
Proceedings of the 1998 IEEE
international Conference on Robotics & Automation

Leuven, Belgium - May 1998

A New Evolutionary Approach to Developing Neural Autonomous Agents

Jim-Moon Yang, Jomg-Tzong Homg’, and Cheng-Yan Kao

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

*National Central University, Chungli, Taiwan
E-mail: {moon,cykao}@solab.csie.ntu.edu.tw

*E-mail: horng@db.csie.ncu.edu.tw

Abstract
This paper explores the use of neural networks to control robots
in tasks requiring sequential and leaming behavior. We propose
a Family Competition Evolutionary Algorithm (FCEA) to evolve
networks that can integrate these different types of behavior in a
smooth and continuous manner. The approach integrates self-
adaptive Gaussian mutation, self-adaptive Cauchy mutation,
decreasing-based Gaussian mutation, and family competition. In
order to illustrate the power of the approach, we apply this
approach to two different task domains: the “artificial ant”
problem and a sequential behavior problem - an agent learns to
play football. From the experimental results, we find our
approach performs much better than other evolutionary
algorithms in these two tasks. The main contribution of the
paper, based on the results from our experiments, is that our
approach can evolve neural networks to provide a means of
integrating sequencing and learning within a single control
system.

I. Introduction
Traditional knowledge-based AI approaches of constructing
Intelligent robotic systems do not provide satisfactory solutions
in application to dynamic real-world problems. Such systems
have often required enormous computational power to make
control decisions and then to accomplish their tasks. More
serious problem is that these systems must make many
assuniptions about the information that is supplied by the sensor
devices. These systems become useless and unreliable when the
information become invalid. Behavior-based control systems
have been offered as alternative methods to traditional
techniques of designing robotic control systems. Therefore, the
researchers on autonomous robots have focused on behavior-
based robotics [3, 41.

A number of research for behavior-based robotics have
successfully employed evolutionary approaches to develop the
control systems of simulated robots. These adaptive evolutionary
methodologies, including classifier system [19, 5, 61, forward
neural networks [15, 171, recurrent neural networks [8, 13, 16
201, and genetic programming [14], focused on genetic
algorithms (GAS) to extract learning rules or to train the
structures and weights of neural networks. However, GAS have
several disadvantages to train neural networks [I, 181. First,
traditional bit-strings GAS applying to numerical optimization
problems have certain limitations and more inefficient than

Gaussian mutation [9]. Therefore, several research used real
valued to replace the bit-string representation in order to avoid
ill effect [7, 21. Second, both traditional GAS and real valued
GAS employed random mutation that causes a large jump, so
GAS may be insufficient for local tune. Third, GAS depend on
recombination operator heavily but it causes competing
conventions problem [18]. The number of competing
conventions grows exponentially with the number of hidden
units.

A behavior-based robot must possess self-adaptive ability
and tolerate noise in order to adapt its behavior to any changes of
its environment. Connectionist methodology allows the task
demands to avoid the bias of the designer to be the primary force
in shaping the system development. Neural networks are flexible,
robust, and tolerated noise. Combining the evolutionary
algorithm with neural networks can develop a plausible and
powerful system.

The main focus of this article is on developing a new
evolutionary algorithm called Family Competition Evolutionary
Algorithm (FCEA) to train recurrent neural networks for
adaptive robotic control systems. The approach integrates self-
adaptive Gaussian mutation employed in evolution strategies
(ESs) [2], self-adaptive Cauchy mutation, decreasing-based
Gaussian mutation, and family competition. In order to illustrate
the power of our approach, ‘we considered two difierent types of
tasks: the “artificial ant” piroblem and the sequential behavior
problem - an agent learns to play football. Experimental results
indicate that our FCEA outperfonns these evolutionary
approaches. Our FCEA is fast at least ten times of genetic
algorithm and genetic programming.

