
A NOVEL ALGORITHM FOR REAL-TIME FULL
SCREEN CAPTURE SYSTEM

Te-Yi Liu, Yi-Chin Huang and Wen-Chin Chen
Communication and Multimedia Laboratory

Dept. of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan.

{danny, yichin, wcchen} @cmlab.csie.ntu.edu.tw

Abstract - In this paper, we propose a novel system that can real-time capture and
compress the full screen of PC into a video clip. It is real-time in that it can capture to 30
frames per second under the resolution of 1600X 1200 with True Color. One application
of this system is to produce a digital presentation clip for instruction or tutorial. More-
over, as the video clips can be streamed over Internet or Intranet, they can be used for
remote education or training. We believe this approach is clearer and more efficient
than conventional text manual or handbook. As our system only captures the differences
of successive snapshots instead of every single screen, it is more efficient and produced
more compact clips than other existing systems. In addition, the compression algorithm
adopted in our system is also described in this paper.

INTRODUCTION

There has been an explosive growth in software industries in the past several
years. More and more corporations have developed their own software packages and
introduced them to people around the world. The proliferation of software packages
is creating a pressing need for tutorial manuals and handbooks which not only intro-
duce softwares ’ functionalities as well as methods of operation to users but also play
a significant role in training course of company for newcomers; however, these
materials are still paper-made now.

Nowadays, the use of visuals in user manuals for the computer industry seems to
be a must. Often this is done by including various screen capture images throughout
the manual. They can show, for example, a required start-screen or the correct result
of an action [I]. However, although manuals with still screen capture images are
widely used, users still cannot learn software efficiently due to the station of screen
capture images. It is significantly advantageous to develop a screen capture system
that can record every animated action on screen and generate a digital video clip [Z].
In this paper we present a novel algorithm for real-time capturing and compressing
the full screen into a video clip that can be stored in disk or streamed over Internet
under the resolution of 1 6 0 0 ~ 1200 True Color.

PC Display Architecture

Typical display architecture is described as follows, the main CPU and its large
memory space are on one side of the system expansion bus, and on the other side are
graphics coprocessor and its somewhat smaller, but still significant, memory space.

0-7803-7025-2/01/$10.00 02001 EEE. 395

In regular situations, operating system provides a block of display memory with
specific size according to the current resolution and color depth of screen: in addi-
tion, RGB data that represent the current whole screen exactly lies in the display
memory. When operating system repaints the screen, the new RGB data will be
transferred from system memory to display memory through a performance-limiting
expansion bus, which is called Direction A. However, the screen capture system
performs a reverse directional action in contrast with normal behavior. When screen
caplure system wishes to capture current full screen, it will copy the RGB data from
display memory to system memory through that expansion bus, which is called
Direction B Unfortunately, speed of Direction B is much slower than speed of Di-
reci-ion A since there are some hardware accelerations only for Direction A.

RE:AL-TIME CAPTURE MECHANISM

'The screen capture system consisted of a real-time capture mechanism which
was capable of real-time capturing information from screen efficiently and a well-
designed compression algorithm which was able to generate a compact file for stor-
ing or streaming over Internet. In this chapter we would introduce two strategies of
real-time capture mechanisms: one was conventional Full Screen Capture and the
other was Message Driven Polling that we have designed.

Full1 Screen Capture

Full Screen Capture, which is the most straightforward real-time capture mecha-
nism, was to capture full screen whenever needed. In such a case, the screen capture
sysi:em would periodically retrieve full screen RGB data from display memory to
sysi:em memory and formed a video clip with a sequence of RGB data.

However, this mechanism was extremely inefficient due to its heavy costs in
spaces and time. For example, assume that current resolution of screen is 1024x768
True Color (32 bits), hence the size of a screen snapshot is 1,024X768X4 =
3,115,728 Bytes, that is 3 MB. Unfortunately, we have experimented that transfer-
ring; s y h 3 MB data from display memory to system memory would cost around
3OCIms . Under the real-time playback constraint, 30 frames per second capture abil-
ity should be satisfied; however, according to our experimental statistics, transfer-
ring these data would cost 9,000 ms, that is 9 second, which contradicted with the
real-time assumption.

