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ABSTRACT 

A class of population-based annealing genetic algorithms( PAGs) has been defined. One 
of the special designs which incorporate an annealing scheme with the normal probability 
density function as the neighbor generation method is proposed. We use the algorithm 
to solve a real world application: computer-aided drug design. Using a dihydrofolate 
reductase enzyme with the anti-cancer drug methotrexate and two analogs of antibacterial 
drug trimethoprim in our model, PAGs can find a drug structure within a couple of hours, 
and the experimental results indicate that the solutions are reasonable. 

1. Introduction 

In the past two decades, computational pharma- 
cology has been receiving broader attention from 
research institutions and the pharmaceutical in- 
dustry. The main idea of this field is the inte- 
gration of numerical algorithms with computer 
graphics techniques to  simulate models of the- 
oretical chemistry. One of the research topics 
in computational pharmacology, computer-aided 
drug design, rationalizes the simulation model by 
associating computational results of known drugs 
with experimental observations of the drug’s ac- 
tivities and molecular structure features. When 
applying the model to  new classes of drugs, bi- 
ological activities of new drugs can be predicted. 
The most important step in this simulation, called 
molecular binding, is actually an energy minimiza- 
tion process. However, a basic problem of the 
molecular binding is that  the energy minimiza- 
tion must be done on a complex hypersurface with 
many local minima. In the past, many researchers 
have addressed this problem. Nevertheless, no 
matter what methods are applied, although the 
solutions may be significant in certain cases, none 
of them can claim to solve the problem completely. 

In the last few years, genetic algorithms(GAs) 
have been applied to the optimization problems in 
computational chemistry. The results indicated 
that GAS worked well for these applications to  
some extent. Hence, it is intuitive to introduce 
GAS to solve the molecular binding problem. But, 
as we know, the framework of simple GAS conceals 
a problem called genetic drift. As a result, the 
best parameter setting of GAS, especially the pop- 
ulation size, is difficult to determine. Generally 

speaking, increasing the population size can be 
used to reduce the influence of genetic drift. But 
the efficiency of GAS will be restricted by the large 
population size. To enhance the power of GAS and 
reduce the influence of genetic drift, we adopt the 
hybrid approach of GA design which incorporates 
GA with the simulated annealing method and ap- 
ply this framework to solve the molecular binding 
problem. 

The rest of this paper is organized as follows. 
Section 2 shows the model of the population-based 
annealing genetic algorithm. Section 3 gives the 
details of the molecular binding problem. Experi- 
mental results of the algorithm are listed in section 
4. Some interesting phenomena observed in our 
experiments are included in this section too. The 
final section contains our conclusion and future 
work. 

2. Population-based annealing ge- 
netic algorithm 

2.1. Genetic Algorithm(GA)/Simulated 
Annealing( SA) Combination 

The research incorporating simulated annealing 
with genetic algorithms can be roughly spilt 
into two complementary categories, one using 
the genetic approach to design parallel simulated 
annealing[7, 101 and the other considering the sim- 
ulated annealing method as a neighborhood oper- 
ator of genetic algorithm@, 3, 4, 9, 151. The cate- 
gories are not clear in some cases, since these cases 
can be explained in different ways from different 
perspectives. 

Observing the GA/SA hybrids, there is a com- 
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mon characteristic. No matter what the combina- 
tion between GA and SA, a partial sequence of 
SA is performed on each individual of the popu- 
lation. From the view point of GA, this partial 
sequence of SA improves each individual in GA. 
We can treat the SA as a neighborhood opera- 
tor which searches the neighbors of an individual 
guided by the Metropolis csondition. Motivated 
by the observation mention'ed above, we fix the 
number of steps of SA performed on each individ- 
ual and call this type of mechanism a population- 
based simulated annealing. We define a class of 
population-based SAS as neighborhood operators 
of GAS. These operators have the property of 
diversity maintenance. 

Definition 1 A population-based SA(PSA) i s  an 
operator with three tuples: PSA = {IC, N,, RA}, 
where K is the number of steps processing by PSA, 
K 2 1, N, is a neighbor generation method, and 
RA i s  the acceptance criterion applied to the cur- 
rent point and its neighbors. 

According to  Definition 1, incorporating PSA op- 
erators with GAS will form a class of GA/SA hy- 
brids, hereafter called population-based annealing 
genetic algorithms(PAGs). 

