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Abstract - In this paper, a generalized output pruning algorithm for matrix- 
vector multiplication is proposed first. Then the application of the proposed pruning 
algorithm to compute pruning Discrete Cosine Transform (DCT) is addressed. It is 
shown that, for a given decomposition of the matrix of the transform kernel and the 
pruning pattern, the unnecessary operations for computing an output pruning DCT 
can be eliminated thoroughly by using the proposed algorithm. 

I. INTRODUCTION 

Recently, a lot of one-dimensional (l-D) and two-dimensional (2-D) fast 
pruning DCT algorithms, for computing only the lower-frequency components, 
have been proposed in [1],[2],[3]. However, to the most of our knowledge, no 
known generalized pruning method can be directly applied to any orthogonal 
discrete transform, such as DCT, Discrete Fourier Transform (DFT), Discrete 
Hartley Transform (DHT), . . ., etc. In this paper, a generalized output pruning 
algorithm for computing matrix-vector multiplication of any order is presented. 
It is shown that, for a given decomposition of the matrix, the unnecessary 
operations can be eliminated thoroughly. The efficient Pruning DCT algorithm 
can then be derived based on the prescribed pruning algorithm. Of course, the 
applicability of the proposed output p q i n g  algorithm is not limited to DCT, 
actually, it can be applied to all well-known discrete orthogonal transforms, such 
as DFT, DHT, and Discrete Sine Transform (DST). However, in this write-up, 
pruning DCT algorithm is our only focus. 

I1 A GENERALIZED OUTPUT PRUNING ALGORITHM 
FOR MATRIX-VECTOR MULTIPLICATION 

Consider the operation of a general matrix-vector multiplication of order N, 
say D,=A,,,xB N, and assume only partial multiplication outputs Dj (where 
1 I j I N )  are required. It follows that we can speed up the aforecited 
computation by pruning the unnecessary operations. 

To reduce the computational complexity, we decompose the matrix A,, into 

0-7803-5650-0/99/$10.00 0 1999 IEEE 141 



a product of a sequence of more-sparse matrices of the same order, that is, 

ANxN= n ckx , . Then, the operation AN,Nx BN can be computed as 
k-1 

i = O  
C:xN xCLx, X*..XC,~, k-l xB,, 

where CkxN is more sparse than ANxN in general. By the associative property 
of matrix-vector multiplication, DN can be computed recursively as follows. 

B i  = B, 
i B, = Ck$ x Bf;;',l< i 5 k.  (1) 

k D, = B, 

. .  

1 
Since there are k stages of matrix-vector multiplication of order N in (l), no 
matter what kind of output pruning pattern is, kxN bits are required to record 
whether each BF has to be computed or not, where Bf;' is the inner-product 

of the j-th row vector of C i i i  and the output vector B:' of the previous 
stage. 

In this section, a more efficient algorithm for computing output-pruning 
matix-vector multiplication is presented. In this algorithm, only 
rlog(k + 1)1xN bits are required to record whether the partial results BY has 
to be computed or not. In other words, we need an array, say M of order N with 
each entry of [lo& + 1)1 bits in size, to record which operations are required 
or unnecessary. 

If the computation of DN[i] is necessary, then initially let M[i]=O; otherwise 
let M[i]=255 or a large integer. The final value of each entry of M will evolve 
gradually through the computation of cixN to that of theci;, and will be 

pre-computed and stored with respect to the charactelistics of the concerned 
matrix ckxN , described as follows. 

7 

(A) Encoding Processes : \ 

Let T be a control or threshold parameter and its value is set to be zero, 

is a permutation matrix, that is for any vector V, of order N, 

the result of the matrix-vector multiplication CkxN XV, is just a 

position swapping of V,. In t h l s  case, the entries of M are unchanged in 
value but permuted according to the inverse permutation matrix ( CLxN )- 
', and the value of T is unchanged, neither. 

initially. 
<1> If ChxN 
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<2> If CLxN is a diagonal matrix, that is, all the entries of cLxN are equal 

to zero except the diagonal components. In this case, the values of each 
entry of M and T will keep unchanged. 

<3> If chxN is a general diagonal matrix, that is, all the diagonal 

components of it are not equal to zero and no constraint is set to the non- 
diagonal components. In this case, the value of T will be increased by one. 
The value of T (equal to TJ is used as a threshold for indicating the fact 
that: in the matrix-vector multiplication stage, say CkxN x 

B;-’-’ = B;-i , some output entry Bi-i’s is unnecessary (i.e. M[s] = 

255), whereas the entry Bi-i-”s of the input vector Bi-i-’ is required 

to compute some output entry Bk-i’r. That is, the s-th input entry 

B;-i-”s has to be computed correctly before dealing with the matrix- 

vector multiplication ckxN x Bk-i-’, but after then, the s-th output entry 

Bf,-i’s is no use for later stages. In other words, if M[r] < T,, and M[s] = 

255, then we set M[s] = T,. 
<4> If ChxN can be decomposed into a product of a general diagonal matrix 

and a permutation matrix, or vice versa. In this case, the array M will be 
processed by using the merged methodologies presented in <1> and <3>. 

