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Abstract 
This paper explores the use of neural networks to control robots 
in tasks requiring sequential and leaming behavior. We propose 
a Family Competition Evolutionary Algorithm (FCEA) to evolve 
networks that can integrate these different types of behavior in a 
smooth and continuous manner. The approach integrates self- 
adaptive Gaussian mutation, self-adaptive Cauchy mutation, 
decreasing-based Gaussian mutation, and family competition. In 
order to illustrate the power of the approach, we apply this 
approach to two different task domains: the “artificial ant” 
problem and a sequential behavior problem - an agent learns to 
play football. From the experimental results, we find our 
approach performs much better than other evolutionary 
algorithms in these two tasks. The main contribution of the 
paper, based on the results from our experiments, is that our 
approach can evolve neural networks to provide a means of 
integrating sequencing and learning within a single control 
system. 

I. Introduction 
Traditional knowledge-based AI approaches of constructing 
Intelligent robotic systems do not provide satisfactory solutions 
in application to dynamic real-world problems. Such systems 
have often required enormous computational power to make 
control decisions and then to accomplish their tasks. More 
serious problem is that these systems must make many 
assuniptions about the information that is supplied by the sensor 
devices. These systems become useless and unreliable when the 
information become invalid. Behavior-based control systems 
have been offered as alternative methods to traditional 
techniques of designing robotic control systems. Therefore, the 
researchers on autonomous robots have focused on behavior- 
based robotics [3, 41. 

A number of research for behavior-based robotics have 
successfully employed evolutionary approaches to develop the 
control systems of simulated robots. These adaptive evolutionary 
methodologies, including classifier system [ 19, 5, 61, forward 
neural networks [15, 171, recurrent neural networks [8, 13, 16 
201, and genetic programming [14], focused on genetic 
algorithms (GAS) to extract learning rules or to train the 
structures and weights of neural networks. However, GAS have 
several disadvantages to train neural networks [I, 181. First, 
traditional bit-strings GAS applying to numerical optimization 
problems have certain limitations and more inefficient than 

Gaussian mutation [9]. Therefore, several research used real 
valued to replace the bit-string representation in order to avoid 
ill effect [7, 21. Second, both traditional GAS and real valued 
GAS employed random mutation that causes a large jump, so 
GAS may be insufficient for local tune. Third, GAS depend on 
recombination operator heavily but it causes competing 
conventions problem [18]. The number of competing 
conventions grows exponentially with the number of hidden 
units. 

A behavior-based robot must possess self-adaptive ability 
and tolerate noise in order to adapt its behavior to any changes of 
its environment. Connectionist methodology allows the task 
demands to avoid the bias of the designer to be the primary force 
in shaping the system development. Neural networks are flexible, 
robust, and tolerated noise. Combining the evolutionary 
algorithm with neural networks can develop a plausible and 
powerful system. 

The main focus of this article is on developing a new 
evolutionary algorithm called Family Competition Evolutionary 
Algorithm (FCEA) to train recurrent neural networks for 
adaptive robotic control systems. The approach integrates self- 
adaptive Gaussian mutation employed in evolution strategies 
(ESs) [2], self-adaptive Cauchy mutation, decreasing-based 
Gaussian mutation, and family competition. In order to illustrate 
the power of our approach, ‘we considered two difierent types of 
tasks: the “artificial ant” piroblem and the sequential behavior 
problem - an agent learns to play football. Experimental results 
indicate that our FCEA outperfonns these evolutionary 
approaches. Our FCEA is fast at least ten times of genetic 
algorithm and genetic programming. 

