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Abstract- This paper presents an evolutionary dechnique 
to train neural networks in tasks requiring learning be- 
havior. Based on family competition principles and adap- 
tive rules, the pro@ approach integrates decreasing- 
based mutations and self-adaptive mutations. Different 
mutations act global and local strategies separately to bal- 
ance the trade-off between solution quality and conver- 
gence speed. The algorithm proposed herein is applied 
to two different task domains: Boolean functions and ar- 
tificial and problem. Experimental results indicate that, 
in all tested problem, the proposed algorithm performs 
better than other canonical evolutionary algorithms, such 
as genetic algorithms, evolution strategies, and evolution- 
ary programmitug. Moreover, essendial components such 
as mutation operators and adaptive rules in the proposed 
algorithm are thoroughly analyzed. 

1 Introduction 
As widely recognized, artificial neural networks ( A " s  )[9] 
achieve complex computational tasks, such as language rec- 
ognizer, autonomous robotic control [ 133, and time serial pre- 
diction [ 101. In addition to having the approximation capabil- 
ities for multilayer feedforward networks in numerous func- 
tions [7]. ANNs avoid the bias of a designer in shaping sys- 
tem development owing to their flexibility, robustness, and 
tolerance of noise. To train ANNs is usually formulated as a 
weight training process. The process is performed to achieve 
an optimal set of connection weights for a network accord- 
ing to some optimal criteria. Back propagation [ 121, a con- 
ventional training algorithm, implements a gradient decent 
search algorithm, which attempts to minimize the total error 
between actual output and target output of an ANN. How- 
ever, back propagation is susceptible to being trapped into lo- 
cal optima and is inefficient in terms of searching for a global 
minimum of a function which is vast, multimodal, and non- 
differentiable. 

As global search approaches, evolutionary algorithms ef- 
fectively deal with complex and nondifferentiable search 
space. Pertinent research [ 113, [ 191 has demonstrated that 
the search speed of evolutionary algorithms is comparable to 
back propagation if genetic operators are well designed. Evo- 
lutionary algorithms train or evolve various ANNs smcmes 
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for many application domains. 
Evolutionary methodologies can be categorized as ge- 

netic algorithms 161, evolutionary programming, and evolu- 
tion strategies. Applying genetic algorithms to train neural 
networks may be unsatisfactory because recombination oper- 
ators incur several problems such as competing conventions 
[lSl and the epistasis effect [21. Epistasis, a nonlinear inter- 
action, dramatically retards genetic algorithms. To ensure a 
better performance, modified approaches, called real-coded 
genetic algorithms, use real-valued representation and pro- 
mote the ability of mutation operators to reduce the above 
drawbacks. However, these real-coded genetic algorithms 
employed random mutations so that they make a larger jump 
in a search space; however, this may be insufficient to achieve 
good solution quality. On the other hand, evolution strat- 
egy and evolutionary programming use real-valued represen- 
tation and focus on self-adaptive Gaussian mutation. Despite 
successful implementation of the mutation operator for vari- 
ous numerical optimization problems and its reputation as a 
good operator for local search, self-adaptive Gaussian muta- 
tion does not perform well for certain specific functions and 
it is easily trapped to local optima for rugged functions [21], 
1201. 

This paper presents an evolutionary algorithm, called 
Family Competition Evolutionary Algorithm, hereafter called 
FCEA, to train neural networks. The proposed algorithm 
combines four mutation operators: self-adaptive Gaussian 
mutation, self-adaptive Cauchy mutation, decreasing-based 
Gaussian mutation, and decreasing-based Cauchy mutation. 
FCEA constructs a relationship among these four operators to 
balance the search power of the exploration and exploitation 
by applying family competition and by automatically control- 
ling the step sizes of mutations. These operators compensate 
for their disadvantages to enhance the performance of FCEA. 
To our knowledge, FCEA is the first approach to successfully 
integrate self-adaptive mutations with decreasing-based mu- 
tations via our efficient adaptive rules based on family com- 
petition principles. 

