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Abstract 

Microarray technology is a recent development in 

experimental molecular biology which can produce 

quantitative expression measurements for thousands of 

genes in a single, cellular mRNA sample. These many 

gene expression measurements form a composite profile 

of the sample, which can be used to differentiate samples 

from different classes such as tissue types or treatments. 

However, for the gene expression profile data obtained in 

a specific comparison, most likely only some of the genes 

will be differentially expressed between the classes, while 

many other genes have similar expression levels. 

Selecting a list of informative differential genes from 

these data is important for microarray data analysis. In 

this paper, we describe a framework for selecting 

informative genes, called Ranking and Combination 

analysis (RAC), which combines various existing 

informative gene selection methods. We conducted 

experiments using three data sets and six existing feature 

selection methods. The results show that the RAC 

framework is a robust and efficient approach to identify 

informative gene for microarray data. The combination 

approach on two selecting methods almost always 

performed better than the less efficient individual, and in 

many cases, better than both. More significantly, when 

considering all three data sets together, the combination 

approach, on average, outperforms each individual 

feature selection method. All of these indicate that RCA 

might be a viable and feasible approach for the 

microarray gene expression analysis. 

1. Introduction 

Microarray technology provides biomedical 

researchers the ability to measure expression levels of 

thousands of genes simultaneously [11, 12, 23, 31, 32, 

35]. These measurements quantify the hybridization of 

cellular mRNA to cDNA or oligonucleotide probes which 

are immobilized on a solid substrate. Such gene 

expression profiles are used to understand the molecular 

variations among disease related cellular processes, and 

also to help the development of diagnostic tools and 

classification platforms in cancer research [1, 2, 14, 28, 

29, 30]. 

The major challenge of microarray data analysis is the 

large number of genes compared to the small number of 

samples in a typical experiment. For the data obtained in 

a specific experiment, only some of the genes will be 

useful to differentiate samples among different classes, 

while many other genes are irrelevant to this task. Those 

irrelevant genes not only introduce unnecessary noise to 

microarray data analysis, but also increase the 

dimensionality; which results in computational difficulties 

in various other tasks such as clustering, classification, or 

construction of relevance networks [3, 27]. To eliminate 

those “probable noise” genes, the identification of 

informative genes, is a feature selection problem which is 

crucial in microarray data analysis [3, 5, 20, 38]. 

Moreover, isolating highly informative genes may reveal 

some insight into the pathomechanism and indicate ways 

to further interpret the data. 

In the pattern recognition and machine learning 

literature [20, 21], the feature selection problem has 

received much attention, where one has class-labeled data 

and wants to figure out which features best discriminate 

among associated classes. In microarray data analysis, the 
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problem is to select genes that clearly differentiate the 

classes and to drop genes with little or no impact. 

Different applicable techniques for feature selection can 

be divided into two main categories: the numerical 

combination and the method of ranking and scoring [9]. 

The numerical combination approaches simplify the 

complex data via finding some new features with values 

that are numerical combination of values of the original 

variables. One of the most popular numerical combination 

approaches is principal component analysis (PCA) [4, 40]. 

PCA finds a set of orthogonal principal components, 

which corresponds to the directions of maximum 

variances, for the purpose of reducing the dimensionality 

of the data matrix. However these numerical combination 

methods cannot discover which specific informative 

genes are responsible for the major trends observed in the 

data. 

On the other hand, ranking and scoring methods score 

the discriminability of each gene based on its own 

expression patterns. Two major estimations of 

discriminability, parametric and nonparametric, have been 

proposed [9]. The parametric estimation approaches 

assess the discriminability of genes using different 

statistical analysis including the t-statistic, Fisher, or 

Golub criterion [14, 15, 34]. Parametric estimation 

depends on exact expression levels and the number of 

replicate samples. The nonparametric estimation 

approaches rank samples according to their expression 

levels and select genes according to a certain metric based 

on the disorder of classes in the ranked list. Examples of 

nonparametric estimation include TNoM, MDMR and 

WEPO [3, 9, 27]. Details of these parametric and 

nonparametric examples will be discussed later. 

In our previous studies [9], we found that there is no 

single method which is always the best in every study. 

The outcomes of different methods may differ 

substantially. This discordance causes difficulties in the 

interpretation of the data. Moreover, it is unclear which 

method should be applied to new unknown data sets. 

However, the prevailing phenomenon implies that a gene 

is significantly worth further analyzing, if it is identified 

as an informative one in most common using methods. 

