
A Two-Phase Navigation System for Mobile Robots
in Dynamic Environments

Tsai-Yu Chang, Szu-Wen Kuo and Jane Yung-jen Hsu

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan 106, R.O.C.
yjhsuQcsie.ntu.edu.ta

Abstract

This paper presents a n implemented navigat ion
s y s t e m f o r mobile robots in d y n a m i c environ-
m e n t s . In order t o take advantage of existing
knowledge of t h e world and t o deal w i t h u n k n o w n
obstacles in real t i m e , our s y s t e m divides m o t i o n
planning i n t o global pa th p lanning and local re-
active navigat ion. T h e f o r m e r uses genet ic algo-
rithm m e t h o d s t o f ind a collision-free path; the
lat ter is implemented using neural ne twork tech-
n iques t o track the p a t h generated by t h e global
p lanner while avoiding u n k n o w n obstacles o n t h e
way . A s a result, t h e s y s t e m c a n adapt t o dy-
n a m i c env ironmenta l changes. Our ezper iments ,
both in s imula t ion and o n a real robot, showed
t h a t t h e s y s t e m c a n f ind a reasonably good free
p a t h an a f rac t ion of t h e t i m e n e c e s s a y t o f ind a n
opt imal free path , and it c a n effectively achieve
its goal configurations wi thout collision.

1 Introduction

A mobile robot accomplishes tasks by moving in the real
world. M o t i o n p lanning , namely, deciding what motions
to perform in order to achieve goal arrangements of phys-
ical objects, is one of the most important capabilities for
a mobile robot. Although it may seem like a relatively
simple job for humans, motion planning requires sophis-
ticated integration of reasoning, perception and control.
Many techniques for performing path planning and nav-
igation have been developed over the years. On the one
hand, most planning methods assume complete knowledge
of the environment, and they emphasize on finding the
optimal free paths [14]. On the other hand, navigation
algorithms often assume that the world is completely un-
known, and they focus on guaranteeing goal achievement

and obstacle avoidance [15; 101. There are several existing
navigation algorithms such as [15] that are complete, i.e.
they guarantee t o find a collision-free path in unknown
environments if such paths exist. However, the resulting
paths usually involve much extra tracking of the obstacles
since prior knowledge about the obstacles were not taken
into consideration.

In reality, a mobile robot operates in a world with both
static and dynamic properties. In order to take advan-
tage of exiting knowledge of the world and t o deal with
unknown obstacles in real time, our system divides mo-
tion planning into global p a t h p lanning and local reactive
navigation. The former finds a collision free path; the lat-
ter tracks the path generated by the global planner while
avoiding unknown obstacles on the way. Due to the dy-
namic nature of the world, it is meaningless to spend too
much time finding an optimal path that will be aban-
doned whenever any unknown obstacle is encountered.
The global planner should search for a feasible path ef-
ficiently, and then incrementally refines and optimizes the
path if time permits. Genetic algorithm was chosen for
the global path planner, due to its ability to generate a
reasonably good path in a fraction of the time necessary
to find an optimal path based on the visibility graph ap-
proach. The reactive navigation module was implemented
as a neural network that was trained using examples from
manually guiding a simulated robot and from running a
hand-coded navigation and collision-avoidance algorithm.
As a result, the system can effectively adapt to dynamic
environmental changes.

2 System Architecture

The overall architecture of the two-phase navigation sys-
tem is shown in Figure 1. Given an arbitrary initial point
and any goal point, the system will start by calling the

306

genetic path planner. The initial collision-free path, con-
sisting of several subgoal points, is then passed to the
navigation module that controls the robot to move along
the planned path. If there is any unknown obstacle in the
way while executing the task, the navigation controller will
react to the environment based on its sensor readings in
order to avoid collision. When the obstruction is cleared,
the system will continue to achieve the task by moving to
the nearest subgoal point on the originally planned path.

Figure 1: Two-Phase Navigation System Architecture

3 Global Genetic Path Planner

There are many path planning methods that can generate
a collision-free path for a robot to move from its initial
position to its goal position on a given map [7]. One of
the earliest methods is visibility graph, which has been
widely used for mobile robots [14]. The principle idea is
to construct a semi-free path composed of line segments
connecting the initial point to the goal through vertices
of obstacles. Constructing the visibility graph requires
O(n3) time, where n is the total number of vertices of
obstacles [9]. The standard A' algorithm, with the Eu-
clidean distance as the heuristic evaluation function, can
guarantee finding the shortest path if one exists. How-
ever, finding the optimal path may be unnecessary if a
robot has to modify its path in order to avoid collisions
with unknown obstacles. Insteadiing of spending a lot of
time finding the shortest path that will be changed later,
it is a better idea to find a reasonable path quickly in a
dynamic environment.

