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Abstract 

Thi s  paper presents  a provably complete strategy f o r  indoor 
environment  exploration by a n  au tonomous  mobile robot. 
Wi thou t  prior  knowledge about the environment ,  the strat- 
egy guarantees the construction of a grid-based map  of the 
entire reachable area within a bounded region. Multiple 
m a p  representations are utilized inc6uding a topological grid 
m a p  f o r  guiding the exploration process, a modified occu- 
pancy  grid f o r  fu s ing  data f r o m  multiple range sensors, and 
a hierarchy of grids f o r  real-time navigation. Experiments 
using a Nomad  200TM robot have shown accurate map  con- 
s truct ion while navigating at  a steady speed of 0..2m/sec. 

1 Introduction 

There are many potential applications of mobile 
robots in our everyday life. Imagine a floor-cleaning 
robot that plans a priori the optimal path to clean an 
area using a map. To ensure successful completion of 
the task, access by other agents to the area has to be 
restricted. Moreover, the task may fail if the layout of 
furniture has changed. For applications like household 
vacuuming, demanding an accurate map is simply im- 
practical. 

A mobile robot operating in the real world needs to 
deal with such incomplete and uncertain information 
about its environment. Although sensor-based navi- 
gation techniques enable a robot to negotiate its way 
through unknown obstacles without a map, for more 
effective navigation and task execution, it is useful for 
it to construct and update its world model dynami- 
cally [a ] .  An autonomous mobile robot should 1) have 
an exploration strategy to guide its search, 2)  construct 
a world model by fusing data collected through mul- 
tiple sensors, and 3) utilize the dynamically updated 
map for real-time navigation and task achievements. 

*This research was supported in part by the National Science 
Council of ROC under grant NSC 86-2212-E-002-024. 
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This paper presents a graph-based exploration 
strategy that is provably complete with respect to any 
bounded region, e.g. indoor environments. The explo- 
ration results in a grid-based map constructed on-line 
by fusing range data from multiple sensors while the 
robot navigates in an initially unknown indoor envi- 
ronment. The resulting map consists only of static 
features as desired. In Section 2,  we begin by briefly 
outlining the proposed graph-based search algorithm, 
followed by detailed descriptions and the completeness 
proof in Section 3.  Section 4 presents a simplified cer- 
tainty grid method for fusing data from multiple range 
sensors according to the sensor characteristics. The 
proposed method achieves real-time updating while 
preserving enough accuracy for global planning and 
navigation within the environment. Experiments on a 
Nomad 200TM mobile robot with sonar, infrared, and 
laser range sensors are presented in Section 5. The re- 
sults showed that the system is efficient, effective and 
robust in a dynamic environment. 

2 Graph-Based Exploration Strategy 

Terrain exploration has been an important research 
problem for autonomous mobile robots [lo,  9, 4, 51. 
In this work, a graph traversal algorithm is proposed 
to guide a robot in exploring its environment so that 
every reachable area will be visited. The algorithm 
also minimizes the overhead in moving from one ex- 
ploration point to another. 

An unknown bounded region can be decomposed 
into a two-dimensional tessellation. The size of each 
cell in the tessellation is decided by the radius of the 
robot’s effective sensor range. Each cell is mapped into 
a vertex in the corresponding graph, whose connectiv- 
ity is defined by the special adjacency relation among 
cells. Figure 1 shows a sample mapping into the graph 
representation. Such a topological graph records the 
status of each cell as one of u n k n o w n ,  visited, passed, 
or inaccessible. 



Figure 1: The topological grid of a bounded region 

3 Algorithms and Completeness 

The exploration strategy is summarized as follows. 

1. Initialize every cell to unknown. 

2.  c c the cell where exploration starts. 

3. loop until every cell is visited or inaccessible; 

loop until obstacle detected at c;  
Move straight to next cell c’; 
Mark c as passed; 
c +- c‘. 
end 

c- scanline -- 

Figure 3: A sample IU consisting of cells 2, 3, and 4. 
Cells 1 and 5 straddle the scan line. 