The proposed algorithm is applied to two different prob- 
lem areas: Boolean functions learning[l2] and an artificial 
ant problem [SI, [14]. First, FCEA is applied to solve two 
famous Boolean function problems, i.e., Xor and 2-bit adder, 
in order to compare with previous results. Then, the algo- 
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Figure 1: Overview of our algorithm: (a) FCEA (b) 
FCadaptive procedure. 

rithm proposed herein trains networks to learn how to gen- 
erate different tracks based on sensory inputs of an ant robot. 
Our FCEA algorithm performs better than genetic algorithms, 

comes a “family father”. Herein, the term “family father” is 
used to distinguish other terms such as parent, because a fam- 
ily is built on the basis of the “family father” in the family 
eompetition procedure. Next, the “family father” and other 
individual selected from the population are applied by the re- 
combination operator and mutation operator M to generate 
an offspring. The process is repeated according to the family 
length L. A family with L offspring via the“fami1y father” 
is then built. These L offspring in each family then compete 
with each other and the one with the best objective value sur- 
vives. These adaptive rules are applied to adapt the step-size 
vector of this individual for mutation operators. Therefore, 
the size of each new quasi-population remains N .  Finally, 
the selection operator (S) chooses the N fittest individuals 
from the set of parent population and they become the parent 
population of the next stage. The following subsections de- 
scribe the components of the FCEA approach including the 
chromosome representation, family competition, recombina- 
tion operators and mutation operators, selection methods, and 
control rules. 

evolution strategies, and evolutionary programming in all two 
problems. This work also thoroughly analyzes the essential 
components of FCEA such as mutation operators and step 
sizes. Also investigated herein is the influence of the adaptive 
rules and strategy parameters of the proposed algorithm. 

2.1 Chromosome 

Each network izrepresented as a quadruple n-dimensional 
Vector (a,a, c, $), where n denotes the number Of connec- 
tion links of an ANN. The vector 2” is an optimized vari- 
able vector, i.e., a weight vector ofA the connection links of 

and initialization 

2 Family Competition Evolutionary Algorithm an A”. In addition, 8, G, and IJ represent the step-size 
vectors of decreasing-based mutations, sei€-adaptive Gaus- 

Proposed herein Family Competition Evolutionary Algorithm 
is a multi-operator approach. FCEA incorporates four mu- 
tation operators: decreasing-based Gaussian mutation, self- 
adaptive Gaussian mutation, self-adaptive Cauchy mutation, 
and decreasing-based Cauchy mutation. Fig.1 depicts the 
flow of FCEA. %ch block in Fig. 1 indicates the use of amu- 
tation operator and FC-adaptive shown in Fig.l(b) to generate 
a population of offspring. A factor that determines the pemr- 
bation size significantly affect the power of these four muta- 
tion operators. This important factor is called step size. These 
four mutation operators are the main operators of FCEA; they 
are sequentially applied in four stages. 

The FCEA in Fig. 1 work as follows. Initially, N networks 
are generated. The fitness value of each network is evalu- 
ated, FCEA then enters the main evolutionary loop consist- 
ing of four stages: decreasing-based Gaussian mutation stage, 
self-adaptive Cauchy mutation stage, self-adaptive Gaussian 
mutation stage, and decreasing-based Cauchy mutation stage. 
Each stage is realized by calling FCadaptive procedure illus- 
trated in Fig. Fig. I@). 

The FC-adaptive procedure uses four parameters, i.e.. par- 
ent population (P). mutation operator (M), selection opera- 
tor (S), and family competition length (L), to generate a new 
quasi-population which becomes the parent population of the 
next stage. The kernel of FCadaptive consists of family com- 
petition and adaptive d e s  for step sizes. In the family com- 
petition, each individual in the population sequentially be- 

sian mutation, and self-adaptive Cauchy mutation, respec- 
tively. Herein, the initial value of each entry of 2 is ran- 
domly chosen over [-O.l,O.l] and the initial values of each 
entries of the vectors o‘, G, and 6, are set to be 1.0, 0.25, 
and 0.25, respectively. In the upcoming subections, we use 
a’ = (&, ZG,iTa2$+J to represent an individual called “fam- 

The offspring I?= (&, Gc, qc, &) is a generated offspring by 
applying the recombination or mutation operators. The sym- 
bol zj denotes the j-th connection weight of the individual 

ily fathCf” and b = (& , ab 9 ‘i?b, gb) to denote amkf p;lrent. 

d‘. 