11. Recurrent Neural Networks
In this paper, the recurrent network is a mutilayer fully

connected with short cut recurrent networks of continuous
sigmoid nodes (Fig. 1). Each hidden node and output node of the
network is govern by the following form:

H

Y, (t) = i I Y k , I k + C W . , ! f (Y] (t - l) - @ l 1 (1)
k =1 J=1

where y, is the state of the neuron; S is number of sensory inputs;
Ik is the output ofthe sensor; H is the number of lhidden nodes;
8 is a bias threshold input; wh and w,, are the strength of the
connection; A.) is standard sigmoidal activation which is given
below.

0-7803-4300-~-5/98 $10.00 0 1998 IEEE 141 1

f (q) = (1 +e-”)-’ (2)
From Equation (1), we know the network maps the current
sensory inputs into all hidden nodes and output nodes. The
hidden nodes are fully connected themselves. This control
network gathers input data from the sensor and determines how
to set actuator outputs for the next step. The initial state of all
neurons is set to zero. The initial weights of all connection and
bias are set to the range [-0.1 ,+0. I] in this paper.

Sensory inputs

Input layer

Hidden layer: fully
connected among
themselves

Output layer

I A ... n

I 1
Actuator outputs

-: short cut : connected tiom input nodes to output nodes directly

Fig. 1. The control network is fully connected with short cut
recurrent networks.

111. The Learning Method
First, FCEA generates a population of Nnetworks, each network
is represented as a quadratic real vector,
(?,, a,, G,, w,) , Vi E (1 ,..., N) . The dimensions corresponding
to the connection weights in the neural network are assume to
m. 2 is the desired optimizing variable vector, i.e., the vector of
connection weights of a network. 5 , V , and I,? are n-
dimensional real vectors that correspond to the strategy variable
parameters of decreasing-based Gussian mutation, self-adaptive
Gaussian mutation, and self-adaptive Cauchy mutation,
respectively. The initial values of each component of
2, Vi E (1 ,..., N} , are ranged over [-0.1,0.1]. The initial values
of 0 , , , and I,?t , Vi E (1 ,..., N} , are set to 4.0, 1 .O, and 1 .0
respectively. To evaluate the fitness score for each
network Xi ,V i E {l, ..., N } , of the population is based on objective
function f (2 ,) . FCEA then enters main evolutionary procedures:
decreasing-based Gaussian mutation stage, self-adaptive Cauchy
mutation stage, and self-adaptive Gaussian mutation stage. Each
stage has four steps: recombination, mutation, family
conipetition and population selection (used in decreasing-based
Gaussian mutation stage) or replacement (used in self-adaptive
mutation stage). The FCEA algorithm is given in Fig. 2.

In order to illustrate the genetic operators, let us denote two
parents as Z = (ia,sa,Pa,Fa) and b = (T , , O , , V , , F b)
respectively, and the generated offspring as F = (2 , ,I?< ~ V , , pc) ,
In the introduction of- recombination operators, we identify two

-

parents as a family parent (a) and a parent (b). In the
following subsection, the symbol, x,” , in this paper denotes j*

connection link of the individual 2 and Vj E {l, ..., m} , where m
is the number of links of a network.

A. Recombination Operators
Modified Discrete Recombination: The child E is

generated by using the following modified discrete
recombination operator.

x,” withprobabilty0.8

x,” withprobabilty0.2
x; = { V ~ E {l, ..., m} (3)

Generally, the original discrete recombination generates a child
that inherits genes from two parents with equal probability. We
modify discrete recombination such that the child inherits genes
from the family parent a with probabilities 0.8 and another
parent b with probability 0.2. That is, a child inherits genes
from the family parent with high higher probability.

BLX-0.5 and Intermediate Recombination: The BLX-0.5
is used successfully in GAS and ESs. It generates a child C
based on Equation (4).