Thus, combining meaningful results from different 

methods seems to a reasonable way to study.

Recently, evidence combination and data fusion have 

been studied in a variety of different application domains 

such as information retrieval [25, 37], pattern recognition

[39], and molecular similarity searching [13]. There are 

two different ways to combine evidence. One is based on 

ranks, and the other is based on scores. Hsu et al. [18]

studied the behavior and relationship between rank 

combination and score combination. In particular, they 

introduced the important concept and parameter called 

rank/score graph. They then showed that under certain 

condition rank combination outperforms score 

combination. 

For this paper, we examined three parametric and three 

nonparametric feature selection methods for identifying 

informative genes: t-Test [15], Fisher [34], Golub [14], 

TNoM [3], Wilcoxon rank sum test [27] and WEPO [9]. 

We then applied rank combination to combine different 

feature selection methods. For each one of these methods, 

we first introduce some underlying theory and the process 

of computation. Then, we present our comparison and 

combination study of these methods on three different 

publicly available datasets:  Adenocarcinoma Ac data set 

[26], Lymphoma Lp data set [1], and Colon Cc cancer 

dataset [2]. We used two measures to evaluate the 

performance. One measure is the classification accuracy 

of each feature selection, where we used support vector 

machines (SVM) and leave-one-out cross-validation 

(LOOCV) [3, 19] to obtain the accuracy. The other 

measure is precision, where we used those known 

informative genes that have been confirmed by 

biomedical researchers. Details of each data set and each 

measure will be discussed in the experiment section.  

The experiments showed that the performance of 

combining various approaches is competitive with these 

compared parametric and nonparametric methods. Genes 

selected by our combination approach are as informative 

as surveyed methods in both classification and biological 

interpretation with the added advantages of efficiency, 

flexibility, and adaptability. Moreover, there is a trend 

worth going deep into that combination of heterogeneous 

methods may achieve the best performance while the 

heterogeneity of methods is properly defined. 

The rest of this paper is organized as follows:  Section 

2 discusses various feature selection methods considered 

in the paper. Section 3 describes our combination 

methods. Section 4 describes the experiments (using three 

datasets) for comparing different feature selection 

methods. Section 5 presents the result. Section 6 contains 

conclusions and the future research directions of our 

study. 

2. Feature Selection Methods 

Figure 1. The illustration of D
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Assume that a gene expression data set D on N genes 

for M mRNA samples consists of pairs <xi, li>, for i = 

1, …, M. Each sample xi can by summarized by a N-

dimensional vector (xi1, …, xiN), where xij describes the 

expression level of gene j in mRNA sample i. The class

label li associated with xi is either - or + (for simplicity, 

we focus on two label classifications). If there are missing 

values in the original data, we may use an EM-type 

algorithm [22] to impute the values so that the data, upon 

which we apply feature selection methods, contains no 

missing values. Figure 1 is the illustration of D.

2.1. Parametric approaches 
The parametric approaches discriminately assess the 

genes by using different statistical criteria to estimate the 

degree of compactness between genes of the same class 

and the separation between genes of two different classes. 

These approaches score genes using some estimators of 

gene expression data, such as values of mean or standard 

deviation. The statistical criteria are based on the 

assumption that the data comes from some kind of 

distribution. Each parametric approach puts different 

weights in the variance and number of samples of the 

statistical criteria. The three parametric methods we 

discuss here -- t-Test, Fisher and Golub -- all consider a 

gene more informative when the corresponding score is 

larger. 

2.1.1. t-Test (A) 

The two-sample t-Test [15, 32] is used to determine if 

the means of two populations are equal. In microarray 

data analysis, the unpaired two-sample t-Test is often 

used since samples may be derived from different 

physical locations and may not have the same distribution.  

In our study, t-Test gives the discriminative power of 

the kth gene as 
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where M+ and M- are the sample sizes, 
k

and 
k

are

the sample means, and 2

k
 and 2

k
 are the sample 

variances of all xik with li = + or - , respectively.  

2.1.2. Fisher (B) 

Fisher criterion is a classical measure to assess the 

degree of separation between two classes [4, 34]. It is a t-

Test-like statistic. The score for gene k is defined as  
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where 
k

 and 
k

 are the sample means, and 2

k
 and 2

k

are the sample variances of all xik with li = + or - .