2.2 Family Competition 

The family competition in FCEA can be viewed as a local 
search procedure and works as follows. An individual, re- 
f e n d  to as “family parent”, is the leading role of genetic 
operators. The “family parent” generates offspring by us- 
ing recombination operators with probability p,  and mutation 
operator with probability 1. While the recombination is ap- 
plied, recombination selection is used to select two parents: 
one is the “family parent” and other individual randomly se- 
lected from population. Recombination generates only one 
offspring c‘. The offspring c‘is exact same the “family par- 
ent” if recornbination operators are not applied. Then, mu- 
tation operaror(M) i s  applied to the offspring E to generated 
an offspring d. The “famjly parent” generates L offspring 
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by repeatedly applies these procedures. These L offspring 
compete with each other and only the one with best fitness 
survives. FCEA employs this strategy to avoid premature 
convergence by maintaining the diversity of the populations 
because the L offspring generated from the same ‘‘family par- 
ent” may resemble each other. Family competition principle 
is that each individual in the population sequentially becomes 
the “family father” and perfom the local search to generate 
L offspring; and then only the one with best fitness survives. 
Therefore, FCEA will generate L . N offspring in each stage 
so that K E A  generates 2 .  (Ld + La) offspring in one gener- 
ation. 

2.3 Recombination Operators 

FCEA uses three kinds of recombination operators: modified 
discrete recombination, blend crossover (BLX-0.5) [3] and 
intermediate recombination [ 11. The intermediate recombi- 
nation is a specikl case of BLX-0.5. 

Modiiied discrete recombination: The original discrete 
recombination [ 11 generates a child that inherits genes from 
two parents with equal probability. Herein, this recombi- 
nation is modified such that a child inherits genes from the 
“family father” d with probability 0.8 and from another parent 
6 with probability 0.2. The modified discrete recombination 
is given below. 

(1) 

The probabilities in (1) can reduce the undesired effects of 
competing conventions on training neural networks. 

BLX-0.5 and intermediate recombination: The BLX- 
0.5 [3] is successfully used in a real-coded genetic algorithm. 
It is defined as follows: 

za with probability 0.8 (d zj with probability 0.2. 
zj” = 

w; = wp + p(w; -a;), 

where w may be any vector such as Z,a,G,or dand  p is cho- 
sen uniformly from the range [ - O S ,  1.51. BLX-0.5 is called 
intermediate recombination when p is equal to 0.5. This is 
accounts for why intermediate recombination is considered 
herein to be a special case of BLX-0.5. 

This work follows the work of the evolution strategies 
community to employ only intymediate recombination on 
step-size vectors, i.e., t?, 8, and y5. Meanwhile, FCEA applies 
discrete recombination, BLX-0.5, and intermediate recombi- 
nation to recombine connection links 3. In the following ex- 
periments, the probabilities are 0.2,O.l and 0.1, respectively. 

2.4 Mutation Operators 

Mutations are main operators of our FCEA. As mentioned 
earlier, four mutation operators are used in FCEA. Details of 
each operator are described as follows. 

Self-adaptive Gaussian mutation: Schwefel [ 171 pro- 
posed a self-adaptive technique, called self-adaptive Gaussian 

Figure 2: Comparisons of Gaussian and Cauchy distributions. 

mutation. This technique performs well in parameter opti- 
mization problems. It is accomplished by first mutating step 
size wj. Next the connection link s:j is mutated by adding a 
normally distributed random value with zero and w j  as expec- 
tation and standard deviation, respectively. This operator is 
realized by using the following equations (3) and (4). 

Wj” = Wj” . [T’ . N(O,1> + T . Nj(0, I)] (3) 

x; = zp+w; .Nj(O,l), (4) 

where N(0,l) is a normal distribution with mean 0 and stan- 
dard deviation 1. The solid line in Fig. 2 shows the density 
distribution of N(0,l). In addition, Nj(0,l) is a normaliza- 
tion distribution for the jth connection link. In our experi- 
ments, T and 7’ are set to (&%)-‘ and @)-’, respec- 
tively. 

Self-adaptive Cauchy mutation: Cauchy density distri- 
bution is the dash line in Fig. 2 and is defined as follows: 

where t is a scale parameter [211. The behavior of self- 
adaptive Cauchy mutation is $exactly the same as self-adaptive 
Gaussian mutation except Cauchy distribution replaces the 
normal distribution. Restated, the step size is controlled by 
using the similar equation in (6) and then the connection link 
xj is mutated by adding a Cauchy distributed random value 
with y5j as standard deviation. Self-adaptive Cauchy mutation 
is given by (6) and (7). 

y5c 3 = ?+5; ezp[T’ . N(0,l) + T - Nj(0 ,  l)] (6) 
z; = 2; +?)j”.Cj(t), (7) 

where C(t) is aCauchy probability distribution function with 
parameter t. In our experiments, t is 1. 

