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Abstract

The molecular binding problem, one of the most
important problems in structure-based drug design,
can be formulated as a global energy optimization
problem by using molecular mechanics. In this pa-
per, a novel computational algorithm s proposed to
address the molecular binding problem. The algo-
rithm is derived from genetic algorithms(GA) plus
simulated annealing(SA) hybrid techniques, namely
population-based annealing genetic algorithms(PAG).
We have applied the algorithm to find binding
structures for three drug-protein molecular parrs.
One of the three drugs is an anti-cancer drug
methotrexzate(MTX) and the other two are analogue
of antibacterial drug trimethoprim. Moreover, we
have also studied two other well-resolved ligand-
receptor molecular complex which are obtained from
the Protein Data Bank(PDB): Thermolysin-HONH-
benzylmalonyl-L- Ala-Gly-p-nitroanilide complex(5tin)
and HIV-1 protease-Hydroryethylene isostere inhibitor
complex. Hydrozyethylene isostere inhibitor is one of
new potential HIV-1 protease inhibitors synthesized.
Through our experiments, all of the binding results
not only keep the energy at low levels, but also have
a promising binding geometrical structure in terms of
number of hydrogen bonds formed.

1 Introduction

Many clinical drugs used today are generated in
a lengthy drug discovery cycle. Generally speaking,
such a lengthy cycle includes several important steps,
including finding good starting molecular structures
which are called lead compounds for optimization, re-
fining the starting molecular structures to generate po-
tential drugs, biologically testing potential drugs gen-
erated from previous steps and testing new drugs clin-
ically [3]. Each step requires 1-3 years to complete. It
requires 6-12 years to bring a new drug from discovery

0-7803-5214-9/98/$10.00 © 1998 IEEE. 328

to market in 1990[10]. Therefore, many researchers
desire to shorten the cycle.

One of the efforts in speeding up the time required
to find lead compounds is a strategy extended from
Cohen’s paradigm[9]. In 1977, Cohen proposed a
general paradigm to design drugs for infectious dis-
eases. His paper revealed that infectious agents, such
as viruses, bind themselves with crucial proteins or
nucleic acids. These crucial proteins serve as targets
for intervention and can be utilized to design anti-
cancer or anti-virus drugs. In other words, if certain
drugs can bind appropriately with targets of infectious
agents, the diseases will be inhibited. Extending Co-
hen’s paradigm, alternative methods were applied to
drug discovery [2][19]. Those methods are categorized
in structure-based drug design[18]. The key issue of
structure-based drug design is to find a small molecule
which binds well with the receptor geometrically and
biologically. Finding a good lead compound with a de-
sirable mode of action and acceptable biological prop-
erties corresponding to a specific receptor has been
termed the molecular binding problem.

In the past, many researchers have proposed strate-
gies, including simulated annealing-based [1]{12] and
genetic algorithm-based strategies [5][7]{23] to conquer
the molecular binding problem. In this paper, we have
proposed a novel strategy to address the molecular
problem. Our strategy is based on genetic algorithms
plus simulated annealing hybrids, namely population-
based annealing genetic algorithms(PAG).

2 Population-based annealing genetic
algorithm

Genetic algorithms(GA) [14}[15] and simulated an-
nealing(SA) [17][20] are two kinds of useful stochastic
techniques which can be used to solve optimization
problems approximately. The research incorporating
GA with SA can be roughly considered to be two com-



plementary categories, one using genetic approach to
design parallel SA [13][22] and the other considering
SA algorithm as a neighborhood operator of the ge-
netic algorithms [4][21]. The categories are not appar-
ent for some cases, since these cases can be explained
by different ways from different perspectives.

Observing the GA/SA hybrids listed, there is a
common characteristic. No matter what the combi-
nation between GA and SA is, a partial sequence of
SA algorithm was performed on each individual of the
population. From the view point of GA, this partial
sequence of SA algorithm takes care of improving in-
dividuals before or after genetic operators are applied.
We can treat this sequence of SA algorithm as a neigh-
borhood operator which searches the neighbors of in-
dividuals under the control of Metropolis condition.