2.1.3. Golub (C)

Golub and coworkers use a criterion similar to Fisher 

for their ALL/AML classification based on mRNA 

expression data [14]. The Golub score for the kth gene is 

defined as  
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where 
k

 and 
k

 are sample means, and 
k

 and 
k

 are 

sample standard deviations of all xik with li = + or - .

2.2. Nonparametric approaches 
Compared to parametric approaches, nonparametric 

approaches use rankings obtained from expression level 

measurements associated with a specific gene rather than 

the measurements aimed at avoiding statistical 

instabilities. Usually, the nonparametric approaches rank 

samples associated with the same gene according to their 

expression level measurements and make punishments to 

the disorders that damage a perfect split of samples with 

different classes. The smaller the score a gene gets, the 

less punishment. In this paper, we survey three 

nonparametric methods – TNoM [3], MDMR [26] and 

WEPO [9] -- all consider a gene more informative when 

the corresponding score is smaller.  

2.2.1. TNoM 

Ben-Dor et al [3] proposed TNoM (Threshold Number 

of Misclassification) to score the given gene by searching 

for a simple decision rule corresponding to a given 

expression level to predict the class label of an unknown. 

A decision rule, sign (ax+b), is adapted to predict an 

unknown class, where a and b are parameters (Note that 

since only the sign of the linear expression matters, we 

can limit our attention to }1,1{a ). TNoM looks to 

choose the values of a and b in order to minimize the 

number of errors: 

i

iki bxasignlkbaErr )}({1)|,(                (4) 

We can find the best values by exhaustively trying all 

2(M+1) possible rules. (Attention is limited to threshold 

values that are mid-way points between actual expression 

values.)

The TNoM score of gene k is simply defined as: 

)|,(min)(
,

kbaErrkTNoM
ba

                    (5) 

2.2.2. MDMR (E) 

The method Minimum Distance to Modal Ranking 

(MDMR) first ranks all the sample values of a gene and 

then computes the minimum distance between this 

ranking and a modal ranking. One example of the MDMR 

method is Kandal’s  distance [16]. 

Park et al [27] successfully a variant of Kandal’s 

distance for this problem. It first sorts all sample pairs <xi,

li> by xik in ascending order. At the same time, the 

corresponding classes (i.e., +’s and –‘s) are rearranged 

accordingly, and the resulting class label sequence of li

indicates the level of class disorder among the samples. A 

score is then defined as the minimum number of 

consecutive swaps needed to arrive to a perfect split 

sequence for the derived label sequence, where samples 

associated with the same class are grouped together in the 
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perfect split sequence. In this paper, we adopt the special 

MDMR method as used by Park et al [27]: 

i jli lj
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x
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2.2.3. WEPO (F) 

In TNoM and MDMR, genes with the same ordered 

expression data are regarded to have the same 

discriminative power. However, genes with the same 

TNoM or MDMR score may not have the same 

performance [9]. WEPO introduces z-score into the 

swapping ranking scheme to avoid loss of information [9].

For gene k, the expression levels of samples are first 

normalized by z-score to eliminate the problem of scaling. 

The z-score is: 
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where µk is the sample mean and k is the mean absolute 

deviation of gene k. Then the samples are sorted 

according to the normalized expression levels. The 

punished score of each gene is calculated by estimating 

the overlapped regions of two classes. The punishment is 

defined as: 
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3. Combination method and Data fusion 
In this section, we describe the combination approach 

we used. The approach, called Rank and Combination 

analysis (RAC), consists of two stages: the rank stage and 

the combination stage. The first stage (rank stage) is the 

process by which we rank the collection of all genes 

according to each of the selected features. In this regard, 

each of the genes in the collection is assigned a score 

(which can be a measurement of variance, deviation, 

correlation, or probability) depending on a specific 

feature. Sorting the collection of genes by their scores 

gives rise to a ranking of the genes in the dataset. The 

second stage (combination stage) is the process of 

combining the rank lists obtained from the first stage. 

Figure 2 illustrates the RAC architecture.  

3.1. Rank Stage and Rank Space 
Given a collection of genes G = {g1, g2, …, gn}, each 

gene is assigned a score by its measurement according to 

the selected features. These features can be selected 

parametrically or non-parametrically. After every gene is 

assigned a score, the genes in G are ranked. A ranking of 

these n genes is considered a permutation of these n

elements. Since the set of all permutations of n elements 

forms a group, called the symmetric group Sn, the rank 

space (the set of all possible rankings of G) is equal to Sn.