11. Recurrent Neural Networks 
In this paper, the recurrent network is a mutilayer fully 

connected with short cut recurrent networks of continuous 
sigmoid nodes (Fig. 1). Each hidden node and output node of the 
network is govern by the following form: 

H 

Y, ( t )  = i I Y k , I k  + C W . , ! f ( Y ]  ( t - l ) - @ l  1 (1) 
k =1 J=1 

where y, is the state of the neuron; S is number of sensory inputs; 
Ik is the output ofthe sensor; H is the number of lhidden nodes; 
8 is a bias threshold input; wh and w,, are the strength of the 
connection; A.) is standard sigmoidal activation which is given 
below. 
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f ( q )  = (1 +e-”)-’  (2) 
From Equation ( 1  ), we know the network maps the current 
sensory inputs into all hidden nodes and output nodes. The 
hidden nodes are fully connected themselves. This control 
network gathers input data from the sensor and determines how 
to set actuator outputs for the next step. The initial state of all 
neurons is set to zero. The initial weights of all connection and 
bias are set to the range [-0.1 ,+0. I]  in this paper. 

Sensory inputs 

Input layer 

Hidden layer: fully 
connected among 
themselves 

Output layer 

I A ... n 

I 1 
Actuator outputs 

-: short cut : connected tiom input nodes to output nodes directly 

Fig. 1. The control network is fully connected with short cut 
recurrent networks. 

111. The Learning Method 
First, FCEA generates a population of Nnetworks, each network 
is represented as a quadratic real vector, 
(?,, a,, G,, w,) , Vi E (1 ,..., N )  . The dimensions corresponding 
to the connection weights in the neural network are assume to 
m. 2 is the desired optimizing variable vector, i.e., the vector of 
connection weights of a network. 5 , V , and I,? are n- 
dimensional real vectors that correspond to the strategy variable 
parameters of decreasing-based Gussian mutation, self-adaptive 
Gaussian mutation, and self-adaptive Cauchy mutation, 
respectively. The initial values of each component of 
2, Vi E (1 ,..., N} , are ranged over [-0.1,0.1]. The initial values 
of 0 , , , and I,?t , Vi E (1 ,..., N} , are set to 4.0, 1 .O, and 1 .0 
respectively. To evaluate the fitness score for each 
network Xi ,V i  E {l, ..., N }  , of the population is based on objective 
function f ( 2 ,  ) . FCEA then enters main evolutionary procedures: 
decreasing-based Gaussian mutation stage, self-adaptive Cauchy 
mutation stage, and self-adaptive Gaussian mutation stage. Each 
stage has four steps: recombination, mutation, family 
conipetition and population selection (used in decreasing-based 
Gaussian mutation stage) or replacement (used in self-adaptive 
mutation stage). The FCEA algorithm is given in Fig. 2. 

In order to illustrate the genetic operators, let us denote two 
parents as Z =  (ia,sa,Pa,Fa) and b = ( T , , O , , V , , F b )  
respectively, and the generated offspring as F = (2 ,  ,I?< ~ V ,  , pc ) , 
In the introduction of- recombination operators, we identify two 

- 

parents as a family parent (a ) and a parent ( b  ). In the 
following subsection, the symbol, x,” , in this paper denotes j* 

connection link of the individual 2 and Vj E {l, ..., m} , where m 
is the number of links of a network. 

A. Recombination Operators 
Modified Discrete Recombination: The child E is 

generated by using the following modified discrete 
recombination operator. 

x,” withprobabilty0.8 

x,” withprobabilty0.2 
x; = {  V ~ E  {l, ..., m} (3) 

Generally, the original discrete recombination generates a child 
that inherits genes from two parents with equal probability. We 
modify discrete recombination such that the child inherits genes 
from the family parent a with probabilities 0.8 and another 
parent b with probability 0.2. That is, a child inherits genes 
from the family parent with high higher probability. 

BLX-0.5 and Intermediate Recombination: The BLX-0.5 
is used successfully in GAS and ESs. It generates a child C 
based on Equation (4). 