According to our experiments, when adopting this approach, the application
definitely cannot perform real-time due to the performance-limitation of expansion
bus between display memory and system memory. However, the existing system
almost adopted Full Screen Capture, and we have proved that it cannot satisfy real-
time performance. In next section, we will propose a Message Driven Polling algo-
rithm that can improve these shortcomings.

Message Driven Polling

In this section we proposed a novel approach in order to improve the perform-

396

ance of conventional Full Screen Capture. Since the vital drawback of Full Screen
Capture was the overhead of excess data form display memory to system memory,
our proposed approach would make more efforts to reduce the data that should be
transferred from display memory.

Minimum Data Retrieval
Accordingly, although the Graphics Device Manager of operating system should

be prepared to update the entire client area whenever it receives a Repaint message,
it often needs to update only a smaller area, most often a rectangular area within the
client area. This is most obvious when a dialog box overlies part of the client area.
Repainting is required only for the rectangular area uncovered when the dialog box
is removed. That area is known as an “invalid region. ” The presence of an invalid
region in a client area is what prompts operating system to place a Repaint message
in the application’s message queue. An application receives this message only if part
of its client area is invalid.

Graphics Device
Manager

Modify pplicarr n’s lnva I

Rect ngles in e c h P I S

(, Message I Driven Polling

AP 1 AP 2 AP N AP 1 AP 2 AP N
(a) (b)

Figure 1: (a) Relationship between Graphics Device Manager and applications.
(b) Add Message Driven Polling component into original architecture.

Figure 1 (a) shows that the operating system internally maintains a “Paint Infor-
mation Structure (PIS) ” for each application. This structure contains, among other
information, the coordinates of the smallest rectangle that encompasses the invalid
region. This is known as the “invalid rectangle. ” If another region of the client area
becomes invalid before the application processes a pending Repaint message, the
operating system calculates a new invalid region (and a new invalid rectangle) that
encompasses both areas and stores this updated information in the PIS. Once an
application would like to repaint its own client area, the Graphics Device Manager
would repaint the current invalid rectangle of the application’s client area by exam-
ining its PIS.

Implementation
Since Graphics Device Manager only repaints the invalid rectangles of applica-

tions, invalid rectangles must be not only the differences between successive screen
snapshots but also the minimum data that should be transferred from display mem-
ory to system memory. Moreover, we could be aware of each occurred invalid rec-
tangle by means of keeping track of every modification of running applications’ PIS.

397

'Thus, in Figure l(b) the a r k i - ~ n Message Driven Polling component, \-u,l!ich was
to intercept all messages sent to each application and find out information about
invalid rectangles, was the most crucial to our system. After catching the informa-
tion about invalid rectangles, this mechanism could know the exact position of rec-
tangle that is being repainted immediately and then copy the RGB data of only this
rectangle from display memory to system memory. The flowchart of Message
Driven Polling is shown in Figure 2.

--)'

C o p y da ta P a s s to

receiver

I n t e r c e p t
m ee s a g e

I I I

Figure 2: Message Driven Polling behavior.

In short, this novel mechanism has improved the performance of real-time cap-
turing significantly since differences between successive screen snapshots are usu-
ally very tiny: furthermore, there are no data transferred from display memory to
system memory if the full screen did not change.

COMPRESSION ALGORITHMS

'This chapter proceeds to present an algorithm to compress screen snapshots and
compose them into a video clip after capturing them from display memory by Mes-
s a g Driven Polling.

The Proposed Data Compressor

.A screen snapshot has invariant primary color since colors in a screen snapshot
are usually quite simple and repeated, such as the background of the desktop is blue,
the background of the window is white; in addition, there are still some black fonts
and gray toolbars, and this property would be highly critical to our compressor. As
described above, the compressor should be designed to eliminate redundant repeated
colors. In addition, the colors in screen snapshot are usually primary colors, such as
blue, white, gray, etc: therefore, putting some primary colors in an extra table could
save much space. In our system, a preprocessor had been executed in a busy com-
puter for 24 hours to determine 256 (2') colors which have highest frequency of
occurrence, and the capacity of table would also be 256.