Moreover, by defining a metric or suitably choosing a 

generating set S of the group, the group Sn give rise to a 

graph G(Sn,S), called the Cayley graph of the group Sn

with generating set S [17, 18]. By harnessing the group 

and graph structure of G(Sn, S) and by studying the rank 

correlation, the combination stage of the RAC approach 

can be modeled in a dynamic fashion [18,24]. 

Figure 2. Rank and Combination (RAC) Architecture 

3.2. Combination Stage 
There are several different ways of combining the m

rank lists that are generated according to different feature 

selections. Since each rank list consists of rank and score, 

there are both rank and score combinations. For the score 

combination, it would be a function (linear or non-linear) 

of the scores in each of the m feature rankings. The 

simplest case would be to take the weighted sum of the 

scores divided by m for each gene gi. As for the rank 

combination, two schools of thought can be followed: 

consensus building and voting. Consensus building 

combines the ranks of a list by using a weighted sum 

from each of the component rankings.  The voting 

method chooses a rank (e.g., maximum or minimum) 

from one or some of the m rankings. 

In Figure 3, R1, R2 and R3 are ranked gene lists from 

the rank stage using three different feature selection 

methods. R* is the average linear combination of R1, R2 

and R3. For more details, see Figure 4. Figure 4 depicts 

the procedure to obtain the combined rank list R*. First, 

the sum of ranks for each gene in R1, R2 and R3 is 

averaged and represented (in step (a)). The scores f(gi)’s

are sorted in ascending order to form Sf(n) (in step (b)) 

and the combined ranked list R* is then formed (in step 

(c)). 

n=Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

R1(n) g1 g3 g5 g7 g9 g11 g13 g15 g2 g4 g6 g8 g10 g12 g14 g16 

R2(n) g2 g5 g8 g11 g14 g1 g4 g7 g10 g13 g16 g3 g6 g9 g12 g15 

R3(n) g9 g8 g2 g12 g1 g10 g4 g11 g3 g14 g5 g13 g7 g16 g6 g15 

R*(n) g1 g2 g5 g8 g11 g9 g3 g4 g7 g10 g13 g14 g12 g6 g15 g16 

Figure 3. Rank Combinations R
*
.
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Figure 4. Procedure to Calculate R
*
.

4. Experiment
We used two methods to evaluate the performance. 

One method measures the classification accuracy of each 

feature selection method, where we used support vector 

machines (SVM) and leave-one-out cross-validation 

(LOOCV) [3, 9, 19] to obtain the accuracy on a 

classification task. The other method uses weighted recall 

to measure how informative the selected genes are with 

respect to their established biological interpretations. We 

used these known informative genes that have previously 

been confirmed by biomedical researchers to compute 

weighted recall. In the following, we describe each 

measure in detail. 

4.1.      Classification Accuracy using SVM and 

LOOCV 
One reasonable way to measure the performance of a 

feature selection method is to define a classification task 

and then to measure the classification accuracy of the task. 

In the experiment here, we used SVM as the classification 

algorithm and the leave-one-out –cross-validation 

(LOOCV) as the method to measure the performance [3]. 

Given a set with n class-labeled samples, the LOOCV 

method constructs n classifiers, where each classifier is 

trained on n-1 samples in the set, and is tested on the 

remaining sample. The classification accuracy is then the 

average accuracy of each classifier. 

Support vector machine (SVM) is a machine learning 

algorithm proposed by Vladimir Vapnik and his co-

workers (see eg. [36]). It is based on the Structural Risk 

Minimization principle from statistical learning theory, 

and was first introduced with a paper at the COLT 1992 

conference7. SVM can be applied to different tasks such 

as regression, classification, and density estimation. In the 

following, we concentrate on the classification 

implementation of SVM. For details on SVM, see for 

examples [6, 36]. 

For a binary classification task, given a training set 

with n class-labeled samples, (x1, y1), (x2, y2), ..., (xn, yn),

where xi is a vector consisting of feature values that 

represent the ith sample, and yi {-1,+1} indicates the 

class, an SVM classifier learns a linear decision rule, 

which is represented using a hyperplane RN. The label of a 

previously unmarked sample x is determined by which 

side of the hyperplane x lies. The purpose of training the 

SVM is to find a hyperplane that has the maximum 

margin to separate two classes. 

In the experiment, we used a SVM software LIBSVM 

developed by C.C. Chang and C.J. Lin [8].  