<5> The other matrix forms which don’t belong to those of the above four 
types are categorized as type <5>. Notice that those matrices discussed in 
<1>, <2>, and <3> are special subsets of <4>. Hence, by definition, those 
matrices of type <5> can’t be decomposed into a product of a general 
diagonal matrix and a permutation matrix. Moreover, according to the 
following two corollaries, we will deduce that each matrix of type <5> is a 
linearly ’dependent matrix. 

Corollary 1. If a matrix of size NxN cannot be decomposed into a product of a 
general diagonal matrix and a permutation matrix of the same sue, then its 
determinant is equal to 0. 
ProoJ We can prove this corollary by induction on N; however, we omit the 
details due to page limit. 

Corollary 2. If the determinant of a matrix H of size NxN is equal to 0, then H is 
a linearly dependent matrix. 

Hence, the matrix discussed in <5> is linearly dependent. Since the 
determinant has the following property: If 

i=O 
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Then 
k-1 

Therefore, by corollary 2 we know that ANxN is linearly dependent if CkxN is a 

linearly dependent matrix. Therefore, for any well-defined discrete transform 
matrix ANxN, which is linearly independent, it will never be categorized as a type 
<5> matrix. 

For the sake of convenience, those sets composed of the matrices discussed in 
<1>, <2>, <3>, and <4> are respectively denoted by P, D, GD, and PGD. 

As we have obtained the final values for each entry of M through the 
computation of cixN to that of theck;, , then with the help of M, all the 

unnecessary operations for the computation of 

CixN x C;,, x - x C&!, x B, can be eliminated thoroughly. The values of 
all the entries of M will keep unchanged during this process, but may just be 
permuted in certain occasions. Let the final accumulated value of T be denoted 
by Tp This means, among those matrices, CkxN OSiSk-1, there are T, 

matrices belong to GD or PGD. In other words, after the matrix decomposition. 
the value Tf is pre-computable. 

Now, let us show how the unnecessary operations for the computation of 
CixN x ChXN x . - - x  CNxN x B, can be eliminated thoroughly with the aid 
of M and T. 

k-1 

(B) Decoding Process : 

First, let T = Tp The elimination processes for unnecessary operations are 
deduced gradually through the computation of Ci:; x B,  to that of the 

CixN x Bk-’. 
<I> If Cfv,, E P (the permutation matrix set), then the entries of M will be 

swapped according to the permutation pattern defined by ckxN . 

<2> If CixN E D (the diagonal matrix set), then the j-th output BL-i’’ needs 
to be computed only when M b ] I  T, otherwise it can be left out for 
pruning the unnecessary operations. 

<3> If CkxN E .GD (the general diagonal matrix set), then the j-th output 

Bi-i’’ needs to be computed only when Mb]< T, otherwise it can be left 
out for pruning the unnecessary operations. Furthermore, the value of T 
will be decreased by one in this case. 

<4> If cixN E PGD (the product of general diagonal and permutation matrix 

144 



set), it follows that C i x N  can be decomposed into a product of a general 
diagonal matrix D, and a permutation matrix P, (or vice versa). Then, the 
entries of M will be permuted according to the P, first, and the j-th output 
Bi-’” has to be computed only when Mb]< T, otherwise it can be left out 
for pruning . Of course, the value of T will also be decreased by one in this 
case. 

The above statements described the detailed procedures of the proposed 
pruning algorithm. Because the final value of T, i.e. T,, will not be greater thank, 
only [log(k + 1)l.N bits are required to record the evolution process of M. 
The correctness of the proposed algorithm can be verified by corollary 3 and 
lemma 1. 

Corollary 3. Let AN, (= n ckxN ) be a linearly independent matrix. From the 

proposedsalgorithm, it can be deduced that, in the computation of ANXNx BN , the 
j-th entry %U] of the input vector BN is necessary only when Mb] I TI. 
Proof: We can prove this corollary by induction on k; however, we omit the 
details due to page limit. 