2.2. The algorithm 
In order to  realize the influence of the number of 
steps K ,  the neighbor generation methods, N,, 
and the acceptance criterion rules, RA, we first 
designed an algorithm proposed in[15]. In [15], we 
proposed a PSA operator using the traditional SA 
as the neighbor eneration method. The experi- 
mental results inticated that the performance was 
better than a simple GA or SA. In this paper, we 
use a new PSA operator which applies the nor- 
mal probability density function(norma1 P.D.F.) 
on the whole search space as the neighbor gener- 
ation method. The new algorithm is listing in the 
following: 

A. Initialize the parameters, i.e., populationsize, To, 

B. Randomly generate the initial population. 
C. Repeatedly generate the new population as follows : 

and decreasing factor a(0 < CY < 1) 

1. For each individual do 
Best-point=Currentpoint= Currentindividual ; 
Do K times : 

a. Generate Nextpoint using the normal P.D.F. 
applied on the whole solution space. 

b. Accept Nextgoint as Currentpoint by: 

Best-point := Current-point ; 
Pick Best-point into the tmnsient population. 

Apply genetic operators to  the transient population; 
2.  Genet ic  stage.  

3. if (it is the first stage) then 
determine the initial temperature TI 

There is something worth noting in the initial- 
ization of the system temperature. It is recognized 
that the execution time of SA depends on both 
the initial temperature and the decreasing f ac tx  
of the temperature. Since PAGs include SA as an 
operator, the efficiency of PAGs also depend on 
the initial temperature. We provide a strategy de- 
fined as follows to determine a reasonable range of 
initial temperature. For the sake of efficiency, we 
define the acceptance probability of a detrimental 
move in the first generation to be 0.6. From the 
Metropolis criterion Prob(AC) = exp(-AC/T'), 
we obtain T = a E 2 , AC, where AC is 
determined by largest possible detrimental move 
of the current generation. Since PAGs generate 
piecewise Markov chains from each individual of 
the current population, these individuals may be 
located at very different hills. We have to consider 
all chains to determine the largest possible detri- 
mental move. Therefore, we calculate the initial 
temperature as : 

where CL,, ,CLin are the largest and lowest cost 
of the ith sequence of the Markov chain generated 
by the ith individual of the first generation. VIIe 
take the maximal difference of individuals as A C  
to determine the initial temperature. 

In addition, at the genetic stage, we use a 
ranking algorithm[l6] as the selection mechanism. 
Crossover and mutation operators are performed 
according to the following steps. 

At first, two parents are selected from the 
population randomly. The crossover oper- 
ator is applied with a predefined crossover 
rate. After that, two offspring are produced. 
The offspring survive only when the costs of 
these two offspring are both less than the av- 
erage cost of the previous generation. Oth- 
erwise, give up the offspring and continue 
to apply the mutation operator to parents. 
The mutation operator is an annealing-like 
operator which borrows the exploration ca- 
pability of S A  to explore the neighborhood 
of the parents. 
Finally, the offspring or the mutated parents 
are copied into the new population. 

3. Problem description 

In the past two decades, it has been well recog- 
nized that the biological activity of a drug hap- 
pens at a specific receptor site, such as a pro- 
tein. That is, the procedure of computer-aided 
drug design predicts a new three-dimensional(311) 
molecular structure which can bind well with a 
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specific receptor site. More concretely, given an 
organic molecule(receptor) , the work of computer- 
aided drug design generates 3D structures from a 
number of possibilities, measuring the fitness of 
them with the given molecule and deciding which 
one is best. Finally, the best one can be a kind 
of new drug dependent on its feasibility of synthe- 
sis and success of clinical experiments. However, 
as all molecules are deformable, many degrees of 
freedom exist. This results in the combinatorial 
explosion of possible structures of a drug molecule. 
Finding a good structure by brute force is compu- 
tationally intractable. 

Many researchers have devoted themselves to 
computer-aided drug design. Various structure 
generation methods have been described[l, 5, 6 ,  
131. In our research, we apply the PAG algorithm 
to  generate favorable drug structures. 

3.1. Structure encoding and scoring func- 
tion 

The general description of the structure optimiza- 
tion process is given as follows. 

