
Incorporation Family Competition into Gaussian and Cauchy Mutations to
Tkaining Neural Networks Using an Evolutionary Algorithm

JiM-Moon Yang Jorng-Tzong Horng Cheng-Yen Kao
Department of Computer Science

and Information Engineering, and Information Engineering, and Information Engineering,
National Taiwan LJniversity, National Central University, National Taiwan University,

Taipei, Taiwan ChungLi, Taiwan Taipei, Taiwan
moon@csie.ntu.edu.tw horng @db.csie.ntu.edu.tw cykao@csie.ntu.edu.tw

Department of Computer Science Department of Computer Science

Abstract- This paper presents an evolutionary dechnique
to train neural networks in tasks requiring learning be-
havior. Based on family competition principles and adap-
tive rules, the pro@ approach integrates decreasing-
based mutations and self-adaptive mutations. Different
mutations act global and local strategies separately to bal-
ance the trade-off between solution quality and conver-
gence speed. The algorithm proposed herein is applied
to two different task domains: Boolean functions and ar-
tificial and problem. Experimental results indicate that,
in all tested problem, the proposed algorithm performs
better than other canonical evolutionary algorithms, such
as genetic algorithms, evolution strategies, and evolution-
ary programmitug. Moreover, essendial components such
as mutation operators and adaptive rules in the proposed
algorithm are thoroughly analyzed.

1 Introduction
As widely recognized, artificial neural networks (A " s)[9]
achieve complex computational tasks, such as language rec-
ognizer, autonomous robotic control [133, and time serial pre-
diction [101. In addition to having the approximation capabil-
ities for multilayer feedforward networks in numerous func-
tions [7]. ANNs avoid the bias of a designer in shaping sys-
tem development owing to their flexibility, robustness, and
tolerance of noise. To train ANNs is usually formulated as a
weight training process. The process is performed to achieve
an optimal set of connection weights for a network accord-
ing to some optimal criteria. Back propagation [121, a con-
ventional training algorithm, implements a gradient decent
search algorithm, which attempts to minimize the total error
between actual output and target output of an ANN. How-
ever, back propagation is susceptible to being trapped into lo-
cal optima and is inefficient in terms of searching for a global
minimum of a function which is vast, multimodal, and non-
differentiable.

As global search approaches, evolutionary algorithms ef-
fectively deal with complex and nondifferentiable search
space. Pertinent research [113, [191 has demonstrated that
the search speed of evolutionary algorithms is comparable to
back propagation if genetic operators are well designed. Evo-
lutionary algorithms train or evolve various ANNs smcmes

0-7803-5536-9/99/$10.00 0 1999 IEEE

for many application domains.
Evolutionary methodologies can be categorized as ge-

netic algorithms 161, evolutionary programming, and evolu-
tion strategies. Applying genetic algorithms to train neural
networks may be unsatisfactory because recombination oper-
ators incur several problems such as competing conventions
[lSl and the epistasis effect [21. Epistasis, a nonlinear inter-
action, dramatically retards genetic algorithms. To ensure a
better performance, modified approaches, called real-coded
genetic algorithms, use real-valued representation and pro-
mote the ability of mutation operators to reduce the above
drawbacks. However, these real-coded genetic algorithms
employed random mutations so that they make a larger jump
in a search space; however, this may be insufficient to achieve
good solution quality. On the other hand, evolution strat-
egy and evolutionary programming use real-valued represen-
tation and focus on self-adaptive Gaussian mutation. Despite
successful implementation of the mutation operator for vari-
ous numerical optimization problems and its reputation as a
good operator for local search, self-adaptive Gaussian muta-
tion does not perform well for certain specific functions and
it is easily trapped to local optima for rugged functions [21],
1201.

This paper presents an evolutionary algorithm, called
Family Competition Evolutionary Algorithm, hereafter called
FCEA, to train neural networks. The proposed algorithm
combines four mutation operators: self-adaptive Gaussian
mutation, self-adaptive Cauchy mutation, decreasing-based
Gaussian mutation, and decreasing-based Cauchy mutation.
FCEA constructs a relationship among these four operators to
balance the search power of the exploration and exploitation
by applying family competition and by automatically control-
ling the step sizes of mutations. These operators compensate
for their disadvantages to enhance the performance of FCEA.
To our knowledge, FCEA is the first approach to successfully
integrate self-adaptive mutations with decreasing-based mu-
tations via our efficient adaptive rules based on family com-
petition principles.