Lemma I .  Let ANxN(=nC; IxN ) be a linearly independent matrix. Then all the 

unnecessary operations can be eliminated thoroughly by the above proposed 
pruning algorithm. 
Proof We can prove this Lemma by induction on k; however, we omit the 
details due to page limit. 

k-1 

i=O 

k-1 

i=O 

From Lemma 1, for a linearly independent matrix ANxN, we know that the 
unnecessary operations can be eliminated thoroughly when only the partial 
outputs of the matrix-vector multiplication AN,, xBN are required. But, for a 
special pruning pattern, does there exist another scheme which can be used to 
further reduce the number of required operations. In the next corollary, we show 
that the number of required operations cannot be reduced by just utilizing the 
permutation technique. Moreover, for CNxN E PGD, the gain of pruning will 

not be changed even if we apply a different decomposition to cNxN . And this 
will be shown in Lemma 2. 

Corollary 4. Let ANxN be a linearly independent matrix and P, be a permutation 
matrix. For any pruning pattern, on computing of the following expressions 
AN,NxBN , (ANxNPc)( P;’&), and P,( P;’ANxN)BN , the simplification gains 
obtained from pruning the unnecessary operations will be the same. 

Lemma 2. Let AN, be a linearly independent matrix. Based on the proposed 
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pruning algorithm, the simplification gain will keep unchanged even though we 
apply a different decomposition to the matrix CLxN (E PGD) . 
Proof: This lemma can be proved by examining all possible components of 
CLxN , we omit the details also due to page limit. 

- -  
1 0 0 1 0  
0 0 1 0 0  
1 0 0 0  I X  
0 1 0 1 0  
1 0 1 0 0  - _  

Therefore, in the proposed algorithm, for a given decomposition of the matrix 
AN,, , the simplification gain is always the same even if we have applied some 
modifications to the decomposition of the matrix cbxN. On the other hand, 

more effective decomposition of the matrix ANxN is necessary if we want to 
obtain better simplification gain. 

- 2 . 3 0  0 0 0 
0 5.0 0 0 0 
0 0 -0.4 0 0 
0 0 0 4 . 7 0  
0 0 0 0 3 . 2  

111. A Concrete Example 

- - 
0 1 0 1 0  
1 0 1 0 0  

x 0 0 0 1 0  

0 1 0 0 1  
1 1 0 0 0  - 

In general, the proposed general output pruning algorithm is suitable for 
the matrix-vector multiplication of any type: integer, real, or complex. Consider 
the matrix-vector multiplication of A sxsxB as an example, where 

c t x 5 = 0  

4x5 = 

- - o o o l o r l o l o o  
0 0 1 0 0  0 1 0 1 0  

0 0 0 1 x 0  0 1 0  0 

0 1 0 0 0  1 0 0 1 0  
- 1 0 0 0 0  1 0 0 0 1  - -  

and B is an arbitary 5x 1 vector. 
Let the above three decomposed matrices be denoted by c&, cix5 , and 

respectively. Suppose only the last two entries of AsxSxB5 are required. 
According to the proposed approach, we set M= [255,255,255,0,0] and T=O, 

initially. Because Ctx5 and csxs E PGD, c:x,, and c. can be respectively 
b 

A O  1 
= c 5 x 5  x c 5 x 5  
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b 
CSx5 = X 

- 
1 0 1 0 0  
0 1 0 0 1  
0 0 1 0 0 
1 0 0 1 0  
1 0 0 0 1  

0 1 0 0 0 '  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  
1 0 0 0 0  

- -  - -  - -  - 
255 0 0 0 
255 T = O  0 T = O  0 T = l  0 

0 Cgx5 255 CiX5 1 C52x5 1 
0 255 255 255 

2 5 5 3  2 5 5 =  1 3  

- -  - -  - -  - -  

A 3  4 
= c 5 x 5  x c 5 x 5 .  

- -  - -  
0 2 

T = l  0 T = 2  OT=2=Tf 
1 3  1 3  0 

CZx5 1 Cs",5 1 
2 1 - _  _ -  

Through the computation of C!x5 to that of c;x5, the values of each 
entry of the array M and threshold parameter T can be obtained gradually 
through the following five steps, as shown in Fig. 1. 

Figure 1. The evolution of the array M and the threshold parameter T. 

Now, the array M and the threshold parameter T can be used to facilitate 
the output pruning computation of the matrix-vector multiplication A,,,xB, more 
efficiently. That is, the unnecessary operations can be eliminated thoroughly 
through the following five steps of the decoding process, as shown in Fig. 2. 

Step 1: Since c;x5 E P, the value of T is kept unchanged (=2) and the entries of 
M and the input vector B , are permuted according to the permutation 
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pattern defined by the matrix C:x5. 

Step 2: Since c:x5 E GD and M[4]22, the 4-th output (marked as ? in Fig. 2) 
will be left out for pruning and the other outputs are kept for later 
computation. Moreover, the value of T is decreased by 1 (=l). 