Where p is chosen from uniform distribution in [-0.5, 1.51.
BLX-0.5 is called as intermediate recombination when p is
equal to 0.5. FCEA employed the intermediate recombination in
strategy variables, i.e. 5 , v^ , and 12;. In contrast to strategy
variables, FCEA applied discrete recombination, BLX-0.5, and
intermediate recombination to connection weights, 2 , with
different probabilities. They are pdc, pbo, and pic, respectively. In
this paper, pdc, pbc, and pic are set to 0.7, 0.1 and 0.2,
respectively.

ms = ~ ~ + + (m ~ - ~ ~ j , V j j { l , ..., m} (4)

t+O /* t is the generation */
quasi-population N Solutions */

Initialize population P(t) ((X,, O,, V,,I,?,), i E (1 ,_.., N } ,
Evaluate fitness score of each individualf(Xi, si, 17, ,I,?,)
while termination criteria is not satisfied do

/* P(t), P’(t) is the t-th population and t-th

/* Decreasing-based Gaussian Mutation Stage */

C t f3 /* set children set C to empty */
for each individual Z = (X i , cTz) of P(t)

-
‘best

Repeat Ld times: /* famdy competition */
a. Randomly select another individual b from P(t)

b. Z’ = (?,!,c,!) +recoinbination(a,b)
c. a’‘ = (z,”, a,.) cGaussiaiiMutatioli((z,’, 5,’)

d. iff(a”) 2 Cbesr then Chest +- a’’ eiidif

-

Add Cbesr to the children set C.

endfor
P’(t) +select the best N candidates from P(t) and children set C
/* Self-adaptive Gaussian Mutation Stage */
for each individual a = (2, , V,) in P’(t)

-
‘best *

Repeat L, times/* family competirion */
a. Randomly select another individual b from P’(t)

1412

-
h. U’ = (.?,’,C,’) +recombination(5,b)
c. U” = (Tt’’, 17~’’) tGaussiaiiMutatioii(.?,’,GI’)

d. if f (U ”) 5 Chest then Chest t a’’ endif

if f (Cbes,) 5 f (a) tlien /* replacement selection */

replace Z with Cbesl inp’(t)

eke G; = y *-‘ VI

eiidif
endfor

for each individual ii = (2, ,qi) in P’(t)
/* Self-adaptive Cauchy Mutation Stage */

-
‘besr +O0

Repeat La times /‘family competifion */
a. Randomly select another individual b from P’(t)

b. a‘ = (zL’,Fl’) +recombination(a,b) 2’‘ = (.?z”,@z”)

c. a“ = (2t”, @:’) tCaucliyMutation(?5’,@,!)

d. if f (a”) 5 Cbesl then Cbesr t a“ eiidif

-

if f (C b e s l) 5 f (ii) then/* replacementselection */

replace with Chest in P’(t)

eiidif
endfor

P(t+l)tP’(t)
t t t + l

endwl~ile
Fig. 2. The FCEA Algorithm

Fig 3 The probability
density distribution
N(0,l) and Cauchy
distribution with t=l 0

O“3ybnn~o”urh yJ(-j U ‘ *

0

U 0

O L q -

B. Mutation Operators
Self-adaptive Gaussian Mutation Schwefel [2] proposed a

self-dddptative technique that has been wdely applied to
numeric optimization problems successfully Gaussian mutation
generates a child by first mutating step size,C, and then by
mutating the object variables, 2 , according to the normal
probability density function Self-adaptive Gaussian works as
follows

v: = v,” *exp(z *N(O,l)+z*N,(O,l)) (5)

xs = x,” +vs *N(0,1), VJ E (1, ,m) (6)
where N(0,l) shown in Fig 3 is a normal distribution with mean
0 and standard derivation 1 &{O 1) is a new value with
distribution N(0,l) thdt must be generated for each connection

weight T and T’ are respectively set to (&) and (=)-’
which are proposed by Schwefel[2]

Self-adaptive Cauchy Mutation: The behavior of self-
adaptive CauLhy mutation is exactly the same as self-adaptive
Gaussian mutation except the Equation (6) is replaced with
Equation (8)

~5 =w,” *exp(z *N(O,l)+z*N,(O,l)) (7)

x J = x : + y , ” * C (t) , Vje(1 , ,m} (8)

where C(t) is a Cauchy random number with parameter t = 1.0.
The parameter values of Equation (8) are exactly the same as
those in Equation (6). The Cauchy mutation has hgher
probability to escape from local optimum. This can be seen from
Fig. 3 that the dot line extendled to both ends infinitely.