Genetic algorithms are an effective parallel search tech-
nique [3], and it can be used to find a collision-free path on
a visibility graph within a relatively short time. In addi-

tion, given more time, a genetic algorithm can refine the
current solutions incrementally in search of the optimal
solution. The proposed architecture uses a modified SGA
(simple genetic algorithm) that can manipulate variable-
length strings necessary to represent robot paths in the
search process.

3.1 Genetic representation

Given a map containing all known objects in the envi-
ronment, the planner assigns a number to each vertex of
the obstacles, the initial point, and the goal point. A path
consists of a sequence of vertices from the starting point to
the end point. Each chromosome corresponds to a path
represented by a sequence of numbers. Variable-length
strings are used to represent chromosomes in order to deal
with paths of arbitrary lengths. A population is then de-
fined as a set of variable-length strings. For example, "pi :
I 8 6 5 15" denotes a chromosome representing a path
from point 1 to point 15 through vertices 8, 6, and 5.

3.2 Reproduction operators

Two reproduction operators, crossover and mutation, are
used by the genetic planner.

Crossover Given two parent strings from the current
population, crossover is achieved by choosing a crossover
point (denoted by @) and then swapping the substrings
from both parents about the chosen point. Since the
lengths of any two parent strings may be different, the
crossover point is chosen based on the shorter string.
By swapping the substrings of numbers following the
crossover point, two new strings are created. A number
may appear more than once in a new string created this
way, indicating a loop in the corresponding path. In this
case, the redundant numbers are removed. For example,
consider two parent strings A I and A2:

parent A I : I 8 6 @ 5 7 15
parent A2: I 4 3 @I 6 15
child C l : I 8 6 15
child C2 : I 4 3 5 7 15

Mutation Three mutation operators are defined:
replace, add and de le te . The replace operator updates
a number with a new random number as defined in SGA.
The add and delete operators are specially designed for
this application. Add inserts the number corresponding to
an arbitrary vertex into a randomly selected place; d e l e t e

removes a randomly selected number except the first and

307

last numbers. As a result, new individuals of variable
length can be generated, The results of the mutation op-
erators on a chromosome (the point at which mutations
take place is indicated by *) are shown below:

Current: 1 8 6 f 5 7 15
Replace: 1 8 6 2 7 15
Add : 1 8 6 4 5 7 1 5
Delete : 1 8 6 7 15

3.3 Natural selection

The genetic planner uses a combination of the standard
roulette wheel parent selection technique and the elitist
strategy. The random selection technique dictates that
an individual chromosome's chance of being selected is
proportional to its fitness. On the other hand, the elitist
strategy copies the fittest individual(s) into the new gen-
eration in order to avoid losing the best chromosome(s) of
the old generation by accident.

3.4 Fitness function

There are two criteria for deciding the quality of a candi-
date path: the percentage of free segments and the overall
path length. Given two vertices vi and v, , the path seg-
ment between them is free if and only if the straight line
";vj does not intersect with any obstacles, and the path
length is defined as the Euclidean distance between .y. and
v j . The Euclidean distance of a chromosome is the sum-
mation over path length of every segment in the path.

Given a chromosome z in the population, its fitness
evaluation function is defined as the weighted sum of these
two criteria as follows:

where p (z) is the percentage of free segments in z, Pma2 is
maxi p (z i) in the current population, d (z) is the Euclidean
distance of the chromosome z, and Dma2 is max;d(zi)
in the current population. Maximizing fitness therefore
entails finding individuals with freest path and shortest
path length. Tuning the relative weight of these two cri-
teria plays an important role in finding a good quality
path within a short time. At the beginning, the weight
is set to be high in order to gather more feasible paths
in the population. Once a free path has been found, the
weight is decreased gradually so that the search will fo-
cus more on finding the shortest paths. The strategy is
based on two observations. First, the path between two

vertices that are closest together is not always collision-
free. Secondly, once a population contains enough free
paths, future generations will continue to be mostly free.
The process terminates when the relative error of two gen-
erations is below a threshold value. If the fitness of the
resulting population is not satisfactory, i.e. a local max-
imum, the system should increase the mutation rate and
continue the process.