Where p is chosen from uniform distribution in [-0.5, 1.51. 
BLX-0.5 is called as intermediate recombination when p is 
equal to 0.5. FCEA employed the intermediate recombination in 
strategy variables, i.e. 5 , v^ , and 12;. In contrast to strategy 
variables, FCEA applied discrete recombination, BLX-0.5, and 
intermediate recombination to connection weights, 2 , with 
different probabilities. They are pdc, pbo, and pic, respectively. In 
this paper, pdc, pbc, and pic are set to 0.7, 0.1 and 0.2, 
respectively. 

ms = ~ ~ + + ( m ~ - ~ ~ j , V j j { l ,  ..., m} (4) 

t+O /* t is the generation */ 
quasi-population N Solutions */ 

Initialize population P(t) ( (X,, O,, V,,I,?,), i E (1 ,_.., N }  , 
Evaluate fitness score of each individualf( Xi, si, 17, ,I,?, ) 
while termination criteria is not satisfied do 

/* P(t), P’(t) is the t-th population and t-th 

/* Decreasing-based Gaussian Mutation Stage */ 

C t f3 /* set children set C to empty */ 
for each individual Z = ( X i ,  cTz ) of P(t) 

- 
‘best 

Repeat Ld times: /* famdy competition */ 
a. Randomly select another individual b from P(t) 

b. Z’ = (?,!,c,!) +recoinbination( a,b ) 
c. a’‘ = (z,”, a,.) cGaussiaiiMutatioli( (z,’, 5,’) 

d. iff(  a”) 2 Cbesr then Chest +- a’’ eiidif 

- 

Add Cbesr to the children set C. 

endfor 
P’(t) +select the best N candidates from P(t) and children set C 
/* Self-adaptive Gaussian Mutation Stage */ 
for each individual a = (2, , V,) in P’(t) 

- 
‘best * 

Repeat L, times/* family competirion */ 
a. Randomly select another individual b from P’(t) 
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- 
h. U’ = (.?,’,C,’) +recombination( 5,b ) 
c. U” = (Tt’’, 17~’’) tGaussiaiiMutatioii( .?,’,GI’ ) 

d. if f ( U ” )  5 Chest then Chest t a’’ endif 

if f (  Cbes, ) 5 f (a) tlien /* replacement selection */ 

replace Z with Cbesl inp’(t) 

eke G; = y *-‘ VI 

eiidif 
endfor 

for each individual ii = (2, ,qi) in P’(t) 
/* Self-adaptive Cauchy Mutation Stage */ 

- 
‘besr +O0 

Repeat La times /‘family competifion */ 
a. Randomly select another individual b from P’(t) 

b. a‘ = (zL’,Fl’) +recombination( a,b ) 2’‘ = (.?z”,@z”) 

c. a“ = (2t”, @:’) tCaucliyMutation( ?5’,@,! ) 

d. if f (a”)  5 Cbesl then Cbesr t a“ eiidif 

- 

if f ( C b e s l )  5 f (ii) then/* replacementselection */ 

replace with Chest in P’(t) 

eiidif 
endfor 

P(t+l)tP’(t)  
t t t + l  

endwl~ile 
Fig. 2. The FCEA Algorithm 

Fig 3 The probability 
density distribution 
N(0,l) and Cauchy 
distribution with t=l 0 

O“3ybnn~o”urh yJ(-j U ‘ *  

0 

U 0  

O L q -  

B. Mutation Operators 
Self-adaptive Gaussian Mutation Schwefel [2] proposed a 

self-dddptative technique that has been wdely applied to 
numeric optimization problems successfully Gaussian mutation 
generates a child by first mutating step size,C, and then by 
mutating the object variables, 2 ,  according to the normal 
probability density function Self-adaptive Gaussian works as 
follows 

v: = v,” *exp(z *N(O,l)+z*N,(O,l)) ( 5 )  

xs = x,” +vs *N(0,1), VJ E (1, ,m) ( 6 )  
where N(0,l) shown in Fig 3 is a normal distribution with mean 
0 and standard derivation 1 &{O 1) is a new value with 
distribution N(0,l) thdt must be generated for each connection 

weight T and T’ are respectively set to (&) and (=)-’ 
which are proposed by Schwefel[2] 

Self-adaptive Cauchy Mutation: The behavior of self- 
adaptive CauLhy mutation is exactly the same as self-adaptive 
Gaussian mutation except the Equation (6) is replaced with 
Equation (8) 

~5 =w,” *exp(z *N(O,l)+z*N,(O,l)) (7) 

x J = x : + y , ” * C ( t ) ,  Vje(1 ,  ,m} (8) 

where C(t) is a Cauchy random number with parameter t = 1.0. 
The parameter values of Equation (8) are exactly the same as 
those in Equation (6). The Cauchy mutation has hgher 
probability to escape from local optimum. This can be seen from 
Fig. 3 that the dot line extendled to both ends infinitely. 