Decreasing-based mutations: The decreasing-based 
Gaussian mutation and decreasing-based Cauchy mutation 
share the same step-size vector 5. It is decreased by a de- 
creasing rate 7 , O  + y + l. These two mutations use two fol- 
lowing (9) and (10) to mutate connection links, respectively. 

U; = 7.g; (8) 
z; = 2; + U; * Nj(0,l) (9) 
z; = z;+Uj”.cj(l), (10) 

where 7 is 0.95 in our experiments. According to (3), (6), and 
(8), two interesting phenomena are observed. First, (8) can 
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save computational time because it is multiplication; in addi- 
tion, (3) and (6) must compute a normal distribution function 
as well as an exponential function. Second, the search behav- 
ior of decreasing-based mutation markedly differs from self- 
adaptive mutations because (8) decreases the step sizes by a 
fixed rate; however (3) and (6) adapt step sizes by a stochastic 
approach. 

2.5 Selections 

FCEA uses four selections: recombination selection, fam- 
ily selection, replacement selection, and population selection. 
FCEA employs recombination selection to select two individ- 
uals for recombination. One is “family father” and the other 
is randomly selected from the population. Family selection 
selects the one with best objective value from the L offspring 
that are generated from the same “family father”. The best 
children population set is then formed by repeatedly applying 
the procedure. In our three mutation stages except for the 
decreasing-based Gaussian mutation stage, FCEA employs 
replacement selection to select the one with better objective 
value from “family father” and its best child that is selected 
by family selection. Combining family selection and replace- 
ment selection is usually viewed as a local search procedure. 
Population selection selects the best N individuals from the 
union set formed by the parent population set and best chil- 
dren population set. Population selection resembles (p  + p)- 
ES used by traditional evolution strategies. 

2.6 Adaptive Rules 
Controlling the step size heavily influences the perfomance 
of Gaussian and Cauchy mutations. FCEA constructs the re- 
lationship between self-adaptive mutations and decreasing- 
based mutations by combining deterministic, self-adaptive, 
and adaptive techniques to effectively control the step sizes of 
Gaussian and Cauchy mutations according to the adaptation 
classification [5]. Herein, these rules are summarized into 
A-rules, including A-adaptive-rule and A-decrease-rule, for 
self-adaptive mutations and D-rules, including D-decrease- 
rule and D-increase-rule, for decreasing-based mutations. 

1. A-&@: 

0 A-adaptive-rule: This_self-adaptive rule controls 
the step sizes of v’and y5 according to (3) and (6). 
It is called a self-adaptive rule because the step- 
size vectors v’ and $ are directly encoded into a 
chromosome of an individual and undergo mu- 
tations and recombination. The rule is applied 
when the mutation is a self-adaptive one. 

0 A-decrease-rule: ,The rule decreases the step- 
size vectors v’ and $ of a “family parent” when the 
“family parent” is better than its best child gener- 
ated ty applied family competition. Step sizes v’ 
and $ are adapted while self-adaptive Gaussian 
and self-adaptive Cauchy mutation are applied, 

respectively. The step sizes v’ and 4 are adapted 
in the following manner: 

w; = 7 ~ ;  if ‘‘family parent” 3 is (1 1) 

where 7 is the decreasing rate and 7 is 0.95 in our 
experiments. 

better than its best child, 

2. D-rules: 

0 D-decrease-rule: The rule is a deterministic rule 
because it decreases the step size t? according to 
(8). The rule is applied when the mutation is a 
decreasing-based one. 

0 D-increase-rule: This adaptive rule enlarges the 
step size t3 of the best child when family compe- 
tition is applied and the best child is better than 
its “family father” in two self-adaptive mutation 
stages. It updates the step sizes as follows: 

oj” =Pvh,,,, i f  U; 4 Pv~,,,, and the best child c‘ 
is better than its ”family parent” Z, 

(12) 
where v’ is the step-size vector of the best child; 
vLe,,, is the mean value of the vector v’; and p is 
0.2 in our experiments. 