Decreasing-based Gaussian Mutation: Decreasing-based
Gaussian mutation uses an annealing-like concept tO control the
step size by using the same decreasing rate in each weight of n-
dimension and works as follows:.
0: = y*oa (9)

xc , = x a +o: * N(O,l),Vjc:{l, ..., m} (10)
In our experiments, y is set 0.95 and initial step-size is set to 4.0.
From Equations (6) , (8), and (lo), we find Equation (1 0) can
save computational time bec,mse it did not generate a random
normal number and did not compute exponential function for
each strategy variable. We will further describe the relationship
between decreasing-based miitation and self-adaptive mutation
later.

C. Selection
Recombination Selection: For each individual (ii) in

the population, FCEA employed recombination selection
to select two individuals, one is itself (ii) called family
parent and another is randomly selected from the
population. One important philosophy of FCEA iLs that each
individual has equal probabili.ty to generate the same number of
offspring. Recombination selection and modified recombination
operator are designed in ordeI to achieve this principle.

Family Competition: Each individual uses recombination
and mutation to generate L offspring (L is the length of family
competition) in order to explore fairly the search space. These L
generated offspring from the same individual are called
family. These similar offspring competes each other and only
the best one survives in order to avoid the premature problem.
Family competition can avoid the domination of early superstar
because exactly one child in a family survives.

Population Selection: In decreasing-based Gaussian mutation
stage, FCEA employs higher recombination rate arid unbiased
Gaussian mutation to make a large jump. The difference
between the parent and its children may be larger than self-
adaptive mutation. FCEA applied population selection, based on
elitist and deterministic principle, to select the best N
individuals from the union of parent set and offspring set. In this
stage, population selection has two advantages. First, FCEA
discards bad individuals in order to speed up convergence.
Second, FCEA avoids premature problem in the early search
time because of large diversity between parent and offspring.

IV The Tracker Task: The Ant Problem1
A. The Environment and The Task

The first experiment was aimed at an artificial ant problem,
“John Muir Trail” defined by Jefferson et al.[13], in order to
compare the performance of our approach with other
evolutionary algorithms, including genetic algorithm [131 and
evolutionary programming [l]. Fig. 4 shows the trail studied by
Jefferson et al. [13]. Each black box in the trail represented as
food. The tracker task requires a simulated ant to follow a

1413

crooked and broken trail of food on a two-dimensional toroidal
grid, so that the cells on the left edge are considered to be
adjacent to those on the right edge. The ant traverses the grid to
collect any contacted food along the road. The ant will eat the
food of a cell as soon as it stands on. The goal of the problem is
to evolve a neural network, i.e., a simulated ant, that collects the
maximum number of pieces of food in a given time steps. The
maximum score is 89 because it is the maximum number of food.
According to the environment of Jefferson's ant, the ant stands
on one cell, facing one of the cardinal directions, and it can sense
only the cell ahead of it. After sensing the cell ahead of it, the
ant must take one of four actions: move forward one step, turn
right 90" (without moving), turn left 90" (without moving),
and no-op (do nothing). There are 89 food cells, 38 no food cells,
and 20 turns in the optimizing shortest path of"John Muir Trail",
so that the minimum steps of eating all food is 147 steps.

