that the obstacle on the right (left) 

in Figure 7, After getting away from the obstacles, the 

toward areas with fewer 
When Obstacle are detected by the front we must side is no longer blocking the way. The situation is shown 
check whether they fall more within the left side or the 
right side of the danger zone. We define two scores to 
estimate the distance to obstacle(s1 on the left and right 

In addition, goal attraction can be taken into considera- LJ W 
tion. If the goal is toward the right side of the robot, then 
increment R; otherwise increment L. The inputs are then 

Away-from-right-obrtaclc Awry-from-le ft-obstacle 

defined as: 
0 i f R 2  L; 
1 otherwise 

Figure 7: Away from obstacle 

0 if L > R; system should check if the distance to goal has increased 
1 otherwise since obstacle avoidance last started. If so, the robot 

should stroll along the obstacles until the distance to goal 
is shorter than or equal to the original distance. Input 7 
references sonar 19, 20, 2 1  and infrared 6, 7, 8; input 8 
references sonar 29, 30, 31 and infrared 10, 11, 12. 

Parallel-toright -obstacle 
Parallel-toleft-obstacle: These two features describe 
if the robot is parallel to some obstacle on either side. 
Either input is on if the robot is in potential danger of 

31 0 



Bumper: This input, which references the tactile sensor 
data in S t a t e  C331, is set to be on whenever the robot has 
bumped into any obstacles. Otherwise, it is off. 

Direction: When the robot has rotated to the direction 
of the goal, this input becomes on. Otherwise, it remains 
Off. 

4.3 Network topology 

The local navigation controller was implemented as a 
three-layer neural network with one hidden layer. The 
topology is shown in Figure 8. Based on the input defi- 
nitions in the previous section, there are 10 input nodes, 
17 hidden nodes and 6 output nodes. Each node of the 

vl.l 

17 neurons 

Figure 8: The topology of navigation controller 

output layer dictates a specific action for the robot to per- 
form. Multiple output nodes may be on at the same time. 
The six output actions of the navigation controller are 
explained below: 

1. Orientdogoal: 
Rotate to the direction of the goal. 

2. Moveforward: 
Move in the current direction for a fixed distance. 

3. Movebackward: 
Move opposite the current direction for a fixed dis- 

tance. 

4. Turn-Left: 
Rotate counter-clockwise for a fixed angle. 

5. TurnRight: 

6. Stop: Terminate all actions. 

Rotate clockwise for a fixed angle. 

4.4 The training process 

A set of 60 training examples were collected automatidly 
by operating the mobile robot in the simulator using a 
hand-coded collision avoidance program. The standard 
backpropagation method is used to  train the navigation 
controller. The learning algorithm from [12; 4; 81 was 
used: 

8E 
W(t  + 1) = W(t )  - €- + a(W(t) - W(t  - 1)) a w l  

where 
W(t  + 1) 
W(t )  
W(t  - 1) 
E 
€ : learning rate; 
a : momentum term. 

: weight at time t + 1; 
: weight at time t; 
: weight at time t - 1; 
: sum of square error; 

The learning rate and the momentum term were fixed in 
the entire training process. The number of hidden lay- 
ers and nodes were determined through a series of ex- 
periments. Once the topology was designed, the training 
process took approximately 12 hours on a PC 386. The 
weights converged to a mean square error of less than 0.011 
after about training 15000 cycles (60 patterns for each cy- 
cle). Figure 9 shows how the mean square error converged 
during the training process. 

0.10 

0.08 

0.06 

0.04 

0.02 

0 
0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 *I( 

Figure 9: The learning curve in the training phase 
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Figure 10: Simulation result 1 

Figure 11: Simulation result 2 

5 Simulation Results 

The trained neural network waa tested on the simulator 
using randomly generated environments. Our experiments 
showed that given an arbitrary map with unknown obet& 
cles, the robot can get to its destination successfully for 
about 90% of the time. The success rate can be improved 
if the clearance (as defined by the safety zone) on the 
side is reduced. Figures 10, 11 and 12 show the robot 
traces from several simulation runs. In these figures, the 
filled objects are assumed to be known in advance and 
the outlined objects represent unknown obstacles. The 
thin line indicates the path generated by the genetic path 
planner and the thick line is the actual robot trajectory. 
In addition, the performance of the hand coded collision 
avoidance program and the neural network controller are 
compared. As shown in Figure 13, our system outper- 
formed the hand-coded program in most situations. 

Figure 12: Simulation result 3 

m -  

i,- 

Figure 13: Sample comparison of hand-coded (left) and 
neural networks (right) collision avoidance navigation. 

31 2 



6 Conclusion [8] R. Lippmann, "An introduction to  computing with 
IEEE ASSP Magazine, 4:4-22, 

In this paper, we have presented an implemented naviga- 
tion system that can effectively achieve its goal configu- 
rations in a partially known environment with unknown 
obstacles. The global path planner uses genetic algorithms 
to search for a colliiion-free path on the visibility graph 
constructed among known obstacles. The local reactive 
navigator tracks the path while avoiding unknown obsta- 
cles using a neural network that maps run-time sensory 
information into the appropriate action(s). Our empirical 
data showed that the GA path planner can find a near- 
optimalfree path in less time than the standard A* search. 
The quality of the path is proportional to the amount of 
time available at the planning stage. The neural network 
controller reacts to its sensor data with minimal amount 
of detouring from the planned path. It also outperforms 
the hand-coded collision avoidance program in terms of 

to learn, the two-phase system can successfully adapt to 
changes in the environment. 
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