The proposed algorithm is applied to two different prob-
lem areas: Boolean functions learning[l2] and an artificial
ant problem [SI, [14]. First, FCEA is applied to solve two
famous Boolean function problems, i.e., Xor and 2-bit adder,
in order to compare with previous results. Then, the algo-

1994

Figure 1: Overview of our algorithm: (a) FCEA (b)
FCadaptive procedure.

rithm proposed herein trains networks to learn how to gen-
erate different tracks based on sensory inputs of an ant robot.
Our FCEA algorithm performs better than genetic algorithms,

comes a “family father”. Herein, the term “family father” is
used to distinguish other terms such as parent, because a fam-
ily is built on the basis of the “family father” in the family
eompetition procedure. Next, the “family father” and other
individual selected from the population are applied by the re-
combination operator and mutation operator M to generate
an offspring. The process is repeated according to the family
length L. A family with L offspring via the“fami1y father”
is then built. These L offspring in each family then compete
with each other and the one with the best objective value sur-
vives. These adaptive rules are applied to adapt the step-size
vector of this individual for mutation operators. Therefore,
the size of each new quasi-population remains N . Finally,
the selection operator (S) chooses the N fittest individuals
from the set of parent population and they become the parent
population of the next stage. The following subsections de-
scribe the components of the FCEA approach including the
chromosome representation, family competition, recombina-
tion operators and mutation operators, selection methods, and
control rules.

evolution strategies, and evolutionary programming in all two
problems. This work also thoroughly analyzes the essential
components of FCEA such as mutation operators and step
sizes. Also investigated herein is the influence of the adaptive
rules and strategy parameters of the proposed algorithm.

2.1 Chromosome

Each network izrepresented as a quadruple n-dimensional
Vector (a,a, c, $), where n denotes the number Of connec-
tion links of an ANN. The vector 2” is an optimized vari-
able vector, i.e., a weight vector ofA the connection links of

and initialization

2 Family Competition Evolutionary Algorithm an A”. In addition, 8, G, and IJ represent the step-size
vectors of decreasing-based mutations, sei€-adaptive Gaus-

Proposed herein Family Competition Evolutionary Algorithm
is a multi-operator approach. FCEA incorporates four mu-
tation operators: decreasing-based Gaussian mutation, self-
adaptive Gaussian mutation, self-adaptive Cauchy mutation,
and decreasing-based Cauchy mutation. Fig.1 depicts the
flow of FCEA. %ch block in Fig. 1 indicates the use of amu-
tation operator and FC-adaptive shown in Fig.l(b) to generate
a population of offspring. A factor that determines the pemr-
bation size significantly affect the power of these four muta-
tion operators. This important factor is called step size. These
four mutation operators are the main operators of FCEA; they
are sequentially applied in four stages.

The FCEA in Fig. 1 work as follows. Initially, N networks
are generated. The fitness value of each network is evalu-
ated, FCEA then enters the main evolutionary loop consist-
ing of four stages: decreasing-based Gaussian mutation stage,
self-adaptive Cauchy mutation stage, self-adaptive Gaussian
mutation stage, and decreasing-based Cauchy mutation stage.
Each stage is realized by calling FCadaptive procedure illus-
trated in Fig. Fig. I@).

The FC-adaptive procedure uses four parameters, i.e.. par-
ent population (P). mutation operator (M), selection opera-
tor (S), and family competition length (L), to generate a new
quasi-population which becomes the parent population of the
next stage. The kernel of FCadaptive consists of family com-
petition and adaptive d e s for step sizes. In the family com-
petition, each individual in the population sequentially be-

sian mutation, and self-adaptive Cauchy mutation, respec-
tively. Herein, the initial value of each entry of 2 is ran-
domly chosen over [-O.l,O.l] and the initial values of each
entries of the vectors o‘, G, and 6, are set to be 1.0, 0.25,
and 0.25, respectively. In the upcoming subections, we use
a’ = (&, ZG,iTa2$+J to represent an individual called “fam-

The offspring I?= (&, Gc, qc, &) is a generated offspring by
applying the recombination or mutation operators. The sym-
bol zj denotes the j-th connection weight of the individual

ily fathCf” and b = (& , ab 9 ‘i?b, gb) to denote amkf p;lrent.

d‘.