FCEA successfully combines self-adaptive mutations and 
decreasing-based mutations via A-rules and D-rules to en- 
hance the performance. Later we demonstrate how these rules 
can enhance the performance of FCEA. 

3 Boolean Functions Learning 

FCEA is applied to optimize the connection weights for two 
well-lmown Boolean function problems [E] . To compare 
with previous works, FCEA uses standard fully connected 
networks structures which have a hidden layer with a bias 
neuron. These two problems are described as follows: 

1. Xor: An ANN has 2 input nodes, 2 hidden nodes, and 
1 output node. There are 9 connection weights and 4 
input patterns. The output value is the Exclusive OR of 
the input bits. 

2. Addition: An ANN has 4 input nodes, 4 hidden nodes, 
and 3 output nodes. These are 35 connection weights 
and 16 input patterns. The output pattern is the result 
of the sum of the two 2-bits input strings. 

Herein, binary input patterns are used and a network is 
trained to generate output values ranging from 0 to 1. The 
fitness function of a network is based on mean square error 
and is given below 

. rn N n  
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Table 1: Comparison the results of FCEA with previous 
works on two Boolean functions. I Method 1 xor I Addition 1 

Evolutionary 2000.0 
Promammine f41 (100%) N/A 

Algorithm [18] 
Adaptive Genetic 

1 StandardGenetic 1 6120 I I 
(80%) N/A 
3473 

GENITOR 1191 

GENITOR II [191 

tGENITOR is a well-known modified genetic algorithm. 

tGENITOR II is a distributed version of GENITOR. 
t(N/A denotes not available in the literature.) 
$The values in () is the successful classified rate. 

(93%) 

where Ohj and O& denote, respetively, the output value and 
training value of the j t h  output neuron for the kth input pat- 
tern; m is the number of input pattern; and No is the number 
of output neuron. A training input pattern is classified cor- 
rectly if the tolerance of [& - O&I is below 0.1 for each 
output neuron. A network is convergent if the network clas- 
sifies all the training input patterns. 

Evolution begins by initializing all the connection weights 
z' of each network to random values between -0.1 and 0.1. 
The initial values of step sizes for decreasing-based mu- 
tations, self-adaptive Gaussian mutation, and self-adaptive 
Cauchy mutation are 1.0, 0.25, and 0.25, respectively. The 
family competition length Ld and La in the decreasing-based 
stages and self-adaptive stages are 3 and 9, respectively. In 
this case, FCEA generates 720 networks, i.e. (3+9+9+3).30, 
in one generation if the population size is 30. The population 
size is 10 for Xor and is 30 for addition problems. The rate of 
recombination is 0.2. These parameter values except for the 
population size are applied eo dl problems addressed herein. 

Table 1 compares our FCEA, evolutionary programming 
[4], and genetic algorithm [HI, [19] on the Boolean func- 
tions. Detailed implementation of these compared ap- 
proaches can be found in the original papers. According to 
pertinent literature, the performance of their evolutionary al- 
gorithms is competitive with back propagation. FCEA is ex- 
ecuted 50 runs for each problem and is up to 500000 function 
evaluations, i.e., the number of generated offspring, for each 
run. FCEA can solve J 1  Boolean functions within reasonable 
function evaluations; the successful classified rates are 96% 
for Addition problem. 

Standard evolutionary algorithms, such as simple genetic 
algorithm [18] and (1+6)-ES [16], cannot completely solve 
Xor problem for all puns. The modified evolutionary algo- 
rithms [ 161, [ 181 can resolve simple problems, such as Xor. 

Figure 3: Artificial ant problems: "John Muir Trail". 

However, they only solve several simple problems. GENI- 
TOR needed only around 500 recombination to resolve Xor 
problem. However, it required a population of 5000 and 2 
million function evaluations to solve 2-bit adder and the clas- 
sified rate is only 56%. These results indicates that although 
efficient for simple problems, these evolutionary algorithms 
can not solve complicated problems, such as Addition prob- 
lems. GENITOR II, a distributed version of GENITOR, can 
increase classified rate to 93% in the Addition problem. How- 
ever, its population size is also 5000 and the number of func- 
tion evaluations also reaches 2 million. In contrast to these 
approaches, FCEA only needs 256464 function evaluations 
and the successfully classified rate is up to 96% by using 
small population size, i.e., 30, for Addition problem. These 
results demonstrate that FCEA is a robust approach to train 
forward networks for Boolean functions learning. 

