
In addition to these measurements at fixed substrate bias, 
the substrate gate can be used to modulate the channel at 
fixed drain/source bias V,, (see Fig. 5). This is a fundamentally 
different meaurement to those previously described because in 

Fig. 3 Measured lateral resonant tunnelling transistor showing nearly 
equal peak separations expected for harmonic oscillator potential 
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the former case (with fixed substrate bias), as the source/drain 
bias is swept, electrons are injected from the same source 
sub-band, so that the spectroscopy is indicative of the 
quantum well eigenvalues alone. However, under fixed V’,, 
the occupation of the 2-D sub-bands in the source and drain, 
as well as the quantum well resonance states, are controllable 
by V’,,. Thus, the complicated mode mixing of quantum 
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Fig. 4 Temperature dependence of lateral resonant tunnelling transistor 
characteristics 
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Fig. 5 observation of multiple negative transconductances in lateral res- 
onant tunnelling transistor 
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states in all three regions of the device is revealed in a rich 
spectrum of multiple negative transconductances. Although a 
quantitative explanation of the peak heights and spacings in 
the current curves of Fig. 5 is theoretically intractable at 
present, a consistent qualitative explanation can be given. As 
the substrate bias is increased, both the source sub-bands and 
the quantum well states are pulled below the Fermi level, but 
generally not a t  the same V,,,. Peaks in the current occur 
when unoccupied states in the well align with occupied source 
sub-bands; minima occur when a well state is pulled below 
the Fermi level. As the next unoccupied well state is pulled 
closer to  the Fermi level, it becomes aligned with a source 
band, and the current is once again increased. Clearly a more 
sophisticated theoretical treatment is needed to fully com- 
prehend these measurements, however the first order effects 
are consistent with our equilibrium modelling of the structure. 
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CONVOLUTION-BASED DCT ALGORITHM 

Indexing terms: Algorithms, Transforms, Convolution, Mathe- 
matical techniques, Information theory 

Based on elements of number theory, a new convolution- 
based algorithm for computing the DCT (with power of two 
length) is proposed. In terms of computational counts, the 
proposed algorithm computes a length-N DCT (with N a 
power of two) using only N multiplications. 

Introduction: Since the discovery of the discrete cosine trans- 
form (DCT),’ many new algorithms for computing the DCT 
have been developed. These algorithms are either indirect 
computations using fast Fourier transforms” or direct com- 
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putations using matrix factorisation (or recursive 
comp~ta t ion) .~  On the other hand, the convolution-based 
approach deals commonly with the prime length (prime 
factors) DFTs.4 These algorithms can be optimised using the 
Winograd convolution a l g ~ r i t h m , ~  or be implemented using 
the number theoretical transform (NTT) which needs only 
order N multiplications. 

In this Letter, based on elements of number theory, a new 
convolution-based algorithm for computing the DCT (with 
power of two length) is proposed. In terms of computational 
counts, the proposed algorithm computes a length-N DCT 
(with N a power of two) using only N multiplications. 

Useful theorems in number theory and properties of D C T s  

(i) Theorem I: If n > 2, then 

4k + 1 5B' (mod 2") 

4k + 3 -58' (mod 2") 

where k E Z (the set of integers) and bl, p2 E Z +  (the set of 
positive integers). 

(ii) Theorem 2: If n > 2, then 

The proofs of theorems 1 and 2 can be found in Reference 6. 
Theorem 1 implies that there is a one-to-one mapping 

between the following two subsets in Z,. (the integers modulo 
2") that is 

{ 4 t  + l i t  = 0, 1 ,___,  2"-2 - 1]-{5' l t  = O , l ,  ._ . ,  2"-2 - 1) 

(iii) Corollary 1 : For the matrix of index functions 

there exist a circular convolution matrix C and two permu- 
tation matrices P I  and P , ,  such that 

M = P , C P ,  

(iv) Proof of corollary 1 : By theorem 1 

4i + 1 = 5' (mod 4N) 

Therefore, we can reorder the rows and columns in M, i.e. 

Thus, C is a circular convolution matrix, and the input and 
output reordering processes can be achieved by two permu- 
tation matrices (say P ,  and P,), respectively. 

According to Wan&' there are four types of DCT delini- 
tion and the computation of the four types of DCT can be 
reduced to the computation of the type-IV DCT. Therefore, 
the fast algorithms for any type of DCT depend only on the 
computation of the type-IV DCT. 

Proposed algorithm for  computing type-IV D C T s :  From Ref- 
erence 3, the type-IV DCT can be rewritten as 

N-1 

X(k) = 1 x(n) cos 
0 = 0  k = O .  1. ..., N - 1  

We prove that the work for computing N-point type-IV 
DCTs can be achieved by computing an N-point skew circu- 
lar convolution and permutations using the following pro- 
cesses. 

(i) Step I: Extend [Ci"] (the notation defined in Reference 3 
is adopted in the following for simplicity) as follows: 

2"-1 2x(2n +sY + I)] [ Y(k) = 1 fin) COS 
"=O k = O . 1 .  .... 2,-1 
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where 

y(n) = {;(n)  
0 I n  I N - 1 
N I  n 1 2 N  - 1 

and then 

X(k)=Y(k) f o r k = O ,  1, ..., N - 1  

(ii) Step 2: Reorder the input and output sequence. 

form can be rewritten as 
Similarly to the previous work: the above 2N-point trans. 