2.2 Family Competition

The family competition in FCEA can be viewed as a local
search procedure and works as follows. An individual, re-
f e n d to as “family parent”, is the leading role of genetic
operators. The “family parent” generates offspring by us-
ing recombination operators with probability p, and mutation
operator with probability 1. While the recombination is ap-
plied, recombination selection is used to select two parents:
one is the “family parent” and other individual randomly se-
lected from population. Recombination generates only one
offspring c‘. The offspring c‘is exact same the “family par-
ent” if recornbination operators are not applied. Then, mu-
tation operaror(M) i s applied to the offspring E to generated
an offspring d. The “famjly parent” generates L offspring

1995

by repeatedly applies these procedures. These L offspring
compete with each other and only the one with best fitness
survives. FCEA employs this strategy to avoid premature
convergence by maintaining the diversity of the populations
because the L offspring generated from the same ‘‘family par-
ent” may resemble each other. Family competition principle
is that each individual in the population sequentially becomes
the “family father” and perfom the local search to generate
L offspring; and then only the one with best fitness survives.
Therefore, FCEA will generate L . N offspring in each stage
so that K E A generates 2 . (Ld + La) offspring in one gener-
ation.

2.3 Recombination Operators

FCEA uses three kinds of recombination operators: modified
discrete recombination, blend crossover (BLX-0.5) [3] and
intermediate recombination [11. The intermediate recombi-
nation is a specikl case of BLX-0.5.

Modiiied discrete recombination: The original discrete
recombination [11 generates a child that inherits genes from
two parents with equal probability. Herein, this recombi-
nation is modified such that a child inherits genes from the
“family father” d with probability 0.8 and from another parent
6 with probability 0.2. The modified discrete recombination
is given below.

(1)

The probabilities in (1) can reduce the undesired effects of
competing conventions on training neural networks.

BLX-0.5 and intermediate recombination: The BLX-
0.5 [3] is successfully used in a real-coded genetic algorithm.
It is defined as follows:

za with probability 0.8 (d zj with probability 0.2.
zj” =

w; = wp + p(w; -a;),

where w may be any vector such as Z,a,G,or dand p is cho-
sen uniformly from the range [- O S , 1.51. BLX-0.5 is called
intermediate recombination when p is equal to 0.5. This is
accounts for why intermediate recombination is considered
herein to be a special case of BLX-0.5.

This work follows the work of the evolution strategies
community to employ only intymediate recombination on
step-size vectors, i.e., t?, 8, and y5. Meanwhile, FCEA applies
discrete recombination, BLX-0.5, and intermediate recombi-
nation to recombine connection links 3. In the following ex-
periments, the probabilities are 0.2,O.l and 0.1, respectively.

2.4 Mutation Operators

Mutations are main operators of our FCEA. As mentioned
earlier, four mutation operators are used in FCEA. Details of
each operator are described as follows.

Self-adaptive Gaussian mutation: Schwefel [171 pro-
posed a self-adaptive technique, called self-adaptive Gaussian

Figure 2: Comparisons of Gaussian and Cauchy distributions.

mutation. This technique performs well in parameter opti-
mization problems. It is accomplished by first mutating step
size wj. Next the connection link s:j is mutated by adding a
normally distributed random value with zero and w j as expec-
tation and standard deviation, respectively. This operator is
realized by using the following equations (3) and (4).

Wj” = Wj” . [T’ . N(O,1> + T . Nj(0, I)] (3)

x; = zp+w; .Nj(O,l), (4)

where N(0,l) is a normal distribution with mean 0 and stan-
dard deviation 1. The solid line in Fig. 2 shows the density
distribution of N(0,l). In addition, Nj(0,l) is a normaliza-
tion distribution for the jth connection link. In our experi-
ments, T and 7’ are set to (&%)-‘ and @)-’, respec-
tively.

