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Abstract 
A multiple degrees of freedom prosthetic hand, NTU 

Hand, was developed in our laboratory. This paper is 
focused on the development of a myoelectric 
discrimination system for a multi-degree prosthetic hand. 
The discrimination system uses two surface electrodes to 
acquire the electromyography (EMG) signal from the 
flexor digitorum superficialis muscle and the extensor 
pollicis brevis muscle. Since eight types of hand 
movements, such as three-jaw chuck, lateral hand, hook 
grasp, power grasp, cylindncal grasp, centralized grip, 
flattened hand and wrist flexion are often used in daily life, 
they are used as key movements in the discrimination 
system. In order to distinguish those hand movements, the 
techniques of variance, bias zero-crossings, autoregressive 
model and spectral estimation are employed for 
preprocessing of features. Then, an error backpropagation 
neural network is applied to discriminate among the 
feature sets. Finally, an analysis interface system based on 
PC environment is constructed to verify the idea. Besides, 
a 3-D graphic interface program based on programmer’s 
hierarchical interactive graphic system (PHIGS) is applied 
to simulate the prosthetic movement of the NTU hand. 
The discrimination system can achieve a success rate of 
85% for off-line test and of 71% for on-line test. 

1. Introduction 
Recently, the number of the physically handicapped 

has increased due to traffic accidents, workshop accidents 
and diseases, and most of them belong to limb losers. In 
order to improve the life quality, many amputees tend to 
use external power to operate artificial prosthesis or 
orthotic arms instead of cosmetic hands. For example, 
they may use body movements, high-pressure air or 
electric actuators as external power to manipulate their 
prosthesis. For replacing most functions that a normal man 
may do daily, multifunctional or multi-degree prosthesis 
has been proposed to satisfy this requirement [4,13]. 
However, a major problem in those researches is how can 
the amputee control the prosthesis more easily, directly 
and intuitively. In other words, it is expected that a natural 
feeling of control similar to that of the original lifib can be 
realized. Since electromyography (EMG) is the electrical 
manifestation in the contracting muscles, it is the most 
simple and direct way to represent the contracting 
information of a muscle. Many attempt to use the EMG 
signal as the command to control the prosthesis 
[3,5,6,17,18]. By using EMG signals, it is essential to 
distinguish different limbs and hand movements from the 
patterns of EMG signals that are recorded at the stump. 

The most widely approach is to use the pattern recognition 
scheme to achieve this task. 

Several methods have already been reported on the 
EMG pattern recognition for forearm movements 
[3,4,8,10,11,15,16]. However, most of them collect EMG 
signals from the biceps and triceps. Their goals are almost 
focused on the elbow and wrist movements, such as elbow 
extensiodflexion, wrist pronatiodsupination, wrist 
abductiodadduction, and so forth. Conversely, the 
prehensile postures of a hand or hand movements are 
seldom addressed. According to daily activities of human 
being and clinical survey, we believe that the prehensile 
functions should also be added to the multi-degree 
prosthetic hand. Hence, the prosthesis can be more ideal. 

Consequently, we treat the prehensile postures that a 
person often activates daily as our design and control 
goals. There are a total of 87 external mechanical degrees 
of freedom of the upper extremity. The upper extremity 
consists of two main functional parts: <1> the terminal 
prehension device (handwrist), <2> a crane system (the 
rest of adshoulder system). For the terminal device, the 
basic function is to provide the proper grip for functional 
activities. Prehension is the primary function of that. In 
this study, eight types of prehensile postures are selected 
from [2,12] for the pattern recognition. Each one of the 
selected postures is a typical mode in the daily activity. 
Besides, most of them are also identified by an article 
“Specifications for electro-mechanical hand” [ 13 which is 
published by the prosthetics community. The list of those 
postures are as follows. 