parameter name
family competition
length
recombination rate

decreasing rate

Fig. 4. The ant problem defined by Jefferson et al. [13]. The trail
is 32 X 32 toroidal grid. The symbol 'I' indicates a food on the
trail. The symbol '+' denotes the start position and startmg
facing direction of an ant. The number in side of food cell gives
the order of shortest path and is mere explanation.

the value of parameters
Ld = 3 (decreasing-based mutation) and L, = 9
(self-adaptive mutation)
pcD=0.8 (crossover rate of decreasing mutation),
pcA=0.2 (crossover rate of adaptive mutation).
p,d=0.7 (discrete recombination), pcb=O. 1 (BLX-
0.5), and p.b=O. 1 (intermediate recombination).
y=0.95

B. The Control Network and Implementation Detail
In order to compare the results with GAS, we follow the work of
Jefferson et al. [13]. They used finite state machines and
recurrent neural networks to represent the problem and used the
traditional bit-string genetic algorithm to train the structures.
Each ant is controlled by a network with two input nodes, food
and no-food, and four output nodes: move forward one step, turn
right 90", turn left 90", and no-op. The food input is 1 when the
presence of food in the cell ahead of the ant; the no-food input is
1 as the absence of food in the cell ahead of the ant. Each input
node is connected to each of five hidden nodes and to each of
four output nodes. There are 5 hidden nodes and these nodes are
fully connected themselves in the hidden layer. This structure is
a full connection with short cut recurrent neural network. So,
each node of hidden node and output node has 7 links, and total
number of links with bias input is 72. We implement the task on
Intel Pentium Processor 200 MHz.

The strategy parameters, such as initial population, family
competition length and recombination rate are shown in Table 1
FCEA evolved a population of 50 networks. Adaptation begins
by initializing all the weights (x) of each network to random
values between -0.1 and 0.1. The initial values of step size for
self-adaptive Gaussian mutation (v), Cauchy mutation (w) , and
decreasing-based Gaussian mutation (0) are set to 1 .O, 1 .O, and
4.0, respectively. The family competition length of self-adaptive
and decreasing-based stage is set to 9 and 3, respectively. Thus,
FCEA generates (3+9+9)*50=1050 networks in one generation.
The recombination rate is set to 0.5 (pd) and 0.2 (pa) for
decreasing-based mutation operator and self-adaptive mutation
operator (see Fig. 2). The fitness is defmed as the number of

eaten food within 200 steps for "John Muir Trail"

C. The Experimental Results and Comparison
Fig. 5 shows the typical convergent curve of the ant problem.

Fig. 5 indicates that the best network in the first generation can
find 24 food, 78 food at 10-th generation, and 81 food at 20-th
generation. FCEA only requires about 20,000 function
evaluations to a train neural controller for an ant to find 82 food
within 200 time steps. FCEA requires 45000 networks and
65000 networks in order to find 86 and 88 food respectively.
Each problem is tested over 20 runs and the successful rate to
find 89 food is 65%. The rest of 35% tests can forage at least 86
food. The successful rate can be improved to 85% when the
population is 100 and the maximum function evaluation is
500,000, The ant problem has many deep local optima and it
prevents many algorithms from finding optimal solutions. Fig. 6
shows a typical behavior and its traveled path of a simulated ant
that is controlled by a evolved neural network. The number in
the food cell is the time step order of the ant ate the food. The
symbol, %', denotes a traveled cell by the ant and the cell is
empty. Fig. 6 indicates an obtained solution that the ant requires
195 time steps to seek all 89 food. These results demonstrated
that one of Jefferson's conclusions, i.e. ,the ant problem is
difficult because it must be achieved in given time steps. They
demonstrated by randomly generating about 1.3* lo9 networks
and the best solution is only 82.
Table 2 summarized the performance of various evolutionary