Step 3: Since c:x5 E D and M[j] I 1, 01 j 1 4 ,  the j-th outputs are necessary. 
The values of T and M are kept unchanged 

Step 4: Since cix5 E GD, M[2] 2 1 and M[3] 2 1, the 2nd and the 3rd outputs 
(marked as ? in Fig. 2) will be left out for pruning and only the 0-th 
and the 1st outputs are kept for later computation. Moreover, the value 
of T is decreased by 1 (=O).  

Step 5 :  Since csOx5 E P, the value of T is kept unchanged (=O) and the entries of 

M and the input vector B," are permuted according to c5Ox5. 

The above example guarantees that all the unnecessary operations are eliminated 
thoroughly. The entry B5h] of the input vector B, is redundant if the j-th entry of 
the array M is equal to 255, initially in Fig. 2. 

Figure 2. The unnecessary operations are pruned thoroughly through the 
decoding process of the proposed algorithm. 

IV. The APPLICATION OF THE PROPOSED OUTPUT 
PRUNING ALGORITHM TO THE COMPUTATION 
OF PRUNING DISCRETE COSINE TRANSFORM 

Since DCT is an orthogonal discrete transform, its transform kernel matrix 
must be a linearly independent matrix. That is, the pruning algorithm presented 
in section I1 can directly be applied to derive efficient pruning DCT algorithms. 
Moreover, all well-known DCT algorithms (such as [4-61 ) and pruning DCT 
algorithms ( such as [l-31 ) can be modeled as a matrix-vector multiplication 
with known decompositions of the DCT transform kernel matrix. 

Since the optimism of the proposed pruning algorithm is decomposition 
dependent, we can not only derive effective pruning DCT algorithms but also 
compare the effectiveness of matrix decomposition corresponding to each 
existing fast algorithm, by checking the complexities of the so-obtained pruning 
algorithms. 

The following data are obtained by applying the proposed output pruning 
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algorithm to derive efficient pruning DCT algorithms, based on the matrix 
decompositions presented in [1,5,6]. For the 1-D DCT of length 64, table 1 
listed the numbers of required multiplications and additions for the 
corresponding pruning DCT algorithms with respect to different pruning 
patterns. The percentages of the required multiplications and additions of the so- 
obtained pruning algorithms to that the original (un-pruned) algorithms are also 
listed in table 1 (in the columns headed by the notation %), as an index for 
checking the effectiveness of each corresponding matrix decomposition, from 
the view point of output pruning. 

The reason for choosing this special transform length comes from the fact that 
the numbers of required multiplications and additions for all the algorithms 
presented in [1,5,6] are the same and equal to 193 and 5 13, respectively. 

The most well-known pruning DCT algorithm presented in [ 11 gives the same 
complexities as listed in the first column of table 1. This fact verifies the 
correctness and effectiveness of the proposed pruning algorithm. As for the 
other two algorithms (or matrix decompositions), the gain obtained from 
pruning is less significant. The number of pruned multiplications is larger in 
the Winograd’s approach, whereas the number of pruned additions is larger in 
the Lee’s approach. In fact, these characteristics can be observed and explained 
from their corresponding algorithm structures: In the Winograd’s DCT 
algorithm, the required multiplications are post-processing oriented; whereas, in 
the Lee’s DCT algorithm, the most post-processing oriented operations are 
additions. That is, if the complexity of multiplication is the major concern, then 
the pruning gain will be more significant when the required multiplications of 
the algorithm are nearly post-processing oriented. 

V. Conclusions 

In this paper, the derivation of efficient pruning DCT algorithms is the major 
focus. Since the effectiveness of the proposed output pruning algorithm is 
matrix-decomposition-dependent, some existing well-known DCT and pruning 
DCT algorithms are examined. Simulation results show that the resultant 
pruning DCT algorithm, derived based on the proposed approach, and the matrix 
decomposition presented in [ 11 needs the same computational complexity as that 
of the best existing pruning DCT algorithm [ l ]  does (for some regular pruning 
patterns). From the derivation presented in section 11, it follows that there is not 
any restriction on the pruning pattern for the proposed approach. In other words, 
the resultant pruning DCT algorithm can work as well as some well-known 
pruning algorithms, but it dispenses with the pruning pattern constraint that most 
of the other pruning approaches may have (such as the ones given in [ 1-31). 
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Z. Wang 111 
E f e n e d  aeix 

NO. of 

are required 1 
Only first I 
32 outputs 1611450 83.4187.7 
are required 

Winograd [61 B. G. Lee [5] 

No. of No. of 
multsl multsl 
No. of No. of % 

adds adds 

% 

521207 26.9140.4 641188 33,1136.6 

Table 1. The numbers of required multiplications and additions for the 
resultant pruning DCT algorithms with respect to different matrix 
decompositions and different pruning patterns. 

150 