Three-jaw chuck or palmar tripod pinch: This is 
used to hold small objects. 
Lateral pinch: This is usually used to hold a key 
while unlocking a door. It is also named as a key 
grasp. 
Hook grasp: This is used to carry items, such as 
books or a briefcase. 
Power grasp: This is used to powerfully grasp heavy 
or relatively large objects. 
Cylindrical grasp: It is used to grasp the large 
cylindrical objects. 
Flattened hand: In h s  posture, the thumb must be 
rotated completely out of opposition of the fingers. 
It is used to hold the large surface objects, such as 
books and plates. 
Centralized grip or indexing hand: It is used to hold 
object that essentially elongates the hand distally, 
such as a fork, a knife or a pointer. 
Wrist flexion. 
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Fig. 1. Placement of these two electrodes 

In this paper, surface electrodes are used to generate 
the surface EMG. The surface EMG is stochastic in nature. 
It is composed of a summation of asynchronously 
triggered motor unit pulse trains. The differentially 
amplified EMG from a single muscle is characterized by a 
zero mean value and a variance, which is proportional to 
the muscle contraction level. Since the EMG signal around 
the distal forearm contains more information of prehensile 
postures than mid-forearm or any others, we focus on the 
amputees who belong to the below wrist disarticulation 
with good stump function in the paper. Nevertheless, the 
disarticulation level is not the most general case in the 
clinical diagnosis. 

In order to identify the aforementioned eight hand 
movements, several preprocessing techniques and neural 
network are constructed for pattern recognition of EMG 
signals. The techniques of variance, bias zero-crossings, 
autoregressive model and spectral estimation are 
developed for feature preprocessing. Then, an error 
backpropagation neural network is applied to discriminate 
among the feature sets. An analysis interface system 
based on PC environment is also constructed to verify the 
idea. Besides, a 3-D graphic interface program based on 
programmer’s hierarchical interactive graphic system 
(PHIGS) is applied to simulate the prosthetic movement of 
the NTU hand. The discrimination system can achieve a 
success rate of 85% for off-line test and of 71% for on-line 
test. 

2. Signal Preprocessing 
According to the relation between the muscle 

locations and the hand movement, two electrode locations 
are selected. The anterior side electrode is placed on the 
flexor digitorum superficialis. The other posterior side 
electrode is placed on the extensor polIicis brevis. The 
primary reason for selecting those locations is that muscles 
around those two places have significant correlation with 
prehensile postures. 

Normal resting muscle shows no changes in 
potential; however, a contracting muscle gives large 
changes in potential. We use the IEMG (Integrated EMG) 
feature as the index to detect the muscle activity condition 
by telling the firing point of the EMG signal sequence. In 
this concept, a sliding window is used as the boundary for 
calculating the IEMG value. The calculation of the IEMG 
value is given by 
IEMG = 2 I X j l ’  For the first window 

/ = k - N  

ZEMG,+, = ZEMG, + (Xk+, - Xk-N+, ) ,  For the 
subsequent update (2) 
where N is the window size; X, is the k* sampling data. 
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The detection performance depends on the size of the 
sliding window and the magnitude of the threshold value. 
A smaller size of window and less threshold magnitude 
can increase the sensitivity of the detecting algorithm. 
However, the unstable problem may be induced. 

In order to overcome the unstable problem, the 
IEMG detection method is modified to act like a Schmitt 
gate. First, a mean threshold value is determined based on 
the rest of EMG signals. Then, two different factors are 
respectively applied to the rising-edge and the falling-edge 
of the EMG signal to form two different threshold values 
for detection. These two threshold values are calculated by 
the following formulas. 
Upping-edge threshold value = Mean IEMG value X 3.5 

Falling-edge threshold value = Mean IEMG value X 1.5 
(3) 

(4) 
3. Pattern Recognition 

A pattern recognition system can be divided into 
feature extraction stage, feature selection stage, and 
classification stage. First, the feature extraction is 
performed on the raw data to extract the features of the 
input patterns. Next, a smaller set of meaningful features 
that best represent the patterns are identified in the stage of 
feature selection. In the classification stage, a specific 
pattern is assigned to a specific class according to the 
relations that are established during the training or 
learning period. 

The success of a pattern recognition system depends 
almost entirely on the choice of features representing the 
data sequence. The EMG signal can be represented in 
various forms or parameters. Different forms or 
parameters result in different analytical complexity and 
functional advantages. The algorithms for EMG feature 
extraction or parametric representations are described 
below. 
Traditional Parametric Features 

The traditional parametric features of EMG signals 
include integrated EMG variance, bias zero-crossings, 
slope-sign changes, waveform length and Willison 
amplitude parameter. They are all from the real-world 
processes. However, computational complexity is the 
major concern. All of them can be computed in real-time. 
For each feature Xk denotes the kth sampling data in the 
window and N is the window length for computing the 
features. 