Furthermore, Figure 3 illustrates several types of compression. In (a), if a color
are also in table and occurs continuously, the compressor will fill the SIZE field
with its continuous occurrences and set bit T to 1. If the occurrences exceed 2', the
bit :Z will be set to 1 and then follows another byte to represent remaining occur-
rences, this situation would like (b). On the contrary, if this color were not in table,
the real RGB would be stored, like (c).

398

T I (In table) Z 1 (Completed S IZE)
0 (Not in table) 0 (Incompleted SIZE)

1 1 6 8

1 1 6 8 8 8

Figure 3. Format of compression file.

RESULT

We evaluated our proposed approach on several data sets. Our goal is to test and
validate the approach for real-time capturing. Moreover, some comparisons between
our proposed approach and other existing systems were proceeded.

Data Measurement

Figure 4 shows the data measurement of Full Screen Capture as well as Message
Driven Polling. It illustrates the amounts of data that are transferred from display
memory to system memory under the resolution of 1024x768 True Color. First,
Curve 2 demonstrates the capacity of expansion bus that we have mentioned in pre-
vious chapter. Apparently, we can see Curve 1 that describes Full Screen Capture
needs more capacity to achieve real-time since the slope of Curve 1 is much greater
than the slope of Curve 2. Nevertheless, the slopes of Curve 3 and Curve 4 which
represent our proposed Message Driven Polling are both less than the slope of Curve
2: in addition, Curve 3 illustrates the worst case of Message Driven Polling. The
above evidence confirms that our proposed approach can achieve real-time in every
situation.

Performance comparison

Most of the existing screen capture applications cannot achieve real-time captur-
ing, and we choose FlickerFree P t r u c t o r and Microsoft Media Encoder 7.0 to
compare with our proposed system . Table 1 shows the results of comparison: these
results would prove that our approach performs much better works on FPS as well as
on compression ratio than others. Furthermore, even in very high resolution, such as
1600X 1200 and above, our approach still can achieve real-time since the perform-
ance of our method of real-time capture does not significantly affected by resolution
adjusting.

*
The tinies in this paper were all measured by Microsoft Windows ZOO0 OS and Intel Bntium I11 500

processor with GeForce 32MB VRAM graphics card and 256MB RAM under the resolution of
1024X 768 True Color (32 bits).

399

1 -Full 51 I I,

2 Bus c
3 . . Mess.,

9,: ’/ 4 - - -Mess;:.

2 lOOM

3-

,..,’
4

~ - - - - :

0 , . - ,- -:-; . , , , . , , , , , , , , , , ,
0 1 2 3 4 5 6 1 8 9 10

Time (sec.)

Figure 4: Data measurement of Full Screen Capture and Message Driven Polling.

WA 1 : 117 1 : 701
i1A NIA I 30.4

Table 1: Performance comparison of our approach and other systems.

CCINCLUSION

In this paper, we proposed a real-time high performance full screen capture sys-
tem which is focus on an ability of real-time capturing full screen sequences and
generating a video clip with 30 frames per second under very high resolution like
1600x 1200. The experimental results have showed that our system framework
achieved better performance than other existing systems. More work is needed to
add speech component and develop a more efficient data compressor.

References

[l] M. Gellevij, H. V. D. Meij, T. D. Jong, and J. Pieters, “The Effects of Screen
Captures in Manuals: A Textual and Two Visual Manuals Compared, ” IEEE Trans-
acti’ons on Professional Communication, Vol. 42, No. 2 , Jun 1999, pp.77 - 91.

[2] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI Test Case
Generation Using Automated Planning, ” IEEE Transactions on Software Engineer-
ing, Vol. 27, No.2, Feb 2001, pp.144 - 155.

400