Figure 4(a) illustrates the sequence of a typical tra- 
jectory generated by our robot. Figure 4(b) shows the 
corresponding boundary chain. Note that the subse- 
quence of cell 22 is cell 26; the subsequence of cell 
31 is cell 33. There are three IUS (IU1[30/32,29,28], 
IU2[2/24], and IU3[48,47]) on the indicated scan line. 
IU1 will be misjudged as a breaking IU, which leads 
to an incorrect fill! The misjudgment of IU1 is due to 
the “jumping connectivity” of cells (31 + 33). 

scan - 
line 4 

(a) (b) if c is not visited, 
then Circumnavigate obstacle boundary; 

Update geometric world model; 
Mark cells travelled as visited; 
Fill cells inside obstacle as inaccessible. 

Figure 4: (a) The sequence of cells passed by the 
robot, and (b) its corresponding boundary chain. 

c’ t Best-Next-Cell(c) 
Navigate to c’. 
Mark cells on the path as passed. 
c t c’. 

The problem can be solved by relaxing the con- 
straint that only one visit is permitted for each cell in 
the polygon boundary. The algorithm for computing 
the breaking IUS are summaried below. 

end Requirement: 

Figure 2: The Graph Traversal Algorithm A vertex chain V of polygon boundary without 
jumping connectivities. 

A tessellation buffer tess  initialized with 0’s. 
3.1 The Filling Algorithm 

The filling algorithm marks the inner cells of an 
obstacle as inaccessible. Due to poor resolution of 
grids, standard filling algorithms such as the even-odd 
needs to  be modified. Cells on the boundary of a grid- 
type polygon are viewed as vertices. A scan line may 
intersect with a polygon at a continuous segment of 
boundary cells, which are called an intersection unit 
(IU) (e.g. Figure 3 left). Each IU is treated as a sin- 
gle intersection point. If the cell immediately before 
and after an IU straddle the scan line (as shown in 
Figure 3 right), it is a breaking IU. 

Passl: for each vertex vi in V ,  do 
AY t CoorY(succ(vi)) - CoorY(pre(wi)) 

tess[CoorY (vi)][CoorX(vi)] 
t tess[CoorY (wi)][C:oorX(wi)] + AY 

Pass2: 
for each horizontal scan line 1 ,  do 

for each intersection unit P on 1 do 

t t CV,EP tess[CoorY(v;)][CoorX(vi)] 
if t # 0, P is a breaking IU 

The function succ (pre) takes a vertex as argument 
and returns the succeeding (preceding) element in the 
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chain V .  The function CoorX (CoorY) takes a vertex 
as argument and returns its z (y)  coordinate. Figure 5 
(b) shows the results given the boundary in Figure 5 
(a).  

Figure 5: Results of intersection computation 

3.2 Selecting the Best Next Node 

Each cell in the tessellation T can be in one of the 
following four states: 

Unknown ( U ) :  the cell is unknown to the 
robot; all cells are in this state initially. 

Boundary ( B ) :  the cell has been visited by the 
robot while it is in the circumnavigation 
mode. 

Pass (P): the cell has been visited by the robot 
while it is not in the circumnavigation 
mode. 

Forbidden (F): the cell is marked as forbidden 
in the filling process. 

Our goal is to select the “best” cell in state U as 
the next exploration target. Not all cells are reachable 
from the current position of the robot and there may 
be unobserved obstacles. However, we can always nav- 
igate to a cell in state U that is next t o  some visited 
cells. We first identify as target any cell in state P 
or B having unvisited neighbors. The robot will then 
proceed to explore one of its unknown neighbors. 