Self-adaptive Cauchy mutation: Cauchy density distri-
bution is the dash line in Fig. 2 and is defined as follows:

where t is a scale parameter [211. The behavior of self-
adaptive Cauchy mutation is $exactly the same as self-adaptive
Gaussian mutation except Cauchy distribution replaces the
normal distribution. Restated, the step size is controlled by
using the similar equation in (6) and then the connection link
xj is mutated by adding a Cauchy distributed random value
with y5j as standard deviation. Self-adaptive Cauchy mutation
is given by (6) and (7).

y5c 3 = ?+5; ezp[T’ . N(0,l) + T - Nj(0 , l)] (6)
z; = 2; +?)j”.Cj(t), (7)

where C(t) is aCauchy probability distribution function with
parameter t. In our experiments, t is 1.

Decreasing-based mutations: The decreasing-based
Gaussian mutation and decreasing-based Cauchy mutation
share the same step-size vector 5. It is decreased by a de-
creasing rate 7 , O + y + l. These two mutations use two fol-
lowing (9) and (10) to mutate connection links, respectively.

U; = 7.g; (8)
z; = 2; + U; * Nj(0,l) (9)
z; = z;+Uj”.cj(l), (10)

where 7 is 0.95 in our experiments. According to (3), (6), and
(8), two interesting phenomena are observed. First, (8) can

1996

save computational time because it is multiplication; in addi-
tion, (3) and (6) must compute a normal distribution function
as well as an exponential function. Second, the search behav-
ior of decreasing-based mutation markedly differs from self-
adaptive mutations because (8) decreases the step sizes by a
fixed rate; however (3) and (6) adapt step sizes by a stochastic
approach.

2.5 Selections

FCEA uses four selections: recombination selection, fam-
ily selection, replacement selection, and population selection.
FCEA employs recombination selection to select two individ-
uals for recombination. One is “family father” and the other
is randomly selected from the population. Family selection
selects the one with best objective value from the L offspring
that are generated from the same “family father”. The best
children population set is then formed by repeatedly applying
the procedure. In our three mutation stages except for the
decreasing-based Gaussian mutation stage, FCEA employs
replacement selection to select the one with better objective
value from “family father” and its best child that is selected
by family selection. Combining family selection and replace-
ment selection is usually viewed as a local search procedure.
Population selection selects the best N individuals from the
union set formed by the parent population set and best chil-
dren population set. Population selection resembles (p + p)-
ES used by traditional evolution strategies.

2.6 Adaptive Rules
Controlling the step size heavily influences the perfomance
of Gaussian and Cauchy mutations. FCEA constructs the re-
lationship between self-adaptive mutations and decreasing-
based mutations by combining deterministic, self-adaptive,
and adaptive techniques to effectively control the step sizes of
Gaussian and Cauchy mutations according to the adaptation
classification [5]. Herein, these rules are summarized into
A-rules, including A-adaptive-rule and A-decrease-rule, for
self-adaptive mutations and D-rules, including D-decrease-
rule and D-increase-rule, for decreasing-based mutations.

1. A-&@:

0 A-adaptive-rule: This_self-adaptive rule controls
the step sizes of v’and y5 according to (3) and (6).
It is called a self-adaptive rule because the step-
size vectors v’ and $ are directly encoded into a
chromosome of an individual and undergo mu-
tations and recombination. The rule is applied
when the mutation is a self-adaptive one.

0 A-decrease-rule: ,The rule decreases the step-
size vectors v’ and $ of a “family parent” when the
“family parent” is better than its best child gener-
ated ty applied family competition. Step sizes v’
and $ are adapted while self-adaptive Gaussian
and self-adaptive Cauchy mutation are applied,

respectively. The step sizes v’ and 4 are adapted
in the following manner:

w; = 7 ~ ; if ‘‘family parent” 3 is (1 1)

where 7 is the decreasing rate and 7 is 0.95 in our
experiments.

better than its best child,

2. D-rules:

0 D-decrease-rule: The rule is a deterministic rule
because it decreases the step size t? according to
(8). The rule is applied when the mutation is a
decreasing-based one.