algorithms including the genetic algorithm [13], evolutionary
programming [l], and our method (FCEA). FCEA simulated
each problem over 20 runs. To facilitate comparison with other
algorithm more fairly, we list these results based on population
size, function evaluations (evolved networks), best performance,
average performance, and average time. Jefferson et al. [13]
used traditional bit-string GA to evolve the same neural
structure. They encoded the problem with 448 bits and used a
population of 65,536 to solve the task in 100 generations on a
16K-processor Connection Machine (CM2). In their research,
finding the solution required 6,553,600 networks and spent
about one hour. The solution exactly needed 200 time steps to
forage 89 food. In contrast to Jefferson's solution, FCEA uses
small population size 50 and 100, and only needs about 86,000
and 344,00 function evaluations to solve the task based on the
same structure. The evolved ant exactly needs 195 time steps to
seek 89 food. GA needs about 70 times number of networks
evaluated by FCEA. Angeline [l] proposed a system, called
GNARL, that use evolutionary programming to train the weight
and topology of recurrent network simultaneously. Evolutionary
programming [9] only employs mutation operator and never uses
recombination operator. The second row of Table 2 shows the
results. Obviously, FCEA performs more stable and better than
GNARL. FCEA will be more robust if we enlarge the population
size. The third row in Table 2 shows the results.

1414

Fig. 5 Fig. 6
Fig. 5. The typical convergent of best individual fitness value at
each generation for ant problem. Fig. 6. The typical behavior
of a simulated ant that iscontrol by evolved neural controller
within 200 time steps. The number in the food cell is the order
of the ant ate the food. %' represents a traveled cell by the ant.

applied method

Genetic Algorithms [13]
Evolutionary

Table 2. FCEA compares with genetic algorithm and
evolutionary programming based on some criteria, including
population size, function evaluations, perfomance, successful
rate and time, in the ant problem. The performance of FCEA
averaged over 20 runs. The first number in parentheses is the
number of runs that FCEA finds all 89 food, and the second
nuniber denotes total runs.

2

populaho function best average average
n sue evaluation Performance Performance Time@)

100 184,250 83 82 *
65536 6,553,600 89 * 3600

programming 111
FCEA with 5 hidden 50 86,000 89(13/20) 88.54 430
nodes 100 344,000 89(17/20) 88.85 1935

V. The Sequential Behavior Problem: The Simulation of
Playing Football

In this subsection, FCEA aimed at developing a simulated robot
capable of performing a sequence of behavior: an agent learns to
play football [15]. The simulation of Maniezzo's football
environment is that both robot and ball are randomly set to any
positions on a field. To shoot ball into opponent's goal, an agent
must learn four sequential tasks: reaching the ball, getting the
ball, dragging it and reaching opponent's goal, and last kicking
it into the goal. In sequential behavior environment, the
controller will be triggered when environment is changed, and
then the controller will refer previous actions to decide next
action. The intelligent agent needed seven sensory inputs: two
inputs for the distance of ball, two inputs for the distance of
opponent's goal, two inputs for own goal (an agent must
intercept ball in two-player environment when opponent got the
ball earlier) , and one input for ball status. The ball status (free
or controlled by a player) can be considered as a trigger input in

this ""%kteS Of me coordulates oftwo go& Ballstatus
ball

m Output layer

Output active for &okcd
a player to move

Fig. 7. The semantic of the inpuUoutput for playing football
problems and the detailed structure is similar to Fig. 1.

A. The Control Network and Implementatioin Detail
Fig. 7 presents semantic of input/output of network for

playing football problem. The five hidden nodes are fully
connected to three motor output nodes that control the moving
direction, speed and kiclcing ball, respectively. To facilitate the
output action, the sigmoidal activation function defined in
Equation (2) is modified as follows:

where y is set to 0.1 .
The fitness function in sequential behavior task is difficult to

define, belLause the relationship between sequential steps is
important. We divide the: task into a sequence of subtasks, and
then fitness function based on these subtasks. The overall fitness
of a network was computed as follow:
Jitness(x) = -Rb(x)+Go~BaZZ(x)-Rg(x) +Kickedball(x) (12)
where Rb(.) and Rg(.) are reward functions that an agent closes
to the ball and closes to god, respectively. The purpose of &(.)
is to prevent an agent from wandering aimlessly or standing still
in the field when the robot did not get the ball. Itg(.) is the
reward to guide the robot to move to the goal while the agent has
got the ball and was not close to the goal. These two functions
are important because they will guide the robot to the goal. &(.)
and Rg(.) are defined as follows:

0 if (robot kiicked the ball)
or (robot did not controled the ball) R, (x) = (14) 1 (p, -P,)' ,others

where pb and P,,denote the positions of ball and goal respectively,
and ps is the final position of an agent in a trial. GotBall(.)
defines the reward when an agent got the ball. Similarly,
KickedBall(.) is defined the reward that an agent kicked a ball
into the goal Gomall(.) is set to 1000 and the value must be
larger than RA.). KickedBall(.) is set to 10000 and the value
must be larger than the values of the four items in Equation (14)
In this experiment, the value of parameters a e the same as those
used in the ant problem except the population size is changed to
30. So one generation will generate 450 (30*(3+6+6)) offspring.

C. The Results
Fig. 8 shows a typical evolutionary process and the results of one
robot player environment. Fig. 8(a) shows an ideal path obtained
from an experiment. Fig. 8 (c) shows the paths of the best
simulated robot player at l", 20", SO", and 10Oa generations. At
the looth generation, the best robot has a traveled path that is
almost close to the ideal path shown in Fig. 8(a). Each robot of
the initial neural controllers can not fmd the ball and reach the
goal within 80 time steps. In this stage, each robot is controlled
by the first term (&,(X)) of]Equation (12) in order to close to the
ball. At the 20" generation, the best robot has got the ball but it
could not reach the goal to kick the ball. In this stage, the robot
got a reward, GotBall(.). Then, Rdx) becomes the main factor to
guide the robot to close in upon the goal. In the last stage, the
robot closed enough to the goal and the robot shot the ball into
the goal at the 50'h generation. From the 50th generation to the

generation, the robot tries to find a shortest path. Fig. 8(b)
shows the corresponding distance between the ball and the

1415

player at I ” , 20”, 50”, and 100” generation in Fig. 8(c)

(a) (b) (c)
Fig. 8. A typical simulated results of one robot player
environment. (a) indicates the an ideal action. (b) is the distance
between the ball and player in (c) at I* , 20*, 50* , and l00*
generation. (c) shows the paths of the simulated robot player at
1 ” , 20” , 50” , and 1 00” generation.

VI Conclusions
The goal of this research is to determine whether neural
networks could provide an efficient control mechanism to
integrate sequential and learning behavior in autonomous agents.
We use a simple neural network and propose a Family
Competition Evolution Algorithm (FCEA) to evolve neural
networks to integrate different types of behavior in a smooth and
continuous manner. Our FCEA approach integrates the
techniques of family competition, decreasing-based Gaussian
mutation, self-adaptive Gaussian mutation, and Cauchy mutation.
Each strategy in FCEA can compensate the shortcoming of each
other. For example, self-adaptive strategy can compensate the
weakness of decreasing-based strategy in the later search time.

In order to illustrate the power of our approach we apply our
approach to two different task domains: the “artificial ant”
problem and a sequential behavior problem-an agent learns to
play football. In the artificial ant task, networks were evolved by
our approach that could leam to generate different sequences of
output based on sensory input on ant robot. From the
experimental results, we fmd our approach can evolve the ant
agent to travel the trails to eat all 89 food in a given time steps.
Our approach outperforms other evolutionary approaches
including GAS and EP. In the sequential behavior problem, an
agent leams to play football. In the task, networks were trained
by our approach that could learn the sequence tasks of scoring
the goal. From the experimental results, we also find our
approach perform well in the problem.