The simple shortest dzstance first heuristic is used 
in choosing the best next node. The idea is similar to 
numerical potential field [1]. Imagine the closed envi- 
ronment as a pond and the forbidden cells as “islands” 
in it.  Ripples propagate outward from the position of 
the robot. Assuming there are no reflected waves, the 
first candidate cell encountered by the waves is the 
target. More precisely, 

1 

0 otherwise 

if the robot is currently a t  cell z 

-1 if z is a forbidden cell (2) 

~ ; l . + ~  denotes the status of a cell r with respect to the 
ripples at  time step k + 1: 0 indicates it has not been 
reached by any ripple; i indicates it was first reached 
by the ith ripple; -1 indicates a forbidden cell. N4 is a 
function that takes a cell as argument and returns the 
set of its four neighbors. Figure 6 shows the values of 
such a computation. 

forbidden cell 

Figure 6: The numerical ripple. 

3.3 Completeness of the Strategy 

The section presents some formal results for the 
proposed approach. 

Lemma 1 The procedure described in  Section 3.2 al- 
ways selects an unknown cell if one exists. 

Lemma 2 The proposed graph-based terruzn acquisi- 
tion ulgorathm terminates. 

Theorem 1 (Completeness) When the program 
terminates, all reachable cells are visited b y  the robot. 

Proof By Lemma 2 ,  when the algorithm termi- 
nates, all cells are known to the robot, either visited 
or forbidden. Since the filling algorithm correctly fill 
the inside and outside of a polygon, all reachable cells 
will be correctly classified into state B or F .  

k + 1 
.;+I = { u i  otherwise 

(1)  
where k = 1 , 2 , 3 ,  . .. The initial values are defined as. 

if U; = 0 and 32 E N4(u;l.) s.t .  U: > 0 We can also show that the total distance traversed 
by the robot has an upper bound of O ( N 2 )  and a 
lower bound of O ( N ) ,  where N is the total number of 
reachable cells in the  environment. 
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4 World Modeling 4.1 Occupancy probability profile 

Occupancy grids [6,7] or certaintygrids [ll] provide 
a good way to  fuse sensor data over time. Using the 
Bayes’ rule, one can compute the improved probabilis- 
tic estimates by integrating a new observation with 
the existing model. Several modifications have been 
proposed to allow grid values based on fuzzy [12] or 
evidential [13] theories. However, updating the grid 
values is very computationally intensive. Given an 
area of n * n cells, it takes 0(Y2)  amount of compu- 
tation to update the probability of whether a single 
cell Ci is occupied when a new sensor reading is ob- 
tained. If the values are calculated off-line for reuse, a 
table of size O(2”’) is needed. As a result, occupancy 
grids are feasible only within a local region [14] since 
the map may not reflect in time dynamic changes in 
the environment. On the other hand, computing the 
vector field histograms [3] is simple, but the resulting 
model is only good for local obstacle avoidance rather 
than global path planning. 

This research proposed a simplified computation 
rule for updating a grid-based geometric map that pro- 
duces reasonably accurate results for navigation. The 
proposed approach can be used to  integrate data from 
multiple sensors according to  the different sensor char- 
acteristics. The size of the cell is determined by the 
highest sensor resolution as well as the minimal per- 
formance requirements. The basic idea is to associate 
each cell Ci with a real number, called certainty d u e ,  
which indicates how likely the cell is being occupied by 
an obstacle. Let V(Ci) denote the measure of confi- 
dence that an obstacle exists within cell C;. A higher 
certainty value indicates a stronger evidence for be- 
lieving the cell to be occupied. The grid-updating pro- 
cedure can be summarized below, where F is a small 
number as the default certainty value. 

1. Initialize each cell V(Ci)  = E .  

2. loop until exploration is completed. 

0 Obtain the current sensor readings r .  

The occupancy probability profile specifies the area 
of interest, i.e. the set of cells relevant to  the current 
reading,. Given a sensor reading r for an deal  sensor, 
a possilble profile is defined as follows: 

0 i f x < r  

{ i f x > r  
P ( x ) =  l i f x = r  (3) 

where :E is any cell along the direction of the detected 
obstacle. That is, the probability is 1 for some ob- 
ject to be within the cell boundary corresponding to 
the givien sensor reading, and it is 0 for all intermedi- 
ate cells between the robot and the detected obstacle. 
The cells behind the detected obstacle are not observ- 
able from the vintage point of the robot and therefore 
are equally probable to be occupied or empty, i.e. a 
probability of 3. 