Decreasing-based Gaussian Mutation: Decreasing-based 
Gaussian mutation uses an annealing-like concept tO control the 
step size by using the same decreasing rate in each weight of n- 
dimension and works as follows:. 
0: = y*oa ( 9 )  

xc , = x a  +o: * N(O,l),Vjc:{l, ..., m} (10) 
In our experiments, y is set 0.95 and initial step-size is set to 4.0. 
From Equations (6) ,  (8), and (lo), we find Equation (1 0) can 
save computational time bec,mse it did not generate a random 
normal number and did not compute exponential function for 
each strategy variable. We will further describe the relationship 
between decreasing-based miitation and self-adaptive mutation 
later. 

C. Selection 
Recombination Selection: For each individual ( ii ) in 

the population, FCEA employed recombination selection 
to select two individuals, one is itself (ii ) called family 
parent and another is randomly selected from the 
population. One important philosophy of FCEA iLs that each 
individual has equal probabili.ty to generate the same number of 
offspring. Recombination selection and modified recombination 
operator are designed in ordeI to achieve this principle. 

Family Competition: Each individual uses recombination 
and mutation to generate L offspring (L is the length of family 
competition) in order to explore fairly the search space. These L 
generated offspring from the same individual are called 
family. These similar offspring competes each other and only 
the best one survives in order to avoid the premature problem. 
Family competition can avoid the domination of early superstar 
because exactly one child in a family survives. 

Population Selection: In decreasing-based Gaussian mutation 
stage, FCEA employs higher recombination rate arid unbiased 
Gaussian mutation to make a large jump. The difference 
between the parent and its children may be larger than self- 
adaptive mutation. FCEA applied population selection, based on 
elitist and deterministic principle, to select the best N 
individuals from the union of parent set and offspring set. In this 
stage, population selection has two advantages. First, FCEA 
discards bad individuals in order to speed up convergence. 
Second, FCEA avoids premature problem in the early search 
time because of large diversity between parent and offspring. 

IV The Tracker Task: The Ant Problem1 
A. The Environment and The Task 

The first experiment was aimed at an artificial ant problem, 
“John Muir Trail” defined by Jefferson et al.[13], in order to 
compare the performance of our approach with other 
evolutionary algorithms, including genetic algorithm [ 131 and 
evolutionary programming [l]. Fig. 4 shows the trail studied by 
Jefferson et al. [13]. Each black box in the trail represented as 
food. The tracker task requires a simulated ant to follow a 
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crooked and broken trail of food on a two-dimensional toroidal 
grid, so that the cells on the left edge are considered to be 
adjacent to those on the right edge. The ant traverses the grid to 
collect any contacted food along the road. The ant will eat the 
food of a cell as soon as it stands on. The goal of the problem is 
to evolve a neural network, i.e., a simulated ant, that collects the 
maximum number of pieces of food in a given time steps. The 
maximum score is 89 because it is the maximum number of food. 
According to the environment of Jefferson's ant, the ant stands 
on one cell, facing one of the cardinal directions, and it can sense 
only the cell ahead of it. After sensing the cell ahead of it, the 
ant must take one of four actions: move forward one step, turn 
right 90" (without moving), turn left 90" (without moving), 
and no-op (do nothing). There are 89 food cells, 38 no food cells, 
and 20 turns in the optimizing shortest path of"John Muir Trail", 
so that the minimum steps of eating all food is 147 steps. 

parameter name 
family competition 
length 
recombination rate 

decreasing rate 

Fig. 4. The ant problem defined by Jefferson et al. [13]. The trail 
is 32 X 32 toroidal grid. The symbol 'I' indicates a food on the 
trail. The symbol '+' denotes the start position and startmg 
facing direction of an ant. The number in side of food cell gives 
the order of shortest path and is mere explanation. 