0 Integrated EMG (IEMG): This parameter is found 
by calculating the summation of the absolute values 
of EMG signals. It can be treated as a signal power 
estimator. It is defined as 
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Variance: This parameter is used to estimate the 
power density of the EMG signal. Its definition is 
given by 

Bias Zero-Crossings (BZC): Zero-crossings is the 
number of times that the signal passes the zero 
amplitude axis. This parameter is used to get the 
rough property in frequency domain. In this paper, 
for preventing influence from background 
disturbance, a bias is added to the calculation of the 
zero-crossings value to from the bias zero-crossings. 
It is calculated as 

N 

zc=cS@((x, -0.4)X(x,-, -0.4)); (7) 
k-1 

Slope-Sign Change: This is another parameter to 
represent the frequency information. As mentioned 
above, a suitable value shall also be included to 
reject the disturbance effect. The criterion for the 
parameter selection is defined by the consecutive 
samples as 

If the condition is satisfied, the slope-sign change 
value is increased. 
Waveform Length: This is a parameter that can 
estimate the complexity of the EMG waveform. The 
calculation is defined as 

[X(k)-X(k-1)] X [X(k)-X(k+l)] 2 0.003 (8) 

N 

wavelength = lxk - xk-l l  (9) 
k = l  

Willison Amplitude (WAMP): This parameter is 
used to count the number of times that the signal 
amplitude exceeds a predefined threshold. It is an 
indicator of firing of MUAP and therefore an 
indicator of muscle contraction level. The definition 
is as 

if x > Threshold 

Autoregressive (AR) Parametric Model 
Graupe et al. [5,6] showed that, for stationary 

Gaussian statistics, the EMG signal could be modeled as 
an autoregressive (AR) time series. Basically, it is a kind 
of linear prediction. According to spectral analysis 
[7,9,14], an AR series belongs to an all-pole model. The 
detailed spectral characters will be described later. The 
benefits of the AR parametric model are that the EMG 
signal can be represented by model parameters without the 
original waveform data. Hence, the amount of data can be 
enormously reduced and the specific features of signal can 
be reinforced. An autoregressive model is defined by 

(10) 
(') = {: 1 otherwise 

N 
Yk = -c A ,  Yk-, w k  (11) 

, = I  

where Ai is the AR coefficients; N is the model order; yk is 
the output sequence of the AR model; Yk-1 is the input 

sequence and w,is the white noise signal. The previous 
research [5,9,14] showed that a model of order four is 
adequate for modeling an EMG signal. 
Spectral Non-parametric Model 

The classical spectral estimation is the power 
spectral density (PSD) function. It is a non-parametric 
modeling method in frequency domain. The PSD sequence 
is divided into six frames to generate the spectral features. 
The reason for selecting those frequency frames is 
according to the signal's Spectrogram. 

For catching the time domain information from the 
frequency domain and reducing the data dimension, the 
ranges for creating the spectral parameters should be 
properly chosen. We select the frequency regions that 
EMG signals fluctuate very often over time. Consequently, 
the spectral characteristic in temporal like Short-Time 
Fourier Transform [7] are directly included in those time- 
dependent spectral parameters. The final result is given 
Table 1. 

180-270 HZ 
Basically, the autoregressive (AR) model is an all- 

pole filter. Due to the lack of zeros, the AR model is 
difficult to model "holes " in the spectrum. This defect can 
be compensated by a very high order AR model. However, 
an AR model always gives a smoother spectral curve in 
contrast to classical spectral estimation [14]. 
Feature Selection Stage 

In this paper, we apply the Davies-Bouldin (DB) 
cluster separation measure method as the index to achieve 
the selection task [17]. DB index is the parametric 
estimation that can directly addresses the issue of the 
cluster separability in the feature space. The index is used 
to tell the different features' clustering perfonnance. It is 
defined based on the cluster-to-cluster similarity as 

(S,+SJ) (12) 
Rg = 

q J  
where S, and S, are the dispersions of the i"' and j"' clusters 
respectively, and D, is the distance between their mean 
values, as shown in Figure 10. The dispersion of a cluster 
is defined as 

where Ni is the number of members of cluster C,; yi is the 
i"' input pattern vector; and mi is the mean vector of cluster 
i. The distance D, between two clusters is calculated by 
the Euclidean distance norm as 

In this paper, the calculation of DB index is different from 
the original method. It is obtained through averaging two 
of the worst case separation of one cluster from the other 
instead of only one worst separation, i.e. 