Motivated by the observation mentioned above, SA
algorithm being a neighborhood operator seems to be
good for GA/SA hybrids. So we fix the number of
steps of SA algorithmn performed on each individual
and define a set of population-based annealing(PA)
operators. That is, a PA operator performs K times
of one-step SA on the whole population. Following
the concept, we can define a set of population-based
annealing operator:

Definition 1 A population-based annealing(PA) op-
erator is a neighborhood operator of GA. PA can be de-
scribed as a three tuples operator: PA={K Ny, R4}.
K is the number of steps of one-step SA algorithm ap-
plied to each individual of current population where
K > 1. N, is the neighbor generation method that 1s
used by each individual of current population when per-
forming one-step SA algorithm. R 4 is the acceptance
criterion used by one-step SA algorithm for competi-
tion of the current individual and its neighbors.

According to Definition 1, when we incorporate PA
with GA, we can derive a new class of GA/SA hy-
brids, namely population-based annealing genetic al-
gorithms(PAG) [27][28][30]. The pseudo code of the
algorithm is given below:

Initialize the parameters, i.e., populationsize, Tp,
and decreasing factor «(0 < a < 1)
Randomly generate initial population.
Repeatedly generate new populations as follows until
system is frozen :
1. For each individual do
Best_point::Current_point.:=Current_individual ;
Do K times :
a. Generate next_point from current_point using the
normal probability density function(normal
P.D.F.) applied on the whole solution space ;
b. Accept next_point as current_point by probability:

= ezp(—Crezt /Ti) .
Prob= G'FP(“CCurrcnt/Tk)"‘ezP(*Cncxt/Tk) ?

A.

B.
C.
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c. if (Coyrrent < Cpest) then
Best.point := Current_point ;
Pick Best_point into the transient population.
2. Genetic stage.
Apply the genetic operators to transient population;
3. if (it is the first stage) then
determine the initial temperature 7}
Max;(C} .. —Ck . )
T1 =

mazx min
population_size[?2

Tpyr =a- Ty s

There is something interesting in the initialization
of the system temperature. It is recognized that the
execution time of SA depends on the initial temper-
ature and the decreasing factor of the temperature.
PAG includes SA as an operator, so the efficiency of
PAG also depends on the initial temperature. Actu-
ally, adjusting the initial temperature is a tradeoff be-
tween efficiency and the capability of diversity main-
tenance of the PA operator. When the initial tem-
perature is high, PA can accept worse solutions with
a larger probabilities. That means, much more solu-
tion space can be explored. But on the other side, the
higher initial temperature is, the more time a system
takes to reach to the frozen condition. In contrast,
when the initial temperature is low, the exploration
capability of PA 1s inhibited.

In [21], the authors provided a method deciding a
reasonable range of initial temperature to prevent the
deficiency. Here we provide another strategy. The
strategy is defined as follows. For balancing the ef-
ficiency and the capability of diversity maintenance
of the PA operator, we define the acceptance proba-
bility of detrimental move to be 0.6 when the algo-
rithm starts. From Metropolis criterion Prob(AC) =
exp(—AC/T), we obtain T' = 785 = 2.AC where AC
is determined by the largest possible detrimental move
of current generation. Since we are not sure how large
a possible detrimental move can be, we try to estimate
the possible detrimental move by the values generated
from the first cycle of PAG algorithm. In the first cy-
cle of PAG, a piecewise Markov chains are generated
from each individual of initial population, these indi-
viduals may be located at very different hills. We have
to consider all chains to estimate the largest possible
detrimental move. Therefore, we calculate the initial
temperature as :

‘Ma‘ci(c’:;mx - Cfl'mn)

Tinit = 2 _
et population_size/2

(1)

where C? = Ci . are the largest and lowest cost of
the ith sequence of Markov chain generated by ith
individual of first generation. We take the maximal



difference of all sequences of Markov chain as AC to
determine the initial temperature.

As for the genetic phase, there are two important
issues. One is the selection mechanism and the other
is the genetic operators.

At the genetic phase, we use the ranking algorithm
as a selection mechanism. As presented by Whitley
[29], the ranking algorithm not only prevented GA
from premature convergence but also provided a di-
rect control on selective pressure which affects the
search speed. We propose a dynamic ranking proce-
dure which adaptively changes the selective bias from
generation to generation. The dynamic ranking pro-
cedure is given as :

1. Assign initial value of bias. The value biases the

ratio of the offspring with expected value between
the best and the worst individual in current pop-
ulation.