the value of parameters 
Ld = 3 (decreasing-based mutation) and L, = 9 
(self-adaptive mutation) 
pcD=0.8 ( crossover rate of decreasing mutation), 
pcA=0.2 ( crossover rate of adaptive mutation). 
p,d=0.7 (discrete recombination), pcb=O. 1 (BLX- 
0.5), and p.b=O. 1 (intermediate recombination). 
y=0.95 

B. The Control Network and Implementation Detail 
In order to compare the results with GAS, we follow the work of 
Jefferson et al. [13]. They used finite state machines and 
recurrent neural networks to represent the problem and used the 
traditional bit-string genetic algorithm to train the structures. 
Each ant is controlled by a network with two input nodes, food 
and no-food, and four output nodes: move forward one step, turn 
right 90", turn left 90", and no-op. The food input is 1 when the 
presence of food in the cell ahead of the ant; the no-food input is 
1 as the absence of food in the cell ahead of the ant. Each input 
node is connected to each of five hidden nodes and to each of 
four output nodes. There are 5 hidden nodes and these nodes are 
fully connected themselves in the hidden layer. This structure is 
a full connection with short cut recurrent neural network. So, 
each node of hidden node and output node has 7 links, and total 
number of links with bias input is 72. We implement the task on 
Intel Pentium Processor 200 MHz. 

The strategy parameters, such as initial population, family 
competition length and recombination rate are shown in Table 1 
FCEA evolved a population of 50 networks. Adaptation begins 
by initializing all the weights (x) of each network to random 
values between -0.1 and 0.1. The initial values of step size for 
self-adaptive Gaussian mutation (v), Cauchy mutation (w) , and 
decreasing-based Gaussian mutation (0) are set to 1 .O, 1 .O, and 
4.0, respectively. The family competition length of self-adaptive 
and decreasing-based stage is set to 9 and 3, respectively. Thus, 
FCEA generates (3+9+9)*50=1050 networks in one generation. 
The recombination rate is set to 0.5 (pd) and 0.2 (pa) for 
decreasing-based mutation operator and self-adaptive mutation 
operator (see Fig. 2). The fitness is defmed as the number of 

eaten food within 200 steps for "John Muir Trail" 

C. The Experimental Results and Comparison 
Fig. 5 shows the typical convergent curve of the ant problem. 

Fig. 5 indicates that the best network in the first generation can 
find 24 food, 78 food at 10-th generation, and 81 food at 20-th 
generation. FCEA only requires about 20,000 function 
evaluations to a train neural controller for an ant to find 82 food 
within 200 time steps. FCEA requires 45000 networks and 
65000 networks in order to find 86 and 88 food respectively. 
Each problem is tested over 20 runs and the successful rate to 
find 89 food is 65%. The rest of 35% tests can forage at least 86 
food. The successful rate can be improved to 85% when the 
population is 100 and the maximum function evaluation is 
500,000, The ant problem has many deep local optima and it 
prevents many algorithms from finding optimal solutions. Fig. 6 
shows a typical behavior and its traveled path of a simulated ant 
that is controlled by a evolved neural network. The number in 
the food cell is the time step order of the ant ate the food. The 
symbol, %', denotes a traveled cell by the ant and the cell is 
empty. Fig. 6 indicates an obtained solution that the ant requires 
195 time steps to seek all 89 food. These results demonstrated 
that one of Jefferson's conclusions, i.e. ,the ant problem is 
difficult because it must be achieved in given time steps. They 
demonstrated by randomly generating about 1.3* lo9 networks 
and the best solution is only 82. 
Table 2 summarized the performance of various evolutionary 