= (cm, -mjlT(mi -m,)}" (14) 

l K  
DB = - E[max(R,, ) + submax(R,, )] ( 5, 

2K ,=I MJ ' + I  
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In essence, the DB index reports how badly the clusters 
overlay their nearest neighbors. A lower value of the DB 
index implies a higher degree of cluster separability. By 
averaging the two worst cases, the separation 
measurement is more objective. 
Classification Stage (Artificial Neural Network) 

For distinguishing the EMG patterns, a 
backpropagation (BP) neural network is applied to EMG 
features. A multi-layer perceptron with error back- 
propagation algorithm has been successfully applied to 
some difficult and nonlinear problems in diverse domains. 
An error back-propagation neural network with one 
hidden layer and one output layer is developed in this 
paper. The structure of the network is based on one-class- 
one-network (OCON) concept and the transfer functions 
for hidden layer neurons and output layer neurons are all 
nonlinear sigmoid functions. The number of neurons in 
the hidden layer is determined by the following relation 

HidenNum = (InputNum + log, OutputNum) I 2  
4. Implementation 

Since the PC environment is an open system, it is 
easy to change or modify the algorithm. We first develop 
the PC-based implementation to verify the concept. The 
whole schematic diagram of the system is shown in Figure 
2. 

In the system, there are three major parts: two 
channel measurements with filter circuit, a personal 
computer (PC) and a host workstation. The filter circuits 
are used to preprocess the EMG signals. The PC that 
contains an ADDA card is used to acquire the signal and 
perform the analysis task. The host workstation is used to 
simulate the prosthesis dynamics. The communication 
between the PC and host workstation is achieved by 
RS232 port. 

The flowchart of the system kernel is shown in 
Figure 3. This flowchart is run through when the system is 
operated in the real-time model. The system is operated in 
two modes: data analysis mode and analysis processing - 

mode. When the system is in the data-analysis mode, the 
flow can be terminated at any stage depending on what 
kind of event is triggered in the user interface. 

In the analysis processing, a sliding window that 
contains 64 points’ data is first used to detect the muscle 
activity. Whenever the firing-detecting criterion is satisfied, 
the data collection stage is enabled and 512 points’ data is 
collected to prepare for the next step. In the mean time of 
data collection, the firing detector is still processing, and 
the data-collection task will be reset when the firing 
criterion is not satisfied. Then, the 5 12-point data is sent to 
the featbre creation stage. In the feature creation stage, 
several methods are used to create 108 features for each 
movement. Then the neural network is used to distinguish 
the result, and the artificial prosthetic simulator is 
activated. 

In this paper, we use several feature-extraction 
techniques to create the pattern feature. Before applying 
the technique, two channels of EMG signals are collected 
from the limb with lKHz sampling rate. For each channel, 
512-point data is recorded from the firing point in each 
hand movement. Then they are dwided into four frames to 
generate the temporal information. The concept is shown 
in Figure 4. Thus, several features can be created based on 
different frames and total collected windows. The created 
feature parameters are listed in Table2. 

The 3D graphic interface is designed for simulating 
the seventeen joints dynamic relationship of the NTU hand. 
The simulation is performed on a SUN sparc 10 
Workstation under the X environment. It is constructed by 
PHIGS (Programmer’s Hierarchical Interactive Graphics 
System) 3D graphic library. In this study, the PHIGS 
interface is used to play the role as an actual prosthesis. 
Consequently, a virtual action can reflect the EMG 
classified result. The correlation between each hand 
posture and 17-joint angles are established by experiment, 
then the outcome values are recorded into a table. The 
simulated hand movements are shown from Figure 5 to 
Figure 12. 