2. For each individual, evaluate the number of the
expected offspring, F;, based on the bias and the
following linear function from the best one to the
worst one.

(population_size - bias) — (2 - (bias — 1) - rank;)

E; = - N 5
(population_size + bias — 1)

(2)
where rank; is the rank of each individual. The
best one is zero, and the worst one is (popula-
tion_size-1). When bias equals 1.2 , the ratio be-
tween the best and the worst is about 1.5. When
the bias reaches 1.5 | the ratio becomes 3.

3. Raise the bias by a factor o from generation to
generation.

Since we want to keep the diversity at the first few
generations of PAG and after that we need to grad-
ually inherit good materials from better individuals,
therefore dynamically changing the bias of ranking is
appropriate. After a few tests, we use 1.2 as the initial
bias and multiply the bias by 1.005 after each genera-
tion.

Moreover, the crossover and mutation operators are
performed according to the following steps.

1. At first, the parents are selected from the popula-
tion randomly. The crossover operator is applied
with a predefined crossover rate. After that, two
offspring are produced.

2. The offspring survive only when the costs of these
two offspring are both less than average cost
of the previous generation. Otherwise, give up
the offspring and continue to apply the mutation
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operator to the parents. The mutation opera-
tor is an annealing-like mutation operator which
mimics the exploration capability of SA. It ex-
plores the neighborhood of the parents. Mu-
tation occurs with a logistic probability given
as exp('—%ﬂﬂ)/(emp("%” )+exp(=Epew)), where
Eyew and E,y are the evaluation functions of a
problem, and are binding energies in our problem

domain.

3. Finally, the offspring or the mutated parents are
copied into the uew population.

Finally, for the frozen condition, PAG will stop
when 80% chromosomes’ genes are all the same.
Choosing 80% as the stopping criterion is only for the
sake of efficiency for our problem domain.

3 The Problem

The key issue of the molecular binding problem
is to find the binding structure of the drug-receptor
complex. To judge whether a binding structure of
molecules is stable or not, scientists use the potential
energy between binding pairs as a reference.

Generally speaking, the interaction potential en-
ergy of a specific binding structure can be approxi-
mately evaluated by molecular mechanics[6]. In gen-
eral, the potential energy of a given system is deter-
mined by the summation of all kinds of force fields.
The following equation is a canonical form of the total
potential energy function:

V= Vot Vet Vot Vi + Vs + Vet Vao  (3)

where V4 is the bond stretching force field, V5 the bond
angle bending force field, Vy the bond torsion force
field, V, the out-of-plane bending force field, V,; the
non-bonded interaction force field, V, the electrostatic
interaction energy and Vjp 1s the hydrogen bonding
force field.

Fortunately, not all of these terms are crucial to
solve the molecular binding problem. Actually, only
three terms of them are dominant when calculating
the intermolecular potential energy. These three terms
are non-bonded interaction, bond torsion(steric) and
electrostatic force fields. Therefore, without loss gen-
erality, we can simplify Equation 3 as follows:

V=Vs+ Vo + Ve (4)

Since we start with a simplified case based on pre-
vious work of [24]. Therefore, about the scoring func-
tion, we follow authors in [24] to use the Lennard-
Jones 6-12 potential function to represent non-bonded



interaction V,,; and electrostatic interaction V,. The
Lennard-Jones equation is defined as follows[26]:

332(14% Ard
L’t t('f’, d) = = = + = =
’ ggler—Rd)l % |(Ry ~ Ra)|'?
PP -
rd ](RT - Rd)'G

where Vi, is the total binding energy. ¢, and g4 are
the partial charges of atoms belonging to the receptor
and the drug respectively. R, and }fd represent the
three dimensional coordinates of atom in the receptor
and the drug molecule. Therefore, |R} - R:;l is the
distance between atoms of the receptor and drug dif-
ferently. e, A4, Brq are the dielectric and non-bond
constants. In this function, the first summation simu-
lates the electrostatic interaction between each pair of
atoms, and the second and third summation simulate
the repulsive and attractive terms in Van der Waals
interaction energy respectively.