algorithms including the genetic algorithm [13], evolutionary 
programming [l], and our method (FCEA). FCEA simulated 
each problem over 20 runs. To facilitate comparison with other 
algorithm more fairly, we list these results based on population 
size, function evaluations (evolved networks), best performance, 
average performance, and average time. Jefferson et al. [13] 
used traditional bit-string GA to evolve the same neural 
structure. They encoded the problem with 448 bits and used a 
population of 65,536 to solve the task in 100 generations on a 
16K-processor Connection Machine (CM2). In their research, 
finding the solution required 6,553,600 networks and spent 
about one hour. The solution exactly needed 200 time steps to 
forage 89 food. In contrast to Jefferson's solution, FCEA uses 
small population size 50 and 100, and only needs about 86,000 
and 344,00 function evaluations to solve the task based on the 
same structure. The evolved ant exactly needs 195 time steps to 
seek 89 food. GA needs about 70 times number of networks 
evaluated by FCEA. Angeline [l] proposed a system, called 
GNARL, that use evolutionary programming to train the weight 
and topology of recurrent network simultaneously. Evolutionary 
programming [9] only employs mutation operator and never uses 
recombination operator. The second row of Table 2 shows the 
results. Obviously, FCEA performs more stable and better than 
GNARL. FCEA will be more robust if we enlarge the population 
size. The third row in Table 2 shows the results. 
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Fig. 5 Fig. 6 
Fig. 5. The typical convergent of best individual fitness value at 
each generation for ant problem. Fig. 6. The typical behavior 
of a simulated ant that iscontrol by evolved neural controller 
within 200 time steps. The number in the food cell is the order 
of the ant ate the food. %' represents a traveled cell by the ant. 

applied method 

Genetic Algorithms [13] 
Evolutionary 

Table 2. FCEA compares with genetic algorithm and 
evolutionary programming based on some criteria, including 
population size, function evaluations, perfomance, successful 
rate and time, in the ant problem. The performance of FCEA 
averaged over 20 runs. The first number in parentheses is the 
number of runs that FCEA finds all 89 food, and the second 
nuniber denotes total runs. 

2 

populaho function best average average 
n sue evaluation Performance Performance Time@) 

100 184,250 83 82 * 
65536 6,553,600 89 * 3600 

programming 111 
FCEA with 5 hidden 50 86,000 89(13/20) 88.54 430 
nodes 100 344,000 89(17/20) 88.85 1935 

V. The Sequential Behavior Problem: The Simulation of 
Playing Football 

In this subsection, FCEA aimed at developing a simulated robot 
capable of performing a sequence of behavior: an agent learns to 
play football [15]. The simulation of Maniezzo's football 
environment is that both robot and ball are randomly set to any 
positions on a field. To shoot ball into opponent's goal, an agent 
must learn four sequential tasks: reaching the ball, getting the 
ball, dragging it and reaching opponent's goal, and last kicking 
it into the goal. In sequential behavior environment, the 
controller will be triggered when environment is changed, and 
then the controller will refer previous actions to decide next 
action. The intelligent agent needed seven sensory inputs: two 
inputs for the distance of ball, two inputs for the distance of 
opponent's goal, two inputs for own goal ( an agent must 
intercept ball in two-player environment when opponent got the 
ball earlier) , and one input for ball status. The ball status (free 
or controlled by a player) can be considered as a trigger input in 

this ""%kteS Of me coordulates oftwo go& Ballstatus 
ball 

m Output layer 

Output active for &okcd 
a player to move 

Fig. 7. The semantic of the inpuUoutput for playing football 
problems and the detailed structure is similar to Fig. 1. 

A. The Control Network and Implementatioin Detail 
Fig. 7 presents semantic of input/output of network for 

playing football problem. The five hidden nodes are fully 
connected to three motor output nodes that control the moving 
direction, speed and kiclcing ball, respectively. To facilitate the 
output action, the sigmoidal activation function defined in 
Equation (2) is modified as follows: 

where y is set to 0.1 . 
The fitness function in sequential behavior task is difficult to 

define, belLause the relationship between sequential steps is 
important. We divide the: task into a sequence of subtasks, and 
then fitness function based on these subtasks. The overall fitness 
of a network was computed as follow: 
Jitness(x) = -Rb(x)+Go~BaZZ(x)-Rg(x) +Kickedball(x) (12) 
where Rb(. ) and Rg( .) are reward functions that an agent closes 
to the ball and closes to god, respectively. The purpose of &(.) 
is to prevent an agent from wandering aimlessly or standing still 
in the field when the robot did not get the ball. Itg(.) is the 
reward to guide the robot to move to the goal while the agent has 
got the ball and was not close to the goal. These two functions 
are important because they will guide the robot to the goal. &(.) 
and Rg( .) are defined as follows: 