0 D-increase-rule: This adaptive rule enlarges the
step size t3 of the best child when family compe-
tition is applied and the best child is better than
its “family father” in two self-adaptive mutation
stages. It updates the step sizes as follows:

oj” =Pvh,,,, i f U; 4 Pv~,,,, and the best child c‘
is better than its ”family parent” Z,

(12)
where v’ is the step-size vector of the best child;
vLe,,, is the mean value of the vector v’; and p is
0.2 in our experiments.

FCEA successfully combines self-adaptive mutations and
decreasing-based mutations via A-rules and D-rules to en-
hance the performance. Later we demonstrate how these rules
can enhance the performance of FCEA.

3 Boolean Functions Learning

FCEA is applied to optimize the connection weights for two
well-lmown Boolean function problems [E] . To compare
with previous works, FCEA uses standard fully connected
networks structures which have a hidden layer with a bias
neuron. These two problems are described as follows:

1. Xor: An ANN has 2 input nodes, 2 hidden nodes, and
1 output node. There are 9 connection weights and 4
input patterns. The output value is the Exclusive OR of
the input bits.

2. Addition: An ANN has 4 input nodes, 4 hidden nodes,
and 3 output nodes. These are 35 connection weights
and 16 input patterns. The output pattern is the result
of the sum of the two 2-bits input strings.

Herein, binary input patterns are used and a network is
trained to generate output values ranging from 0 to 1. The
fitness function of a network is based on mean square error
and is given below

. rn N n

1997

Table 1: Comparison the results of FCEA with previous
works on two Boolean functions. I Method 1 xor I Addition 1

Evolutionary 2000.0
Promammine f41 (100%) N/A

Algorithm [18]
Adaptive Genetic

1 StandardGenetic 1 6120 I I
(80%) N/A
3473

GENITOR 1191

GENITOR II [191

tGENITOR is a well-known modified genetic algorithm.

tGENITOR II is a distributed version of GENITOR.
t(N/A denotes not available in the literature.)
$The values in () is the successful classified rate.

(93%)

where Ohj and O& denote, respetively, the output value and
training value of the j t h output neuron for the kth input pat-
tern; m is the number of input pattern; and No is the number
of output neuron. A training input pattern is classified cor-
rectly if the tolerance of [& - O&I is below 0.1 for each
output neuron. A network is convergent if the network clas-
sifies all the training input patterns.

Evolution begins by initializing all the connection weights
z' of each network to random values between -0.1 and 0.1.
The initial values of step sizes for decreasing-based mu-
tations, self-adaptive Gaussian mutation, and self-adaptive
Cauchy mutation are 1.0, 0.25, and 0.25, respectively. The
family competition length Ld and La in the decreasing-based
stages and self-adaptive stages are 3 and 9, respectively. In
this case, FCEA generates 720 networks, i.e. (3+9+9+3).30,
in one generation if the population size is 30. The population
size is 10 for Xor and is 30 for addition problems. The rate of
recombination is 0.2. These parameter values except for the
population size are applied eo dl problems addressed herein.

Table 1 compares our FCEA, evolutionary programming
[4], and genetic algorithm [HI, [19] on the Boolean func-
tions. Detailed implementation of these compared ap-
proaches can be found in the original papers. According to
pertinent literature, the performance of their evolutionary al-
gorithms is competitive with back propagation. FCEA is ex-
ecuted 50 runs for each problem and is up to 500000 function
evaluations, i.e., the number of generated offspring, for each
run. FCEA can solve J 1 Boolean functions within reasonable
function evaluations; the successful classified rates are 96%
for Addition problem.

Standard evolutionary algorithms, such as simple genetic
algorithm [18] and (1+6)-ES [16], cannot completely solve
Xor problem for all puns. The modified evolutionary algo-
rithms [161, [181 can resolve simple problems, such as Xor.

Figure 3: Artificial ant problems: "John Muir Trail".

However, they only solve several simple problems. GENI-
TOR needed only around 500 recombination to resolve Xor
problem. However, it required a population of 5000 and 2
million function evaluations to solve 2-bit adder and the clas-
sified rate is only 56%. These results indicates that although
efficient for simple problems, these evolutionary algorithms
can not solve complicated problems, such as Addition prob-
lems. GENITOR II, a distributed version of GENITOR, can
increase classified rate to 93% in the Addition problem. How-
ever, its population size is also 5000 and the number of func-
tion evaluations also reaches 2 million. In contrast to these
approaches, FCEA only needs 256464 function evaluations
and the successfully classified rate is up to 96% by using
small population size, i.e., 30, for Addition problem. These
results demonstrate that FCEA is a robust approach to train
forward networks for Boolean functions learning.