4.2. Precision of known informative genes 
A different way to evaluate a feature selection method is 

to measure the precision of known informative genes that 

were previously confirmed to be among the top selected 

genes. We defined the precision as

G

R

i

GRPR

G

i i
),(

,

where R is a ranking list, Ri is the top n elements in the 

ranking which include i genes in G, and G is a list of 

known informative genes.  

4.3   Description of Data Sets 
In the following, we summarize the three data sets 

used in the experiment: Ac, Lp and Cc.  Data set Ac was 

subject to both evaluation methods, while Lp and Cc were 

subject to the classification method. 

Ac. Adenocarcinoma data set 

The expression profile associated with this data set was 

collected by Notterman et al [26]. The Notterman team 

obtained 18 paired colon adenocarcinoma normal tissue 

samples from the Cooperative Human Tissue Network. 

The experiment was performed with the Human 6500 

GeneChip Set (Affymetrix oligonucleotide array). The 

data set consists of 7457 genes and 18 paired samples, in 

which 18 are labeled “carcinoma” and 18 are labeled 

“normal”. Additionally, Notterman et al. applied 4-fold 

relative expression to choose informative genes and 66 

genes (1.78% of those detected) had been picked with 

significant difference between tumor tissue and the 

normal samples. 11 of them were confirmed by reverse 

transcription-PCR (RT-PCR), which were used to 

measure the weighted recall of each feature selection 

method. 

Lp. Lymphoma data set 

(a): f(gi)= 

j

ij gR )(
3

1 1

gi G1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 

f(gi) 4 4.33 7.66 8 5.33 13 8.33 5.66 6.66 9.33 6 11 9.66 10 13.33 13.66

(b): Sort f(gi) in ascending order 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Sf(n) 4 4.33 5.33 5.66 6 6.66 7.66 8 8.33 9.33 9.66 10 11 13 13.33 13.66

(c): R*(n)=f
-1

(Sf(n)) 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

R*(n) g1 g2 g5 g8 g11 g9 g3 g4 g7 g10 g13 g14 g12 g6 g15 g16 
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We used a subset of the original collection of 96 

expression measurements reported by Alizadeh et al. [1]

In the original data set, 46 samples were of diffused large 

b-cell lymphoma (DLBCL). The remaining samples are of 

8 different types of tissues. Alizadeh et al clustered the 

DLBCL into two classes --- Germinal centre B-like 

DLBCL, and Activated B-like DLBCL. In our experiment 

we used gene expression measurements of 5635 genes 

and 40 samples which are composed of 19 G C B-like 

DLBCL and 21 Activated B-like DLBCL.        

Cc. Colon cancer data set 

This collection of expression measurements from colon 

biopsy samples was reported by Alon et al [2]. The data 

set consists of 62 samples of colon epithelial cells from 

colon-cancer patients, in which 38 samples are labeled 

“tumor” and 20 are labeled “normal”. The “tumor” 

biopsies were collected from tumors, and the “normal” 

biopsies were collected from healthy parts of the colons of 

the same patients. By pathological examination, the final 

statuses of the biopsy samples were labeled. Gene 

expression levels in these 62 samples were measured 

using high density oligonucleotide arrays. Of the genes 

detected in these microarrays, 2000 genes were selected 

based on the confidence in the measured expression levels. 

4.4. Methods of Feature Selection and 

Combination 
For each data set, we considered six feature selection 

methods (A) – (F) (described in Section 2) to compute 

scores for each gene, and then derived six rankings. Each 

ranking was then combined with every other ranking 

using RAC, where we used average linear combination R*

to combine two rankings.  In total, we acquired 21 

rankings (6 associated with surveyed methods and 15 

associated with combinations) for each data set. We used 

the first evaluation method described in Section 4.1 to 

compute the accuracy of classification using genes that 

appear among the top n for n = 5, 10,…, 160 .  That is, we 

applied SVM and LOOCV to each data set. The accuracy 

was averaged from 5*2k to 5*2k+1, for k = 0, 1, …, 5. (see 

Figure 5) Additionally, we used a measure called 

weighted accuracy to evaluate the 

performance,

i

ii CAccuracyCRWA )2*5,(2),( )1(

where Accuracy(C,5*2i) is the accuracy of classification 

task C using the top 5*2i genes in the ranking R (defined 

in Sec. 4.2). For dataset Ac, we computed the precision 

for each of the 21 rankings (see Figue 7). 

5. Results 
Figure 5 demonstrates the relation of average accuracy 

with regard to the size of selected top genes for the six 

feature selection methods. Figure 5 shows the detail of 

average accuracy over three datasets in relation to the size 

of selected top genes for 21 rankings. Figure 6 provides 

the detail of weighted accuracy for each data set. Figure 7 

shows the precision for each feature selection and 

combining ranking on dataset Ac. 