Following the work in [24], we will first bind three
ligands to dihydrofolate reductase(DHFR) to demon-
strate our algorithms. Three kinds of ligands are used
to be “docked” to DHFR: methotrexate, inhibitor 91
and inhibitor 309. Methotrexate is an anti-cancer drug
which is used clinically to cure patients. Inhibitor 91
and 309 are analogues of trimethoprim which is an
anti-bacterial drug. To reduce computational com-

(5)

plexity in this pilot research, we only fetch the active -

site of DHFR as our target molecule. The constitution
of all molecules including the receptor and the number
of degrees of freedom are listed on Table 1.

Molecule | Atoms | Single bonds | Degrees of freedom
MTX 54 12 18
91 54 13 19
309. 45 12 18
DHFR 557 - -

Table 1: The data set of our simulation model.

In addition, we also study two other well-resolved
ligand-receptor molecular complex which are obtained
from the Protein Data Bank(PDB): Thermolysin-
HONH-benzylmalonyl-L-Ala-

Gly-p-nitroanilide complex(5tln) and HIV-1 protease-
Hydroxyethylene isostere inhibitor complex. Ther-
molysin is one of the important enzymes that ex-
ist widely and participate in a number of impor-
tant biological and physiological processes. HONH-
benzylmalonyl-L-Ala-Gly-p-nitroanilide is one of the
well-known inhibitors which bind well to thermolysin
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[16]. Hydroxyethylene isostere inhibitor is one of new
potential HIV-1 protease inhibitors synthesized[11].
The DOF and numbers of atom of receptors and lig-
ands are listed on Table 2.

Molecule Atoms | Single bonds | DOF
Inhibitor for HIV-1 88 26 32
‘Inhibitor for TLN 42 10 16
HIV-1 3122 - -
TLN 4711 - -

Table 2: The data set of our simulation model, where
DOF 1is the number of single bonds plus siz degrees
of freedom in translation and rotation. TLN is ther-
molysin, HIV-1 is Human Immunodeficiency Virus-1
Protease.

All test molecules listed above can be viewed as a
number of atoms defined by their three-dimensional
coordinates. Using these data sets as well as scoring
functions mentioned previously, we will use PAG to
regenerate binding structures of these molecular com-
plex.

Intuitively, the three-dimensional location of the
drug and its three rotational angles relative to 3 axes
are all adjustable. Moreover, the molecules have a
number of deformable single bonds. Each single bond
is a degree of freedom. Based on the description, the
energy minimization between a molecular system be-
comes:

1. Fix the location of the receptor. Initialize the
structure of the drug molecule. Evaluate the in-
teraction energy based on the scoring function.

. Repeatedly adjust different degrees of freedom,
including translating and rotating the drug
molecule and twisting single bonds inside the
drug, to fit the receptor. Evaluate the interac-
tion energy of each new configuration.

. Find the best configuration with the lowest inter-
action energy from these configurations.

By adjusting the value of each degree of freedom, a
new configuration will be generated. The whole search
space is the combination of possible values of all de-
grees of freedom. Therefore we encode all degrees of
freedom as a chromosome:

(tﬁytyy Loy Pry Pys P2y 81y eees Sm)
where ¢, , t, and £, represent the position of the drug
molecule relative to the centroid of the receptor, r, | -



Drug | Population size | Times in sec. | Generations | Evaluation(times) | Energy(kcal/mol)
MTX 50 52042 165 261818 -102.60
100 137149 241 757069 -110.49
91 50 61406 173 309147 -71.83
100 138991 269 946534 -73.13
309 50 41272 215 363772 -61.32
100 106849 284 958634 -66.58

Table 3: The results evaluated by PAG, where the binding energy need to be globally minimized. Evaluation means

the count of evaluation about scoring function.

ry , v, are the rotational angles of the drug, and s; are
the twisting angles about the single bonds inside the
drug molecule.

For convenience, we use real-coded scheme to en-
code each parameter. That is, all parameters are real
numbers. In addition, we use one-point crossover and
blend crossover as genetic operators.

4 Experimental results and discussion

4.1 Molecular binding results

We have implemented PAG algorithms on a Sun
UltraSparc workstation.(Moreover, we also have im-
plemented another PC version of PAG algorithms.)
Three pairs of receptor-ligand: DHFR-MTX, DHFR-
Inhibitor 309 and DHFR-Inhibitor 91 are evaluated
by using the algorithm listed in previous section. The
preliminary results in this pilot research are given in
Table 3.