Given two molecules which consist of a num- 
ber of atoms defined by their three dimensional 
coordinates, one defines the drug molecule and 
the other defines the receptor molecule. Intu- 
itively, the spatial location of the drug and its 
three rotational angles relative to 3 axes are all ad- 
justable. Moreover, the molecules have a number 
of deformable single bonds. Each single bond is a 
degree of freedom. Based on the description, the 
energy minimization between these two molecules 
becomes: 

1. Fix the location of the receptor molecule. 
Initialize the structure of the drug molecule. 
Evaluate the interaction energy based on the 
scoring function. 

2. Repeatedly adjust different degrees of free- 
dom, including translating and rotating the 
drug molecule and twisting single bonds in- 
side the drug, to fit the receptor. Evaluate 
the interaction energy of each new configu- 
ration. 

3. Find the best configuration with the lowest 
interaction energy from these configurations. 

Adjusting the value of each degree of freedom gen- 
erates a new configuration . The whole search 
space is the combination of possible values of all 
degrees of freedom. Therefore we encode all de- 
grees of freedom as a chromosome: 

where t ,  , t ,  and t ,  represent the position of the 
drug molecule relative to the centroid of the re- 
ceptor, r ,  , ry and r ,  are the rotational angles of 

the drug and s:s are the twisting angles of single 
bonds inside the drug molecule. For convenience, 
we use a real-coded scheme to encode each param- 
eter. That is, all parameters are real numbers. 

In addition, we use the scoring function: 

V = V4 + I/nb + Ve ( 2 )  

where V+ is the bond torsion force field, Vnb is 
the non-bonded interaction force field, and V, is 
the electrostatic interaction energy. In our scoring 
function, we use the Lennard-Jones 6-12 potential 
function to represent non-bonded interaction Vnb 
and electrostatic interaction V,. The Lennard- 
Jones equation is as follows[l4]: 

where Kot  is the total energy of binding, qr and 
q d  are the charges of the aJoms_in the receptor 
and the drug respectively, JR,-RdJ is the distance 
between the receptor and the drug, and E ,  Ard, Brd 
are the dielectric and non-bond constants. In this 
function, the first summation simulates the elec- 
trostatic interaction between each pair of atoms, 
and the second and third summation simulate 
the repulsive and attractive terms of the van der 
Waals interaction energy. 

Moreover. following the approach of [14], the 
bond torsion term V, also depends on Equa- 
tion 3 .  

4. Molecular binding experiments 

In order to verify that PAGs work well for 
generating a structure with near optimal bind- 
ing energy, we tried to bind a real receptor 
molecule, dihydrofolate reductase enzyme( DHFR) 
with three drug molecules, methotrexate(MTX) , 
and two analogs(inhibit0r 91 and inhibitor 309) 
of trimethoprim. Methotrexate is an anti-cancer 
drug which is used clinically to cure patients, and 
trimethoprim is an anti-bacterial drug. There has 
been much research to analyze the binding struc- 
ture of DHFR with methotrexate molecule [11, 121 
or trimethoprim[8]. 

We have implemented the PAG algorithm on 
the Sun SparcStation 10. Each drug molecule is 
evaluated using the algorithm listed above. The 
results are given in Table 1. In this table, PAG ex- 
ecutes 5 times for each case. The decreasing factor 
of temperature is 0.9. The processing steps of the 
PSA operator K is equal to  the degrees of freedom. 
We use one-point crossover and blend crossover 
as the crossover operators. The probabilities of 
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Drug I SBII Times1 Genl Evaluation4 Energy 11 

91 
100 
30 10 31868 124 I09922 -60.03 - 
50 70030 158 233436 -59.78 
100 144494 163 481647 -63.65 

~ 

Table: 1: T h e  results obtained Jrom the PAG with the 
neighbor generation method which applies normal P.D.F 
on the whole search space. T h e  numbers appear in the right 
side of the f irst  column are the population sites.  Moreover, 
there are 557 atoms i n  DHFR(ju:it consaderang the active 
site o f  D H F R ) .  T h e  drug molecules have about 50  atoms. 

crossover and blend crossover are both 0.5. Based 
on the design of the genetic stage explained in the 
previous section, the mutation rate is dependent 
on the failure of the crossover operators. Since 
we adopted the real-coded scheme to encode the 
chromosome and each degree of freedom is repre- 
sented by a floating point with 32 bits, there are 
216'32 = 2512 points totally in the search space for 
the case of 16 degrees of freedom. 