In general, the scanned obstacle may lie anywhere 
within a cone-shaped neighborhood along the acoustic 
axis. Considering the trade-offss between computation 
and accuracyr a combined appiroach was employed in 
our implementation: the “line model” is adopted when 
something is detected by the sonar; otherwise, use the 
“area model”. The intuition was that the area model 
is significantly harder to compute in the former case, 
yet its benefit is uncertain. 

Unfortunately, indoor experiments on real robots 
have shown that echoing and (deflection of the sonar 
sensors present a serious problem under the area 
model: map corruption OCCUrB too frequently, espe- 
cially in the regions near the robot’s trajectory. Since 
sonars use the tzme-of-flzght of the reflected signal to 
compu1,e the distance to the sensed obstacle, the inten- 
sity of reflecting waves depend:; on the incident angle 
betweein the acoustic axis of the sonar and the nor- 
mal of the obstacle. Inaccurate measurements are an 
inherent problem with the ultrasonic sensors. 

To overcome such problems, the idea of a certaznty 
momentum functzon is introduced. The momentum 
is defined as a function of the certaznty values rather 

Interpret r using occupancy probabzlzty pro- 
file. . F~~~ multiple sensor readings by sensor 
wezght functaons. 
Update certaznty value for each cell. 

0 end 

than of dzstance. Since the certainty value of any cell 
has to be computed incrementally, a high certainty 
value can be accumulated only if the cell has been es- 
timated to be occupied for a large number of times. It 
makes :sense to  ignore an occasional “wrong” reading. 
A typical momentum function defines cells with higher 
values 1,o have a higher probability to stay occupied by 
an obstacle. When nothing is detected by the sonar, 
cells with certainty values over a threshold will remain 
intact to avoid map corruption. With continuous and 

Figure 7: The cell updating cycle 
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rapid sampling, the approach generates reasonable re- 
sults in our experiments. More details can be found 
in [8]. 

4.2 Sensor Weight Functions 

The objective of fusing data from multiple sensors 
is to produce a robust, consistent, and fault-tolerant 
description of the environment. None of the range 
sensors is perfect. Each type of sensors has its own 
characteristics, and multiple sensors can be combined 
to compensate for one another. For example. the 
laser range finder produces accurate readings, but its 
effective range is smaller than the sonar; infrared data 
varies with lighting conditions; sonar readings are af- 
fected by surface materials. 

In this framework, two weights are associated with 
each sensor: sensor type, Ws,, and distance, Wdis. 

The former is defined in terms of the relative accuracy 
of a particular type of sensor. Given a sensor s, its 
accuracy A(s)  is defined as: 

IT-dl 

A(s)  = '- (4) #d d € R  

where T is the range reading, d is the actual dis- 
tance, R is the effective range, and #d is the num- 
ber of measurements taken. Three types of range 
sensors including laser, sonar, and infrared are used 
in our experiments. Their accuracies are ordered 
as A(Zs) > A(ir) > A(sn) .  Let A be the sum of 
A(ls)  + A(sn)  + A(ir) .  The sensor type weights are 
defined as follows. 

A(s)  w, = - 
A ( 5 )  

The latter, distance weight, represents the relative 
accuracy of a given sensor over its effective distance. 
Let W& denote the distance weight function of sen- 
sor s. Figure 8 shows the different Wdis functions of 
laser, sonar, and infrared. To model the decayed den- 
sity of reflected signal with the increase in distance to 
the robot, sigmoid functions were used for sonar and 
infrared. On the other hand, the laser is modeled by 
the normal distribution function to capture its utility 
within a limited range. 

The total weight for a specific sensor s with reading 
T is calculated by combining the two weights. 

Such sensor characteristics are often available from 
its specifications as well as through empirical tests. 