4 The Ant Problem 

This study applies FCEA to experiment on complex search 
and collection task that is the tracker task "John Muir Trail" 
[8]. In this problems. a simulated ant is placed on a two- 
dimensional toroidal grid that contains a trail of food. The 
ant traverses the grid to collect any food encountered along 
the trail. This task attempts to train a neural network, i.e., a 
simulated ant, that collects the maximum number of pieces of 
food during the given time steps. Fig.3 shows this trail. Each 
black box in the trail stands for a food unit. According to the 
environment of [8], the ant stands on one cell, facing one of 
the cardinal dwtions; it can sense only the cell ahead of it. 
After sensing the cell ahead of it, the ant must take one of 
four actions: move forward one step, turn right 90°, turn left 
go", and no-op (do nothing). In the optimal trail of the "John 
Muir Trail", there are 89 food cells, 38 no food cells, and 20 
turns. So, the number of minimum steps for eating all food is 
147 time steps. On the other hand. an ant requires at least 165 
time steps to completely travel the optimal trail of the "Santa 
Fe Trial". 

To compare with previous research, we follow the work 
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Figure 4: The typical convergent curve of “John Muir Trail” 
problems. 

Figure 5: The typical search behavior of a simulated ant con- 
trolled by our evolved neural controller for “John Muir Trail” 
ant problem. 

of [SI. That investigation not only used finite state machines 
and recurrent neural networks to represent the problem, but 
also used the traditional bit-string genetic algorithm to train 
the structures. Each simulated ant is controlled by a network 
having two input nodes and four output nodes. The “food” in- 
put is 1 when food is present in the cell ahead of the ant; and 
the second ”no-food” is 1 in the absence of food in the cell 
in front of the ant. Each output unit corresponds to a unique 
action: move forward one step, turn right 90°, turn left 90°, 
or no-op. Each input node is connected to each of the five 
hidden nodes and to each of the four output nodes. The five 
hidden nodes are fully connected in the hidden layer. There- 
fore, this structure is a full connection with shortcut recurrent 
neural network; its total number of links with bias input is 
72. To compare with previous results, the fitness is defined 
the number of pieces of food eaten within 200 time steps for 
“John Muir Trail”. 

Fig.4 displays the convergence curve of the ant problems. 
Fig.4 indicates that FCEA only requires about 12,000 func- 
tion evaluations to train a neural controller to find 82 food 
pieces within 200 time steps. To find 85 and 88 food pieces 
within 200 time steps, FCEA then requires about 35000 and 
58000 function evaluations. FCEA on average found 81,87, 
and 88 food pieces within 200 time steps about 2oooO,65000, 
and 8oooO function evaluations, respectively. “John Muir 
Trail” was tested over 25 runs and the rate of success of find- 
ing 89 food pieces was 80%. The remaining 20% of runs the 
ant foraged at least 86 food pieces. The successful rate can be 
improved to 96% when the population is 100 and the number 
of function evaluations is 500,000. 

Table 2: Comparison among genetic algorithm, evolutionary 
programming, and our FCEA on ”John Muir Trail” ant prob- 
lem. 

k I 

Fig.5 depicts a typical search behavior and the traveled 
path of a simulated ant that is controlled by our evolved neural 
network. The number of the cell is the time step to eat the 
food. The symbol ’*’ denotes a cell traveled by an ant when 
the cell is empty. Fig.5 indicate that the ant requires 195 time 
steps to seek all 89 food pieces in the environment of “John 
Muir Trail”. 

Table 2 compares our FCEA, evolutionary programming 
[ 141, and genetic algorithm 181 on the “John Muir Trail” ant 
problem. Jefferson et al. used traditional genetic algorithms 
to solve “John Muir Trail”. That investigation encoded the 
problem with 448 bits and used a population of 65536 to 
achieve the task in 100 generations. Their approach required 
6,553,600 networks to forage 89 food pieces exactly within 
200 time steps. In contrast to Jefferson’s solution, our FCEA 
uses population sizes 50 and 100, and only requires about 
126,000 and 284,000 function evaluations, respectively, to eat 
89 food pieces within 195 time steps. Table 2 also indicates 
that FCEA perfoms better than evolutionary programming. 