4 The Ant Problem

This study applies FCEA to experiment on complex search
and collection task that is the tracker task "John Muir Trail"
[8]. In this problems. a simulated ant is placed on a two-
dimensional toroidal grid that contains a trail of food. The
ant traverses the grid to collect any food encountered along
the trail. This task attempts to train a neural network, i.e., a
simulated ant, that collects the maximum number of pieces of
food during the given time steps. Fig.3 shows this trail. Each
black box in the trail stands for a food unit. According to the
environment of [8], the ant stands on one cell, facing one of
the cardinal dwtions; it can sense only the cell ahead of it.
After sensing the cell ahead of it, the ant must take one of
four actions: move forward one step, turn right 90°, turn left
go", and no-op (do nothing). In the optimal trail of the "John
Muir Trail", there are 89 food cells, 38 no food cells, and 20
turns. So, the number of minimum steps for eating all food is
147 time steps. On the other hand. an ant requires at least 165
time steps to completely travel the optimal trail of the "Santa
Fe Trial".

To compare with previous research, we follow the work

1998

f

Figure 4: The typical convergent curve of “John Muir Trail”
problems.

Figure 5: The typical search behavior of a simulated ant con-
trolled by our evolved neural controller for “John Muir Trail”
ant problem.

of [SI. That investigation not only used finite state machines
and recurrent neural networks to represent the problem, but
also used the traditional bit-string genetic algorithm to train
the structures. Each simulated ant is controlled by a network
having two input nodes and four output nodes. The “food” in-
put is 1 when food is present in the cell ahead of the ant; and
the second ”no-food” is 1 in the absence of food in the cell
in front of the ant. Each output unit corresponds to a unique
action: move forward one step, turn right 90°, turn left 90°,
or no-op. Each input node is connected to each of the five
hidden nodes and to each of the four output nodes. The five
hidden nodes are fully connected in the hidden layer. There-
fore, this structure is a full connection with shortcut recurrent
neural network; its total number of links with bias input is
72. To compare with previous results, the fitness is defined
the number of pieces of food eaten within 200 time steps for
“John Muir Trail”.

Fig.4 displays the convergence curve of the ant problems.
Fig.4 indicates that FCEA only requires about 12,000 func-
tion evaluations to train a neural controller to find 82 food
pieces within 200 time steps. To find 85 and 88 food pieces
within 200 time steps, FCEA then requires about 35000 and
58000 function evaluations. FCEA on average found 81,87,
and 88 food pieces within 200 time steps about 2oooO,65000,
and 8oooO function evaluations, respectively. “John Muir
Trail” was tested over 25 runs and the rate of success of find-
ing 89 food pieces was 80%. The remaining 20% of runs the
ant foraged at least 86 food pieces. The successful rate can be
improved to 96% when the population is 100 and the number
of function evaluations is 500,000.

Table 2: Comparison among genetic algorithm, evolutionary
programming, and our FCEA on ”John Muir Trail” ant prob-
lem.

k I

Fig.5 depicts a typical search behavior and the traveled
path of a simulated ant that is controlled by our evolved neural
network. The number of the cell is the time step to eat the
food. The symbol ’*’ denotes a cell traveled by an ant when
the cell is empty. Fig.5 indicate that the ant requires 195 time
steps to seek all 89 food pieces in the environment of “John
Muir Trail”.

Table 2 compares our FCEA, evolutionary programming
[141, and genetic algorithm 181 on the “John Muir Trail” ant
problem. Jefferson et al. used traditional genetic algorithms
to solve “John Muir Trail”. That investigation encoded the
problem with 448 bits and used a population of 65536 to
achieve the task in 100 generations. Their approach required
6,553,600 networks to forage 89 food pieces exactly within
200 time steps. In contrast to Jefferson’s solution, our FCEA
uses population sizes 50 and 100, and only requires about
126,000 and 284,000 function evaluations, respectively, to eat
89 food pieces within 195 time steps. Table 2 also indicates
that FCEA perfoms better than evolutionary programming.