P(k)  = 2,-1 j (n )  cos [Zn(4n '8'NH"" + 1'1 

"=O 

k =0, 1, ..., 2N - 1 (2) 

where 

and 

k = 0, 1, _ . _ ,  N - 1 R k )  = Y(2k) = Y(2k) 
P(2N - k ~ 1 )  = Y(2k + 1) 

(iii) Step 3: The matrix representation of eqn. 2 is 

2n(4n + 1X4k + 1) 
G,, = {cos [ 

8N 11% k = O .  1 ,..., 2,-1 

From corollary 1, it follows that the equation 
G,,=,,,C2NQ2N holds where P , ,  and Q,, are two permu- 
tation matrices and C,, is a 2N-point circular convolution 
matrix and can be represented as 

z n ,  5"-" 

' 2 ,  = ['Os (T)] I. j = O .  1. ..... 2,- 1 

(iv) Step 4 :  Because 

cos (T) 2 n .  5"+N = -cos (F) 
by theorem 2 (details are in the appendix), 

(3) 

(4) 

where H, is the so called N-point skew circular convolution 
matrix. 

By eqn. 4 ,  it follows that the computation of C,, can be 
achieved by calculating an N-point skew circular convolution 
and additional N additions/subtractions. Consider the follow- 
ing remarks: 

(a) Remark I: In step 1, we extend the input sequence with N 
zeros, therefore the N additions/subtractions in step 4 can be 
replaced by the 'sign change' operations. 

( b )  Remark 2: In step 1, we only need half of the output 
sequence. Therefore, the post-operations of eqn. 4 can be 
achieved by 'sign change' operations. 

According to the above discussion, we can conclude that the 
computation of an N-point type-IV DCT can be achieved by 
an N-point skew circular convolution with some permutations 
and sign changes of input and output sequences. From Refer- 
ence 7, an N-point skew circular convolution (or the poly- 
nomial product modulo Z" + 1 )  can be computed by means of 
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References the generalised number theoretical transform (GNTT) with 
only N multiplications. 

Algorithms f o r  discrete sinusoidal transforms: According to  the 
previous ~ o r k s , ~ , ’ , ~  the relations between some well known 
discrete sinusoidal transforms (DFT, DHT (discrete Hartley 
transform), DCT and DST (discrete Sine transform)) are very 
clear, and are listed as follows: 

Based on the discussion of the ‘proposed algorithm for com- 
puting type-IV DCTs’ Section, we can compute the DCTW(N) 
using N-point skew circular convolution (SCC(N)). Therefore, 
the following result can be derived by the recursive formulas 
of eqns. 5-8 : 

with some interblock additions and sign changes. 

Although the DFT is defined in the complex number system, 
we can still derive an algorithm using only real SCCs. 

Conclusion: We have developed an algorithm which transfers 
the problem of N-point type-IV DCT into the problem of 
N-point skew circular convolution. In theory, this algorithm 
can achieve the lower bound of the number of multiplications 
according to the minimum complexity polynomial algorithms. 
In practice, by means of the number theoretical transform, we 
can compute [Ci“] using only N multiplications, or we can 
use a filter-type structure that is very suitable for the VLSI 
implementation. 

According to the relations between type-IV DCT and other 
famous transforms, we have mentioned that the other discrete 
sinusoidal transforms can be computed by means of the com- 
bination of some SCCs of smaller size, and possess the same 
advantages in both theoretical and practical as the type-IV 
DCT. 

Y.-M. CHIN 22nd July 1991 
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Department of Computer Science and Information Engineering 
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Appendix:  The proof of eqn. 3 is as follows: 

cos (+ 2 a .  5‘”+” = cos [ 271.5”  + 4N)] (by theorem 3) 

= cos ( 5 %  + $$) 
=cos (. + s) 
= -cos (7) 

TAPERED InP/lnGaAsP WAVEGUIDE 

COUPLING 
STRUCTURE FOR EFFICIENT FIBRE-CHIP 

Indexing terms: Optoelectronics, Optical waveguides, Inte- 
grated optics, Optics 

A novel passive InP/InGaAsP waveguide structure for low- 
loss coupling of monomode fibres to semiconductor devices 
having waveguides with small elliptical modes has been fabri- 
cated. The device consists of a fibre-matched waveguide, a 
tapered waveguide structure for the necessary mode trans- 
formation, and a small spot waveguide. The transformation 
of the fibre mode into a mode with a spot of 2 . 0 ~  lateral 
and 1.5pm vertical extension (FWHM) is demonstrated. 
Nearly polarisation independent transmission losses, as low 
as 4.9dB, are measured for uncoated devices with a 900pm 
long tapered section. 

Introduction: To achieve large alignment tolerances and high 
efliciencies in the coupling of a monomode fibre to an optoel- 
ectronic semiconductor chip, the coupling unit is required to 
perform the following fundamental task: the large circular 
mode guided by the fibre has to be transformed a t  low loss so 
that it matches the smaller and usually elliptic mode of the 
waveguide on the semiconductor chip. 

Classical coupling techniques based on lenses’ or tapered 
fibres’ cannot fully meet these requirements as they conserve 
the circular form of the fibre mode. The losses associated with 
the mismatch in shape are accepted as a tradeoff for the rela- 
tive ease with which such rotationally symmetric devices may 
be designed and fabricated. Furthermore, the efliciencies 
attainable with these coupling units are limited by their aber- 
r a t i o n ~ . ~  Finally, all these conventional techniques suffer from 
minute alignment tolerances representing a severe hazard to  
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