25 
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20 off,p_size=30 * 

E: off,p-size=50 - 
off,p-size=lOO + 

x 
F e 10 
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Fig. 1: T h e  on-line and off-line performance of the PAG. 
T h e  on-line performance is the average of the solutions 
evaluated so far .  T h e  off-line performance i s  the average 
of the best solution f o u n d  so  jar.  

In addition, we also plotted the off-line perfor- 
mance and on-line performance of the PAG for the 
cases of different population size(Figure 1). 

According to the results , we find that the PAG 
has the following properties: 

1. For the cases of different population size, 
the PAG converges to  a. solution before 200 
generations. When the population size in- 
creases, the number of generations, total 
number of evaluation, and execution time 
all rise. The only exception is the case of 
MTX(psize=30). It indicates that  PAG is 

stable. 
2. The best binding energies of the three 

drugs are distributed from -4OKcal/mol t,o 
-120Kcal/mol. The PAG obtains the mini- 
mal energy at the range from -40Kcal/mol 
to -100Kcal/mol. Since all solutions are 
not refined by a local minimizer, the re- 
sults roughly verify PAG's problem-solvinig 
power. Another reason which confirms the 
power of PAGs is the binding structure gen- 
erated by PAGs. This will be explained 
later. 

3. The off-line performance of the PAG is also 
interesting. The case of psize=30 converges 
quickly to a good solution. Compared to the 
results of Table 1, the solution is almost as 
good as the other cases with larger populzt- 
tion sizes. As in the other version of PA(> 
in[15], the quality of solutions generated are 
proportional to the population size. It indi- 
cates the new PAG listed above needs le:,s 
population size to generate the same quality 
of solution. Moreover, this PAG never traps 
into a bad local minimum when the popula- 
tion size is larger than 30. 

4. In Figure 1, the on-line performance of the 
PAG is greater for all cases. This shows the 
diversity maintenance property of the PAC:. 
Because we use the PSA operator which gen- 
erates the next point from the whole search 
space by applying the normal P.D.F, it ex- 
plores the new points, including very bad SCI- 

lutions, from generation to generation. Even 
as individuals are getting better, the prob- 
abilities of generating bad points never de- 
crease. The on-line performance shows the 
situation. 

In addition to the binding energy, the exis- 
tence of hydrogen-bonds is another criterion to 
determine the quality of the fit between molecule:;. 
According to the results presented in[ll] which 
have shown the binding structure of the M T X  
with DHFR, there existed a pocket in DHFR,. 
When the interaction between MTX and DHFIL 
converged, MTX would be buried deeply in the 
pocket. Observing all the cases, every generated 
drug structure is bound to this pocket, because 
hydrogen bonds form in the position. That is, all 
drugs are attached to the same atoms in DHFIL 
by the PAG. Figure 2 shows the illustration of the 
binding structure of drug molecule(1nhibitor 309) 
with DHFR. In this figure, we show the partial 
molecular surfaces of DHFR as dots and represent 
the drug molecule by solid surfaces. We find the 
drug molecule indeed burying into DH FR deeply. 
Based on this observation, we have more strong 
evidence to claim that the results obtained by the 
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Fig. 2:  T h e  binding structure of Inhibitor 309 with DHFR.  
T h e  dots indicate the molecular surface o f  DHFR,  T h e  
balls are the  a toms  of Inhibitor 309. 

PAG are very significant. 

5. Conclusion and future work 

In this paper, we proposed a class of neighborhood 
operators called population-based simulated an- 
nealing(PSA) for genetic algorithms. Incorporat- 
ing different PSAs with genetic algorithms formed 
new GA/SA hybrids(PAGs). We designed a new 
PAG and applied it to  solve the molecular binding 
problem. Our case studies not only indicate the 
power of PAGs but also the properties of the PSA 
operator when applying the normal P.D.F. 

However, we used only a simplified model to 
represent the interaction between molecules, the 
results are an approximation of the actual situa- 
tion. Based on the experience of this research , we 
plan to extend the model to include other force 
fields, such as bond stretching and bond angle 
bending, into our algorithm. Since the degrees 
of freedom will increase accordingly, the popula- 
tion size will be enlarged to reduce the chance of 
premature convergence. The efficiency of the al- 
gorithm will be influenced heavily, but the power 
of the PSA operator used by the PAG seems to be 
able to  solve the problem by reducing the pop- 
ulation size to  a reasonable size. We will also 
try to  apply PAGs to  more complicated model of 
molecular binding. 
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