In Figure 5, we see that the performance of each 

method corresponds to the size of selected top genes. 

Each of the six feature selection methods achieved its best 

performance when choosing the top 10 or 20 genes. The 

inclusion of more genes after the top 20 in the feature 

selection did not improve the performance. This 

observation is understandable since the inclusion of more 

genes with low ranks is likely to introduce some noise.

From Figure 6, we can see that the performance of a 

combination of two approaches is better than the worst 

case of each individual. The trend is even clearer in 

Figure 7. Moreover, the combination of WEPO and 

TNoM resulted in higher precision than each of them. All 

of the three nonparametric methods achieved better 

performance in the precision measure than the parametric 

ones. In Figure 8, the curves of parametric and 

nonparametric means stand apart from each other on the 

rank/score graph. Furthermore, the distance between 

WEPO and TNoM/ MDMR is longer than the one 

between TNoM and MDMR. In other words, WEPO’s 

scoring scheme is more different to that of TNoM than 

MDMR. Figure 7 and 8 demonstrate that the combination 

of the heterogeneous and well-performing methods 

outperforms each individual. 

Additionally, we found there is also no “super star” 

method considering combinations among different 

measures. When averaging on three data sets in Figure 6, 

the combination of TNoM and Golub had the best 

performance. However, the categories of TNOM and 

Golub are different. It also indicates that combination of 

heterogeneous methods may achieve the best performance 

while the heterogeneity of methods is proper defined. 

When considering each data set individually, the best 

performance achieved on Golub, the combination of 

MDMR and Fisher, and the combination of Golub and 

TNoM for data sets Ac, Lp and Cc respectively. The 

power of heterogeneous combination is also observed on 

each data set. 

6. Discussion and Conclusion 
We have demonstrated that our RAC framework is a 

robust and efficient approach to identifying informative 

genes for microarray data. From Figure 5, 6, and 7, it is 

clear that no single feature selection method performs 

effectively across different data sets (and experiments) in 

different application domains. Results obtained in this 

paper using our RAC framework shows that a 

combinatorial approach almost always performs better 

than the less efficient individual, and in many cases, better 

than both. More significantly, when considering all three 

data sets together, the combination approach, on average, 

outperforms each individual feature selection method. All 

of this evidence indicates that RAC is likely to be a viable 
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and feasible approach for microarray gene expression 

analysis on any dataset. 

There are several other advantages of our combination 

methods for identifying informative genes from 

microarray data: 

Efficiency: sorting a list of n genes with assigned 

scores takes n*logn steps. Moreover, combination of m

rank lists should take no more than m*n*logn steps. 

Calculation in the RAC framework becomes simple and 

easy to understand. Selection of efficient and effective 

combination would facilitate fast process and operation. 

Flexibility: the RAC framework allows feature 

selection to use parametric, nonparametric and other 

means. It also allows combination methods to use both 

rank and score combination. Moreover, rank combination 

allows individuals the choice of using consensus building 

or voting, while score combination facilitates the options 

of using various linear, non-linear, or weighted 

combinations. Compared to other methods such as 

clustering association, or self-organized maps, the RAC 

approach is more flexible as the outputs of both stages of 

RAC are rank lists which include either rank and score 

information for the collection of genes.  

Adaptability: The RAC method can be adapted to 

different application domains which may call for different 

feature selections and different combination algorithms. 

One of our long-term goals is to construct a RAC system 

which can learn from the biological environments and 

biological phenomena in its application domain, and then 

evolve to become a more intelligent expert system in that 

particular domain. 

In this paper, we described the framework and have 

taken up our investigation using average linear 

combination of rankings. Future work will explore other 

ways to combine different feature ranking methods. Since 

the RAC framework is efficient, flexible and adaptable, 

we will explore other combination metrics  (see D.F. Hsu 

and A. Palumbo [17] for performing rank combination in 

Cayley graphs), or combine more than two feature 

selection methods in a static and dynamic fashion (see 

H.Y. Chuang et al. [10]). Furthermore, we will proceed to 

clarify how combination would achieve best performance, 

such as combining heterogeneous and well-performing 

methods observed in this work. 
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Figure 5. The accuracy of different numbers of selected top genes averaged over three data sets. 
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Figure 8. rank/score graph of six methods on Ac. 
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