5 The Characteristics of FCEA 

In this section, we briefly &scussed several characteristics 
of FCEA via experimental designs. Table 3 compares the 
ten approaches in term of 2-bits Adder functions and an 
ant problem. Each approach is a combination of operators 
applied in our FCEA: decreasing-based Gaussian mutation 
(MDG), self-adaptive Cauchy mutation (Mc) ,  self-adaptive 
Gaussian mutation (MG), and decreasing-based Cauchy mu- 
tation (MDc). For example, the M c  approach only uses self- 
adaptive Cauchy mutation; the MDG + MC approach inte- 
grates decreasing-based Gaussian mutation with self-adaptive 
Cauchy mutation and it also applied the control rules. The 
FCL~FCEA approach is unique case of our FCEA because 
the family competition lengths (Ld and La) is set to 1. The 
NCRFCEA approach is also a unique case of our FCEA but 
it does not apply adaptive rules, i.e., A-decrease-rule and D- 
increase-rule. The final approach in Table 3 is a standard evo- 
lution strategy i.e., ( p  + X)-ES, where p is 20 and X is 120. 
Each approach executes 50 runs for Boolean Functions; and 
25 runs for the ant problem. The maximum numbers of func- 
tion evaluations of each run on Boolean functions and the ailt 
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problem are 500,000 and 250,000, respectively. The value in 
the parenthesis in the ant problem denotes the average num- 
ber of food pieces eaten. 

We observe several properties according to these experi- 
mental results of Table 3 and Fig. 6. 

e Each mutation operator in FCEA has different perfor- 
mance on the seCected problems. These results indicate 
that each operator has different search behavior. 

0 Generally, the approaches of a combination of multiple 
mutations perform better than the approaches of unary- 
operator mutation and they do not increase proportion- 
ally on the number of function evaluations. For ex- 
ample, our FCEA that combines MDG, Mc, MG, and 
MDC has the best performance among all approaches 
on all testing problems. Nevertheless, the number of 
function evaluations of FCEA is not larger than other 
approaches for all testing problems. 

e The control rules of step sizes are useful because 
NCRFCEA perfoms worst than FCEA. Fig. 6(b) in- 
dicates that the step size (0) of decreasing-based mu- 
tation becomes small while FCEA does not apply D- 
increase-rule. Fig. q a )  indicates that the step size of 
self-adaptive Gaussian mutation is too large to improve 
solution while FCEA does not apply A-decrease-rule. 

Q The family Competition length is a one of critical fac- 
tors of FCEA m obtain better performance for com- 

Addition Jefferson's 
Ant Problem 

(a) Self-adaptive mutation (b) Demasing-based muta- 
tion 

Figure 6: The comparison of average step size between FCEA 
with adaptive rules and FCEA without adaptive rules on ant 
problem 

plex problems. For example, FCEA have to enlarge the 
length in order to solve ant problems. 

e Cauchy mutations perform better than Gaussian muta- 
tions on training neural networks. 

6 Conclusions 

This study has demonstrated that FCEA is an efficient ap- 
proach for training neural networks. The proposed algorithm 
combines decreasing-based mutations with self-adaptive mu- 
tations to enhance the performance based on family compe- 
tition and adaptive rules. Our FCEA is able to balance the 
exploitation and exploration of search ability. Results from 
Boolean functions and an ant problems confirm the flexibility 
and robusmess of such an evolutionary approach. 

A global optimization method must consist of both global 
and local search strategies. For our FCEA, the decreasing- 
based mutation with large initial step size are global search 
strategies and self-adaptive mutations with family compe- 
tition procedure and replacement selection are local search 
strategies. Cauchy mutations are attention to be used in global 
search strategies than Gaussian mutations as demonstrated in 
the proposed approach. These mutation operators can be inte- 
grated to closely cooperate with each other. These smoothly 
integrated strategies make our FCEA applicable to train neu- 
ral networks for various applications as well as to solve vari- 
ous numeric optimization problems. Under appropriate con- 
ditions, FCEA is able to converge to a global solution. 

In summary, experiments in these well-known problems 
verify that the proposed approach consistently performs more 
robustly than other algorithms, such as genetic algorithms, 
evolution strategies, and evolutionary programming. We be- 
lieve that the flexibility and robustness of our FCEA makes it 
a highly effective global optimization tool. 
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