In the table, PAGs are executed 10 times for each
case. All of the parameter settings are the same. The
decreasing factor of temperature is 0.9. K, the number
of steps performing PA operator in each generation is
equal to degrees of freedom in each problem. We use
one-point crossover and blend crossover as the genetic
operators. The probability of crossover and blend
crossover are both 0.5. Based on the design of genetic
stage explained in the previous section, the mutation
rate is dependent on the success of the crossover opera-
tors. Moreover, the final results of PAG 1s improved by
a steepest-descent local minimizer. Since we use the
real number encoding, each DOF is a 64-bit real num-
ber, the total number of possible candidates for each
DOF are 2%¢. Therefore, if a drug molecule possesses
12 single bonds, the total number of possible position
and conformation will be 264*18 = 6.07x10%46. We also
compare our results with similar results from Oshiro,
Kuntz and Dixon [23]. The following is a table of com-
parison (Table 4). Please note that Kuntz’s method is
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a pure genetic algorithm,; and uses binary coding for
the solution space, while we use real number coding;
furthermore, Kuntz’s algorithm needs to know the ac-
tive site first, but ours can use random position for the
starting points. For initial population, we use a much
smaller size (100) as compared to 12167 from Kuntz.
The results show that our PAG is 24% better in terms
of number of energy function evaluations, even if our
solution space is much bigger.

[ Drug [ Population I Evaluation [ Rmsd | Solution space
Kuntz 12167 940332 | 0.8 & active site
PAG 100 757069 .| 0.8 A whole space

Table 4: Table of comparison with the binding of an
wnhibitor MTX to a receptor DHFR, where Rmsd is
root-mean-square deviation.

4.2 Comparison of experimental results

There are many criteria to judge whether the bind-
ing structures generated by the program are reason-
able. The first criterion is the binding energy. Since we
use the same data set and energy functions as the ex-
periment done in [24}{25], the results can be compared
with the data listed in [24]. In [24], the best binding
energy of these three drugs are from -40Kcal/mol to
-120Kcal/mol. PAGs have obtained the minimal en-
ergy at the range from -40Kcal/mol to -110Kcal/mol.
The binding energy of the pairs MTX-DHFR, 91-
DHFR and 309-DHFR are in the range of -70Kcal/mol
to -110Kcal/mol, -40Kcal/mol to -80Kcal/mol and -
50Kcal/mol to -7T0Kcal/mol respectively.

The results listed above roughly verify that PAGs
can find out the binding structures with reasonable
low binding energy. However, the corresponding drug
structures of approximative binding energy may be
different in orientation and conformation.



In addition to the binding energy, the existence of
hydrogen-bonds is the other stronger criterion that de-
termines the goodness of fitting between ligands and
proteins. The hydrogen bond is formed when the hy-
drogen atom is close enough (2.44 ~ 2.84 in distance)
to another atom such as oxygen. Since the hydrogen
bond involves a strong “binding energy”, two to five
pairs of such hydrogen bonds becomes dominant in the
total binding energy. There are 4 primary hydrogen
bonds formed between MTX and DHFR. These 4 pri-
mary hydrogen bonds construct the elementary con-
formational structure of MTX-DHFR complex. The
same situation happens to the 309-DHFR and 91-
DHFR complex.

Table 5 shows our experimental results obtained
from the PAG. From the analysis of hydrogen bond-

Inhibitor MTX 91 309
Population size 50 1 100 || 50 LlOO 50 [ 100
Total runs 10 10 10
hb threshold® 2.5 A 2.4 A 2.8 &
4 hb? 3 7 7 7 2 8
3 hb¢ 7 8 8 10 9 10

Table 5: The hydrogen bonds found by PAG.

%The largest distance of forming a hydrogen bond
bForms 4 hydrogen bonds
“Forms at least 3 hydrogen bonds

ing between drugs and DHFR, we can claim the pre-
sented PAG have found some good fitting molecular
structures between drugs-DHFR complex, since most
of the resulting drug structures getting from PAG are
buried deeply into the correct pocket of DHFR.

Figure 1 illustrates the superimposing of MTX
crystal structure with the best of our results. The
rimsd (root-mean-square deviation) value of this struc-
ture is 0.84.