3.5 Tabling

In general, the cost of path planning is dominated by the
cost of constructing the visibility graph, which requires
O(n3) in a straightforward implementation [9]. Given the
assumption that the world may change dynamically, the
genetic planner is only interested in finding a good path
rather than the optimal path. I t is therefore not neces-
sary to construct the complete visibility graph in advance.
In the proposed architecture, the visibility graph is gener-
ated incrementally at run time. The freeness and distance
between any pair of vertices are recorded in two separate
tables in order to reduce repeated computation.

3.6 Performance analysis

The performance of the genetic path planner (GA) was
compared with that of the visibility graph using A*
search method (VG). Two criteria were evaluated: the
time to find a path and the distance of the resulting
path. The results are shown in Table 1. Each col-
umn of the table records the average performance of VG
and GA over ten randomly generated maps, each with n
numbers of obstacles. The experiment was repeated for
n=10,12,14,16,18,20. In comparison with GA, the time
required by GV grows rapidly as the number of obsta-
cles increases, while the resulting distance is only slightly
shorter than that of GA. As a result, GA can better cope
with real-time requirements when the number of obstacles
is large.

Table 1: Performance Comparison
* Time is mearured in 0.01 second
* Distance is measured in 0.1 inch

I 7L II

308

I

4 Local NN Navigation System

The local navigation module extracts features from raw
sensor data. The processed data are then used as input
patterns to the neural network controller that selects an
appropriate action for the robot to perform in response
to the current sensor readings. Figure 2 shows the overall
operation cycle.

size of State is 43 with the infrared data being stored in
StateCil to StateC161 and the sonar data being stored
in Statecl71 to StateC321. Figure 4 illustrates the or-
ganization of the infrared and sonar regions on the robot.
In addition, the current position coordinates 2, y can be

Sensor Data Preprocessing

Input
Pattern

Action Command NN Navigation

L I

Figure 2: Operation cycle of the NN Controller

4.1 Robot hardware configuration

The Nomad 200 mobile robot used in our experiments is
shown in Figure 3. It is composed of a circular omni-
directional three-wheeled base and four sensory modules
including infrared, ultrasonic, and tactile sensors, as well
as a 2D laser ranger.

-

Figure 3: The Nomad 200 mobile robot.

Figure 4: Sensor organization

found in State1341 and State1351, the steering angle
of the robot is in Statec361; and the bumper state is in
State1331 (State1331 # 0 indicates that the robot has
collided with some objects.).

4.2 Preprocessing of sensor data

Due to the large amount of sensor data, it is necessary to
preprocess the data in order to minimize network topology
as well as training time. The mobile robot uses infrared
for short-range object detection and sonar for long-range
object detection, which complement each other. Based on
the circular arrangement of the sensors, obstacle avoidance
and boundary tracing were implemented by segmenting
the space around the robot into relevant sensory regions
(see Figure 5) . The area in front of the robot was divided

In this research, only the first three modules were used.
The infrared module consists of a ring of 16 sensors each
of which returns a value from 0 to 30 inches. The ul-
trason module consists of a ring of 16 sensors each of
which returns a value from 17 to 255 inches. The sensor
data is returned through an array variable - State. The

Figure 5: Classification of sensor regions

into tworegions: the danger zone and the safetysone. The
zone dividing threshold of 20 inches was derived from the
robot’s velocity and the minimumsonar range of Illinchea.

309

- - It guarantees that at least a subset of sensor data will be
available before reaching an obstacle, thus decreasing the
probability of any collision.

There are a total of 10 inputs to the neural network
controller. Each input indicates a specific feature in the
environment. Each input can be defined by a combination

+ o
Parallel_to-lcff_obstacle fl

0
Parallel-to>&-obstacle

of sonar, infrared and bumper data in the following way.