Figure 8: Weight functions of different sensors. 

The weight functions can be computed off-line and 
stored in look-up tables to speed up subsequent map 
updating. 

4.3 Certainty Value Updates 

We are now ready to  present the formula for up- 
dating certainty values during each sensing cycle. To 
compose the sensory information incrementally, one 
needs to combine the cumulative value with the new 
observation. The sequential update momentum func- 
tion m ( z )  is used to  define the relative weight of the 
two. Some typical momentum functions are shown in 
Figure 9. For example, Figure 9(a) shows that the rel- 
ative weight decreases smoothly with the decrease of 
distance to the robot. This comes from the intuitively 
appealing result that the areas around the robot has 
a higher tendency of being updated than those farther 
away. 

Figure 9: Sequential update momentum functions 

For each cell z, a gain (loss) of credibility is added 
to its certainty value C ( x )  if it is judged to  be occu- 
pied (empty) in the current cycle. Assume that the 
range sensor s returns a reading of T at stage /c. The 
certainty value ck(2) of cell z at  stage k is: 

(7) 
where gain is a constant value, Q = m ( z )  is the mo- 
mentum function, and the update ratio p is: 

( 8 )  p = (1 - cy) * P ( z )  * W" 
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Due to frequent map updating, the world model can 
dynamically reflect changes, such as moving obstacles, 
in the environment. As a result, the path planner 
can replan a better path whenever substantial changes 
have occurred in the map. 

5 Experiments 

To verify the feasibility of the proposed method, 
experiments have been performed both in a simu- 
lated environment and on a mobile robot. The No- 
mad 200TM is an integrated mobile robot system with 
four sensory modules including tactile, infrared, ultra- 
sonic, and structured light vision system. It has an on- 
board computer for sensor and motor control as well 
as for host computer communication. The mobile base 
keeps track of its position and orientation over time. 
The tactile system consists of 20 independent pressure 
sensitive switches arranged in two rings, which detect 
contacts with an object. The 16-channel, reflective in- 
tensity based infrared ranging system provides infor- 
mation up to 30 inches, under proper conditions. The 
16-channel, time of flight based ultrasonic ranging sys- 
tem provides information from 17 inches to 256 inches. 
The two-dimensional, triangulation based laser rang- 
ing system has an operating range of 12 to 120 inches. 
The initial certainty values were V(Ci)  = 5 in our 
experiments. 

Figure 11 shows the results from experiments in 
a simulated environment with static obstacles (Fig- 
ure 10. The resulting map has IOP=2.5744 in. and 
IOA=99 .OS%. 

I 1  . 

Figure 10: A simulated world with static obstacles 

Figure 11: Learned map for the simulated world 

To demonstrate the effects (of dynamically moving 
objects within the environment, a series of experi- 
ments were performed in a real-world environment 
Two irregularly shaped thin cazdboards were laid out 
in the middle of the room with a person moving about 
within the space throughout the experiments. Fig- 
ures 12 and 13 shows the results. In particular, the 
cardboards were positively identified, while the mov- 
ing person didn't show up on the map. Using the map, 
the robot was able to navigate freely within the space 
without bumping into any obstacles. 

Figure 12: Sensor traces in a real environment 

6 Conclusions 

This paper presented a graph-based exploration 
strategy for a mobile robot in indoor environments. 
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Certainty Value 
150 

Figure 13: Results in an environment with dynamic 
obstacles (IOP=9.0056 in., IOA=95.8679%) 

Our approach utilizes different levels of maps for ex- 
ploration control, world modeling, and real-time nav- 
igation. In particular, the proposed strategy guar- 
antees complete exploration of any bounded enclosed 
area. The overall performance has been shown to be 
both robust and efficient. The current system uses 
standard sensor-based postion estimation techniques 
[2] to correct its cumulative odometry errors. While 
the resulting map is adequate for navigation of ser- 
vice robots for house cleaning, better localization tech- 
niques in unknown environments will be necessary for 
higher precision tasks. 
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