5 The Characteristics of FCEA

In this section, we briefly &scussed several characteristics
of FCEA via experimental designs. Table 3 compares the
ten approaches in term of 2-bits Adder functions and an
ant problem. Each approach is a combination of operators
applied in our FCEA: decreasing-based Gaussian mutation
(MDG), self-adaptive Cauchy mutation (Mc) , self-adaptive
Gaussian mutation (MG), and decreasing-based Cauchy mu-
tation (MDc). For example, the M c approach only uses self-
adaptive Cauchy mutation; the MDG + MC approach inte-
grates decreasing-based Gaussian mutation with self-adaptive
Cauchy mutation and it also applied the control rules. The
FCL~FCEA approach is unique case of our FCEA because
the family competition lengths (Ld and La) is set to 1. The
NCRFCEA approach is also a unique case of our FCEA but
it does not apply adaptive rules, i.e., A-decrease-rule and D-
increase-rule. The final approach in Table 3 is a standard evo-
lution strategy i.e., (p + X)-ES, where p is 20 and X is 120.
Each approach executes 50 runs for Boolean Functions; and
25 runs for the ant problem. The maximum numbers of func-
tion evaluations of each run on Boolean functions and the ailt

1999

Methods

problem are 500,000 and 250,000, respectively. The value in
the parenthesis in the ant problem denotes the average num-
ber of food pieces eaten.

We observe several properties according to these experi-
mental results of Table 3 and Fig. 6.

e Each mutation operator in FCEA has different perfor-
mance on the seCected problems. These results indicate
that each operator has different search behavior.

0 Generally, the approaches of a combination of multiple
mutations perform better than the approaches of unary-
operator mutation and they do not increase proportion-
ally on the number of function evaluations. For ex-
ample, our FCEA that combines MDG, Mc, MG, and
MDC has the best performance among all approaches
on all testing problems. Nevertheless, the number of
function evaluations of FCEA is not larger than other
approaches for all testing problems.

e The control rules of step sizes are useful because
NCRFCEA perfoms worst than FCEA. Fig. 6(b) in-
dicates that the step size (0) of decreasing-based mu-
tation becomes small while FCEA does not apply D-
increase-rule. Fig. q a) indicates that the step size of
self-adaptive Gaussian mutation is too large to improve
solution while FCEA does not apply A-decrease-rule.

Q The family Competition length is a one of critical fac-
tors of FCEA m obtain better performance for com-

Addition Jefferson's
Ant Problem

(a) Self-adaptive mutation (b) Demasing-based muta-
tion

Figure 6: The comparison of average step size between FCEA
with adaptive rules and FCEA without adaptive rules on ant
problem

plex problems. For example, FCEA have to enlarge the
length in order to solve ant problems.

e Cauchy mutations perform better than Gaussian muta-
tions on training neural networks.

6 Conclusions

This study has demonstrated that FCEA is an efficient ap-
proach for training neural networks. The proposed algorithm
combines decreasing-based mutations with self-adaptive mu-
tations to enhance the performance based on family compe-
tition and adaptive rules. Our FCEA is able to balance the
exploitation and exploration of search ability. Results from
Boolean functions and an ant problems confirm the flexibility
and robusmess of such an evolutionary approach.

A global optimization method must consist of both global
and local search strategies. For our FCEA, the decreasing-
based mutation with large initial step size are global search
strategies and self-adaptive mutations with family compe-
tition procedure and replacement selection are local search
strategies. Cauchy mutations are attention to be used in global
search strategies than Gaussian mutations as demonstrated in
the proposed approach. These mutation operators can be inte-
grated to closely cooperate with each other. These smoothly
integrated strategies make our FCEA applicable to train neu-
ral networks for various applications as well as to solve vari-
ous numeric optimization problems. Under appropriate con-
ditions, FCEA is able to converge to a global solution.

In summary, experiments in these well-known problems
verify that the proposed approach consistently performs more
robustly than other algorithms, such as genetic algorithms,
evolution strategies, and evolutionary programming. We be-
lieve that the flexibility and robustness of our FCEA makes it
a highly effective global optimization tool.