0 if (robot kiicked the ball) 
or (robot did not controled the ball) R, ( x )  = (14) 1 (p, -P,)' ,others 

where pb and P,,denote the positions of ball and goal respectively, 
and ps  is the final position of an agent in a trial. GotBall(.) 
defines the reward when an agent got the ball. Similarly, 
KickedBall(.) is defined the reward that an agent kicked a ball 
into the goal Gomall(.) is set to 1000 and the value must be 
larger than RA.). KickedBall(.) is set to 10000 and the value 
must be larger than the values of the four items in Equation (14) 
In this experiment, the value of parameters a e  the same as those 
used in the ant problem except the population size is changed to 
30. So one generation will generate 450 (30*(3+6+6)) offspring. 

C. The Results 
Fig. 8 shows a typical evolutionary process and the results of one 
robot player environment. Fig. 8(a) shows an ideal path obtained 
from an experiment. Fig. 8 (c) shows the paths of the best 
simulated robot player at l", 20", SO", and 10Oa generations. At 
the looth generation, the best robot has a traveled path that is 
almost close to the ideal path shown in Fig. 8(a). Each robot of 
the initial neural controllers can not fmd the ball and reach the 
goal within 80 time steps. In this stage, each robot is controlled 
by the first term (&,(X)) of ]Equation (12) in order to close to the 
ball. At the 20" generation, the best robot has got the ball but it 
could not reach the goal to kick the ball. In this stage, the robot 
got a reward, GotBall(.). Then, Rdx) becomes the main factor to 
guide the robot to close in upon the goal. In the last stage, the 
robot closed enough to the goal and the robot shot the ball into 
the goal at the 50'h generation. From the 50th generation to the 

generation, the robot tries to find a shortest path. Fig. 8(b) 
shows the corresponding distance between the ball and the 
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player at I ” ,  20”, 50”, and 100” generation in Fig. 8(c) 

(a) (b) (c) 
Fig. 8. A typical simulated results of one robot player 
environment. (a) indicates the an ideal action. (b) is the distance 
between the ball and player in (c) at I* , 20*, 50* , and l00* 
generation. (c) shows the paths of the simulated robot player at 
1 ” , 20” , 50” , and 1 00” generation. 

VI Conclusions 
The goal of this research is to determine whether neural 
networks could provide an efficient control mechanism to 
integrate sequential and learning behavior in autonomous agents. 
We use a simple neural network and propose a Family 
Competition Evolution Algorithm (FCEA) to evolve neural 
networks to integrate different types of behavior in a smooth and 
continuous manner. Our FCEA approach integrates the 
techniques of family competition, decreasing-based Gaussian 
mutation, self-adaptive Gaussian mutation, and Cauchy mutation. 
Each strategy in FCEA can compensate the shortcoming of each 
other. For example, self-adaptive strategy can compensate the 
weakness of decreasing-based strategy in the later search time. 

In order to illustrate the power of our approach we apply our 
approach to two different task domains: the “artificial ant” 
problem and a sequential behavior problem-an agent learns to 
play football. In the artificial ant task, networks were evolved by 
our approach that could leam to generate different sequences of 
output based on sensory input on ant robot. From the 
experimental results, we fmd our approach can evolve the ant 
agent to travel the trails to eat all 89 food in a given time steps. 
Our approach outperforms other evolutionary approaches 
including GAS and EP. In the sequential behavior problem, an 
agent leams to play football. In the task, networks were trained 
by our approach that could learn the sequence tasks of scoring 
the goal. From the experimental results, we also find our 
approach perform well in the problem. 

Our primary conclusion, based on the results form our 
experiments, is that our approach can evolve neural networks to 
provide a means of integrahg sequencing and learning within a 
single control system. In summary, we have shown, by using the 
two complex problems, the power and flexibility of our 
algorithm. Future work of this research will focus on 
constructing a real robot to verify our methodology. 
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