4.3 Experimental results of more general
cases

We have applied PAG to solve more compli-

cated cases. These cases are molecular complex
obtained from PDB, including Thermolysin-HONH-
benzylmalonyl-L-Ala-
Gly-p-nitroanilide complex(5tln) and HIV-1 protease-
Hydroxyethylene isostere inhibitor complex. Since the
problem size is bigger than the cases of DHFR, we use
larger population size for PAG. The experimental re-
sults of more general cases are listed in Table 6.

All of the cases listed above are the best cases. The
parameter settings and genetic operators are all the
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Figure 1: The superimposing of our resulting structure
with the crystal structure of MTX with rmsd value of
0.84. The brighter line segments are the crystal struc-
tures of MTX, and the darker line segments are our
resulting structure.

same with the cases of DHFR. We will discuss the
results with the following issues:

Binding energy When the population size is 200,
the binding energy of HIV-1 protease with its in-
hibitor obtained from PAG are in the range of
-110 Kcal/mol to -130 Kcal/mol . As to the cases
of Thermolysin, the binding energy are in the
range of -40 Kcal/mol to -80 Kcal/mol. Com-
parison with the binding energy of crystal struc-
tures which are -145 Kcal/mol(HIV-1) and -88
Kcal/mol(TLN) respectively, our results are near
enough. Moreover, we also try another exper-
iments of parameter settings of PAG. We have
focused on the initial temperature 7y and tem-
perature decreasing factor « respectively. Since
raising the initial temperature and the tempera-
ture decreasing factor could strengthen the effects
of simulated annealing to prevent from trapping
into local optimal. Due to the stochastic property
of PAG, the results aren’t always much better.
We will try more experiments about parameter
settings of PAG in the future.

Hydrogen bonding According to the results pre-
sented in [11] and [16], there are a few primary
hydrogen bonds formed between HIV-1 protease
and Thermolysin with their inhibitors. There are
5 primary hydrogen bonds between HIV-1 pro-
tease with its inhibitor. In one experiment done
by Wang [30] has showed 5 out of 10 runs could lo-
cate these 5 hydrogen bonds. In the case of Ther-
molysin, there are 4 primary hydrogen bonds be-



Drug Population size | Generations | Evaluation(times) | Energy(kcal/mol)
Inhibitor for HIV-1 100 473 2608561 -124.11
200 538 5384201 -126.19

Inhibitor for TLN 100 171 451049 -77.87
200 436 2204649 -80.20

Table 6: The results evaluated by PAG. Evaluation means the count of evaluation about scoring function.

tween Thermolysin with its inhibitor. 6 out of 10
runs in his results locate these 4 hydrogen bonds.
From the analysis of hydrogen bonds, PAG still
have found good fitting molecular structures over
50% even when the problem size is much larger
than the cases of DHFR.

From the discussion listed above, we can claim
PAG still have found the reasonable fitting structures
over 50% even when the problem size is getting much
larger. The following figure(Figure 2) shows the illus-
tration of the binding structures.

Figure 2: The binding structure of Inhibitor with HIV-
1, where the central small molecule is the inhibitor,
and the outside ribbon model s the HIV-1.

5 Conclusion

The importance of the molecular binding prob-
lem is without questioning. In this paper, we have
developped a class of neighborhood operators called
population-based annealing operators for genetic al-
gorithms. Tncorporating a different PA operator with
genetic algorithms will form a new GA/SA hybrid.
We design the PAGs to solve the level-2 (8] molecular
binding problem. Experimental studies not only indi-
cate the usefulness of PAGs but also the properties of
different PA operators.
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The near-optimal solutions obtained by PAG can
be used for the work of drug design. We have verified
that the genetic algorithms incorporating with SA are
suitable to solve the molecular binding problem and
believe these results are very useful for the biotechnol-
ogy community. In summary, the contribution of this
paper are:

1. We have discussed the GA/SA hybrids in de-
tails. After some elementary analysis, we design
the GA/SA hybrids. The algorithm can be used
to solve the level-2 molecular binding problem.
Furthermore, in the binding problem, we don’t
need to know the binding pocket site at first,
where most researchers have to know for their
algorithms to reduce the problem size. We also
tried the case of HIV-1 protease with its inhibitor,
where the size of the problem have kept others
from automatically finding its binding position.

2. Our PAG algorithms are extensible since we have
focused on balancing the efficiency and enhanc-
ing the capability of diversity maintenance of the
algorithms. Based on the extensibility, we have a
great chance to examine the level 3 binding prob-
lem.
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