Our primary conclusion, based on the results form our
experiments, is that our approach can evolve neural networks to
provide a means of integrahg sequencing and learning within a
single control system. In summary, we have shown, by using the
two complex problems, the power and flexibility of our
algorithm. Future work of this research will focus on
constructing a real robot to verify our methodology.

Referenses
[l] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An

evolutionw algorithm that constructs recurrent Neural
Networks,” IEEE Trans. on Neural Networks, vol. 5 , no. 1,

T. Back and H. P. Schwefel, “An overview of evolution
algorithms for Parameter Optimization,” Evolutionaly
Computation, vol. 1, no. 1, 1-23, 1993.
R. A. Brooks, “A robust layered control system for a
mobile robot,” IEEE J. Robotics and Automation. Vol. 2,
no. 2, 14-23, 1986.

54-65, 1994.
[2]

[3]

71

[I 81

R. A. Brooks, “Intelligent without representation.
Artificial Intelligence,” vol. 47, 139-159, 1991.
M. Colombetti and M. Dorigo, “Train agents to perfom
sequential behavior. Adaptive Behavior, ” 2 (3), 247-275,
1994.
M. Dorigo and U. Schnepf, “Genetic-based machine
leaming and behavior based robotics: a new synthesis,”
IEEE Trans. on System, Man, and Cybemetics, vol.

L. J. Eshelman and J. D. Schaffer, “Real-coded genetic
algorithms and interval-schemata,” In Foundations of
Genetic Algorithms 2, 187-202, 1993
D. Floreano and F. Mondada, 1996. Evolution of homing
navigation in a real Mobile robot,” IEEE Trans. on System,
Man, and Cybernetic, vol. 26, no. 6, 1996.
D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving
neural networks,” Biological Cybernetics, 487-493, 1990.
Fogel D. B. and Atmar, J. W. 1993. Comparing genetic
operators with Gaussian mutations in simulated
evolutionary processes using linear systems. Biological
Cybemetic, vol, 63, 11 1-1 14.
D. E. Goldberg, Genetic Algorithms in search,
Optimization & Machine Learning, Reading. MA:
Addison-Welsley, 1989.
C. Z. Janikow and Z. Michalewicz, “An experimental
comparison of binary and floating point representations in
genetic algorithms,” In Proceeding of the Fourth Int.
Conference. on Genetic Algon‘thms, 31-36, 1991.
D. Jefferson, et al., “Evolution as a theme in arhficial life:
The genesydtracker system,” In Artz3cial Lye II:
Proceedings of the Workshop on Artificial Life, 549-577,
1991.
J. Koza, “Genetic evolution and co-evolution of computer
program,” In Artificial Life 11: Proceedings of the
Workshop on Artij5cial Life, 603-629, 1991.
V. Maniezzo, “Genetic evolution of topology and weight
distribution of neural networks,” IEEE trans. On Neural
Networks, vol. 5 no. 1, 39-53, 1994.
L. A. Meeden, “An incremental approach to developing
intelligent neural network controllers for robots,” IEEE
Trans. on System, Man, and Cybernetics, vol. 26, no. 6,
474-485, 1996.
D. Parki, F. Cecconi, and D. Nolfi, “Econets: Neural
networks that learn in an environment,” Networks, vol.

J. D. Schaffer, R. A. Caruana, and L. J. Eshelman,
“Combinations of genetic algorithms and neural networks:
A survey of the state of the art,” In Proceeding
International Workshop on Combinations of Genetic
Algorithms and Neural Networks, 1-37, 1992.
S. W. Wilson, “Classifier systems and the animat
problem,” Machine Leaming, vol. 2, 199-228, 1987.
B. Yamauchi and R. D. Beer, “Integrating reactive,
sequential, and learning behavior using dynamically neural
networks,” In From Animals to Animats 111: Proceedings
of the Third International Conference on Simulation of
Ada@ve Behavior, 382-391, 1994.

23,141-154. 1993.

1,149-168, 1990.

1416