Frontsafehy_sonardetection: This input feature
indicates if the front is clear based on sonar sensors. That
is ,

Frontsafehyinfrareddetection: This input fea-
ture indicates that the front is clear based on infrared
sensors. That is,

Figure 6: Parallel to obstacle

moving into an obstacle, as is shown in Figure 6. The
input features can be defined as O if mini=1,2,3,15,16(State[i]) < 20 or

I 2 = [mini=4,14(State[i]) 5 6
(1 otherwise

The second condition for the “0” case is necessary because
the robot is not a point robot, and it may bump into
obstacles on the side even if the front sensors do not detect

I s = {

any obstacle. I6 =

1

0 otherwise

’ 1

if min;=l2,l,l4(State[i]) < 20 and
mini,g,lo,ll(State[i]) 2 20

if mini=r,s,s(state[i]) < 20 and
mini,.r,s,g(state[i]) 2 20

0 otherwise

0 b s t a c l e i n r i g h t d a n g e r l o n e A w a y f r o m r i g h t a b s t acle
Obstacleinleftdangersone: Intuitively, the mobile Awayfromleft-obstacle: These two input features
robot are used to signal that the obstacle on the right (left)

in Figure 7, After getting away from the obstacles, the

toward areas with fewer
When Obstacle are detected by the front we must side is no longer blocking the way. The situation is shown
check whether they fall more within the left side or the
right side of the danger zone. We define two scores to
estimate the distance to obstacle(s1 on the left and right

In addition, goal attraction can be taken into considera- LJ W
tion. If the goal is toward the right side of the robot, then
increment R; otherwise increment L. The inputs are then

Away-from-right-obrtaclc Awry-from-le ft-obstacle

defined as:
0 i f R 2 L;
1 otherwise

Figure 7: Away from obstacle

0 if L > R; system should check if the distance to goal has increased
1 otherwise since obstacle avoidance last started. If so, the robot

should stroll along the obstacles until the distance to goal
is shorter than or equal to the original distance. Input 7
references sonar 19, 20, 2 1 and infrared 6, 7, 8; input 8
references sonar 29, 30, 31 and infrared 10, 11, 12.

Parallel-toright -obstacle
Parallel-toleft-obstacle: These two features describe
if the robot is parallel to some obstacle on either side.
Either input is on if the robot is in potential danger of

31 0

Bumper: This input, which references the tactile sensor
data in S t a t e C331, is set to be on whenever the robot has
bumped into any obstacles. Otherwise, it is off.

Direction: When the robot has rotated to the direction
of the goal, this input becomes on. Otherwise, it remains
Off.

4.3 Network topology

The local navigation controller was implemented as a
three-layer neural network with one hidden layer. The
topology is shown in Figure 8. Based on the input defi-
nitions in the previous section, there are 10 input nodes,
17 hidden nodes and 6 output nodes. Each node of the

vl.l

17 neurons

Figure 8: The topology of navigation controller

output layer dictates a specific action for the robot to per-
form. Multiple output nodes may be on at the same time.
The six output actions of the navigation controller are
explained below:

1. Orientdogoal:
Rotate to the direction of the goal.

2. Moveforward:
Move in the current direction for a fixed distance.

3. Movebackward:
Move opposite the current direction for a fixed dis-

tance.

4. Turn-Left:
Rotate counter-clockwise for a fixed angle.

5. TurnRight:

6. Stop: Terminate all actions.

Rotate clockwise for a fixed angle.

4.4 The training process

A set of 60 training examples were collected automatidly
by operating the mobile robot in the simulator using a
hand-coded collision avoidance program. The standard
backpropagation method is used to train the navigation
controller. The learning algorithm from [12; 4; 81 was
used:

8E
W(t + 1) = W(t) - €- + a(W(t) - W(t - 1)) a w l

where
W(t + 1)
W(t)
W(t - 1)
E
€ : learning rate;
a : momentum term.

: weight at time t + 1;
: weight at time t;
: weight at time t - 1;
: sum of square error;

The learning rate and the momentum term were fixed in
the entire training process. The number of hidden lay-
ers and nodes were determined through a series of ex-
periments. Once the topology was designed, the training
process took approximately 12 hours on a PC 386. The
weights converged to a mean square error of less than 0.011
after about training 15000 cycles (60 patterns for each cy-
cle). Figure 9 shows how the mean square error converged
during the training process.