2000

Bibliography

113 T. Blck, F. Hoffmeister, and H-P. Schwefel. A survey
of evolution strategies. In Proc. Fourth Int. Con5 on
Genetic Algorithms, pages 2-9,199 1.

[23 Y. Davidor. Epistasis variance: Suitability of a represen-
tation to genetic algorithms. Complex Systems, 4:368-
383,1990.

[3] L. J. Eshelman and J. D. Schaffer. Real-coded genetic
algorithms and interval-schemata. In L. D. Whitley, edi-
tor, Foundations of Genetic Algorithm, volume 2, pages
187-202. Morgan Kaufmann Publishers, Inc., 1993.

[4] D. B. Fogel, L. J. Fogel, and V. W. Porto. Evolving
neural networks. Biological Cybernetics, 63:487-193,
1990.

[5] R. Hinterding, 2. Michalewicz, and A. E. Eiben. Adap-
tation in evolutionary computation: A survey. In Proc.
of IEEE Con5 on Evolutionary Computation, pages 65-
69, 1997.

[6] John H. Holland, Adaptation in natural and artificial
Jystems. The University of Michigan Press, Ann Arbor,
MI, 1975.

171 K. Hornik. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4:25 1-257,
1991.

[8] D. Jefferson, R. Collins, C. Cooperand M. Dyer,
M. Flowers, R. Korf, C. Taylor, and A. Wang. Evo-
lution as a theme in artificial life: The genesysltracker
system. In Artijicial L$e 11: Proc. of the Workshop on
Artificial Life. pages 549-577,1990.

[9] R. P. Lippmann. An introduction to computing with
neural nets. IEEE ASSP Magazine, pages 4-22,1987.

[lo] J. R. McDonnell and D. Waagen. Evolving recurrent
perceptrons for time-series modeling, IEEE Trans. on
Neural Networks, 5(1):24-38, 1994.

1113 D. J. Montana and L. Davis. Training feedforward
neural networks using genetic algorithms. In Proc. of
Eleventh Int. Joint Con$ on Artificial Intelligence, pages

[121 D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In D.E. Rumelhart and J. L. McClelland, editors, Pur-
allel Distributed Processing: Explorations in the Mi-
crostructures of Cognition, pages 3 18-362. Cambridge,
MA: MIT Press, 1986.

Cl31 R. Salomon. Scaling behavior of the evolution strat-
egy when evolving neuronal control architectures for
autonomous agents. In P. J. Angeline et al., editor, the

762-767,1989.

Lecture Notes in Computer Science: Evolutionary Pro-
gramming VI, pages 47-57,1997.

1141 P. J. Angeline G. M. Saunders and J. B. Pollack. An
evolutionary algorithm that constructs recurrent neural
networks. IEEE Trans. on Neural Networks, 5(1):54-
65, 1994.

1151 J. D. Schaffer, D. Whitley, and L. J. Eshelman. Com-
binations of genetic algorithms and neural networks: A
survey of the state of the art. In Proc. oflnt. workshop on
Combinations of Genetic Algorithms and Neural Net-
works, pages 1-37,1992.

[16] M. Scholz. A learning strategy for neural networks
based on a modified evolutionary strategy. In Paral-
lel Problem Solving from Nature-Proc. 1st Workshop
PPSN I (Lecture Notes in Computer Science), volume
496, pages 316318,1991.

puter Models. Chichester: Wiley, 1981.
[171 Hans-Paul Schwefel. Numerical Optimization of Com-

[181 M. Srinivas and L. M. Patnaik. Adaptive probabilities
of crossover and mutation in genetic algorithms. IEEE
Trans. Systems, Man, and Cybernetics, 24(4):656-667,
1994.

[19] D. Whitley, T. Starkweather, and C. Bogart. Genetic
algorithms and neural networks: Optimizing connec-
tions and connectivity. Parallel Computing, 14:347-
361,1990.

[20] J. M. Yang, C. Y. Kao, and J. T. Horng. A continu-
ous genetic algorithm for global optimization, In Proc.
of the Seventh Int. Con$ on Genetic Algorithms, pages
230-237,1997.

E211 X. Yao and Y. Liu. Fast evolutionary programming. In
Pmc. of the Fifth Annual Con5 on Evolutionary Pm-
gramrning, pages 451460,1996.

200 1