Snuor I Filter Circuit A W  

Fig. 2. PC-based analysis system 

Fig.3. System kernel flow chart 
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Fig. 4. The subframes of the EMG signal 

Fig. 5.  Power grasp Fig. 6. Hook grasp 

Fig.9. Flattened hand Fig.10. Centralized grip 

5. Results and Discussions 
In order to demonstrate the system performance, 

three data sets are used to form the off-line analysis result. 
Those data sets come from two normal subjects. Two data 
sets are collected from the first subject at different times 
with a slightly different electrode locations. The third data 
set is collected from another subject. All data sets contain 
two-channel EMG signal of eight types of hand 
movements. 
Off-line Analysis Results 

The comparison index among those pattern feature 
distributions is based on the Davies-Bouldin (DB) cluster 
separation measurement. The result is given in Figure 13. 

From the results, Variance, Wave-Length and IEMG 
have better cluster separability than others, and most of 
their log scale values also show better performance than 
linear scale values. In addition, AR model parameters for a 
long window of data give better cluster separability for a 
short one. Also, the first two parameters of AR model have 
better cluster setmabilitv than the last two. 
Table 2. List of 'created ;eatures for each hand movement 

I n___-...._.,-~AI_ I Parameter 111 -_..,_ I Number of I 

I 4"orderARmodel I 4 x 2  11 
apecrrai 
arameters 

'la inoc i . - iIi 
-i 

Zero-Cross ..., 
Number 

In order to find the balance between the performance 
and system response speed for the application, a suitable 
data window length for the analysis should be properly 
chosen. A comparison of performance for different data 
lengths is shown in Figure 14. The results verify that a 
long data length will ensure better cluster separability, 
even though the length seems to be short in a real-time 
application. From the result, the length for omline 

Fig. 7. Free hand Fig. 8. Lateral pinch 

Fig.11. Three-jaw pinch Fig.12. Cylindrical grasp 

application is chosen as 256 points (0.256 msec). 
In order to get the best performance, the best 

features which are determined at the previous stage are 
combined together to reinforce the whole clustering 
performance. From the results, two combinations of 
features are suggested. One is the combination of IEMG, 
Variance, Wave length and WAMP. The other is the 
combination of IEMG, Variance, Wave length, WAMP, 
BZC and 2"d order AR model parameters. These two 
combined feature set are used in the neural network 
classification engine to test the results. 

l2 7 

Fig. 13. Cluster separation measurement for two-channel 
different parameters in both linear and log scale (Data I) 

............... 

1 ............... 
50 100 153 2M) 254 300 350 400 450 512 ...................... 

window Lmgth @mu) IAR'J(ldtb)=,lkWhokulndowl ...................... 
Fig. 14. Window length vs. different feature cluster 

separation measurement 
In the actual classification performance analysis, 

three data sets are individually applied to the neural 
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network. Before applying the network, half of each data 
set is used to train the network. Then, the other half data 
set is used to test the network performance. Alternately, 
the roles of testing set and training set are changed and the 
network is applied again. Finally, the two testing results 
are averaged to form the final result. The result of the 
testing is listed in Table 3 and Table 4. Table 3 uses those 
4 kinds of pattern features for recognition, while Table 4 
uses 6 kinds of parameters as features. 
On-line Testing Results 

Besides the off-line demonstration, an on-line testing 
is also applied to verify the scheme. The result ant 
performance is listed in Table 5 

6. Conclusion 
The discrimination of eight kinds of prehensile 

postures has been successfully justified by using the 
forearm EMG signals. In this study, we also demonstrated 
that the combination of IEMG, Variance, WAMP, Wave 
length, zero-crossings and 2”d order AR parameters has the 
best performance for the pattern recognition of those 
postures. The spectral estimation method, short-period 
spectral parameters, and short-period AR model show poor 
result for this rapid movement discrimination. In practice, 
after proper learning, the identified success rate for neural 
network is about 85% in off-line testing and 71% in on- 
line testing. 

In the future, a recurrent neural network method, 
such as unsupervised learning rule can be included in the 
prosthesis system. Then, the system can dynamically adapt 
to the gradual changes of the EMG patterns induced from 
muscle fatigue and sweat. In addition, the previous 
training data need not be regenerated. 

Power grasp 
Cylindrical grasp 
Flattened hand 

Centralized grip 
Wrist flexion 

Average success rate 

Tablej. The correct rate of using IEMG, Variance, Wave Length and 

55.5% 
70.0% 
100.0% 
40.8% 
100.0% 
71.0% 
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