0.10

0.08

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 *I(

Figure 9: The learning curve in the training phase

31 1

Figure 10: Simulation result 1

Figure 11: Simulation result 2

5 Simulation Results

The trained neural network waa tested on the simulator
using randomly generated environments. Our experiments
showed that given an arbitrary map with unknown obet&
cles, the robot can get to its destination successfully for
about 90% of the time. The success rate can be improved
if the clearance (as defined by the safety zone) on the
side is reduced. Figures 10, 11 and 12 show the robot
traces from several simulation runs. In these figures, the
filled objects are assumed to be known in advance and
the outlined objects represent unknown obstacles. The
thin line indicates the path generated by the genetic path
planner and the thick line is the actual robot trajectory.
In addition, the performance of the hand coded collision
avoidance program and the neural network controller are
compared. As shown in Figure 13, our system outper-
formed the hand-coded program in most situations.

Figure 12: Simulation result 3

m -

i,-

Figure 13: Sample comparison of hand-coded (left) and
neural networks (right) collision avoidance navigation.

31 2

6 Conclusion [8] R. Lippmann, "An introduction to computing with
IEEE ASSP Magazine, 4:4-22,

In this paper, we have presented an implemented naviga-
tion system that can effectively achieve its goal configu-
rations in a partially known environment with unknown
obstacles. The global path planner uses genetic algorithms
to search for a colliiion-free path on the visibility graph
constructed among known obstacles. The local reactive
navigator tracks the path while avoiding unknown obsta-
cles using a neural network that maps run-time sensory
information into the appropriate action(s). Our empirical
data showed that the GA path planner can find a near-
optimalfree path in less time than the standard A* search.
The quality of the path is proportional to the amount of
time available at the planning stage. The neural network
controller reacts to its sensor data with minimal amount
of detouring from the planned path. It also outperforms
the hand-coded collision avoidance program in terms of

to learn, the two-phase system can successfully adapt to
changes in the environment.

neural networks",
1987.

[9] T. Lorano-Pdrea and M.A. Wesley, "An algorithm for
planning collision-free paths among polyhedral obsta-
cles", Communications of the A CM, 22(10):560-570,
1979.

[lo] y. Mae&, M. Tanabe, M. Yuta, and T. T h i ,
Yoichuo Maeda, Minoru Tanabe, Morikasu Yuta,
and Tomohuo Takagi, "Hierarchical control for au-
tonomous mobile robots with behavior-decision fussy
algorithm", Proc. IEEE int. Conf. Robotics and Au-
tomation, pp. 117-122, 1992.

[ll] Maja J. Mataric, "Integration of representation into
goal-driven behavior-based robots" , IEEE %ns. Au-
tomatic Control, 8(3):304-312, 1992.

the resulting path length and time. Due to its ability J.L. McClelland and D.E. Rumelhart, parallel Dis-
tributed Proc,essing, Reading, MIT Press, 1986.

[13] S. Nagata, M. Sekiguchi, and K. Asakawa, "Mobile

Refer en c es
robot control by a structured hierarchical neural net-
work", IEEE l'kans. Automatic Control, pp. 69-76,

[l] Y. Davidor, "A Genetic algorithm Applied to Robot 1990.
Trajectory Generation", PhD dissertation, Imperial
College, London, 1989.

[14] N. J. Nibson, KA Mobile Automaton: An Application
of Artificial Intelligence Techniques", Proceedings of
the 1st International Joint Conference on Artificial
Intelligence, pp.504-520, 1969.

[2] L. Davis, Handbook of Genetic Algorithms, Van NOS-
trand Reinhold, Reading, NY, 1991.

[3] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Leaming, Addison-Wesley,
1989.

[15] A. Sankaranarayanan and M. Vidyasagar, "A new
path planning algorithm for moving a point object
amidst unknown obstacles in a plane : A new al-
gorithm and a general theory for algorithm devel-
opment.", Proc. of 29th IEEE Conf. Robotios and
Automation, pp. 1930-1936, 1990.

[4] D.R. Hush and B.G. Horne, "Progress in supervised
neural networks: What's new since Lippmann?",
IEEE Signal Processing Magazine, pp. 8-39, 1993.

[5] S. Ishikwa, "A method of indoor mobile robot naviga-
tion by using fussy control", Proc. of IEEE Interna-
tional Workshop on Intelligent Robots and Systems,
pp. 1013-1018, Osaka, 1991.

[6] T. Kimoto, D. Masumoto, H. Yamakawa, and S. Nib
gata, "Hierarchical sensory information processing
model with neural networks", Proc. of the 1993 IEEE
International Conference on Robotics and Automa-
tion, 1993.

[7] J .4 . Latombe, Robot Motion Planning, Kluwer Aca-
demic Publishers, 1991.

31 3

