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Abstract 

The molecular banding problem, one of the most 
irnpoi-tant problems tn structure-based drug deszgiz 
ccin be formulated as a global energy optimzzatzoii 
problem by usziag niolecular mechanics In thas pa- 
per, a noire1 computataonal ulgorathm as proposed to 
address the molecular bandiiig problem The algo- 
I ithnz zs dei rued from genetac algorathms(GA) plus 
simulated annealzng{SA) hybrad techniqt~es, namely 
populatron-based annealriig genetac algorathms(PAG) 
CI.e h a w  applzed the algorzthm to  find bandaiig 
structures foi  three drug-protean molecular pairs 
One of the three drugs 2s un antz-cancer drug 
nrethotre~ate{MTX) und the other two are analogue 
of antibacterral drug trzmethopi-am Moreover, we 
l ia ie  also studzed two other well-resolved Ezguiid- 
itceptor molecular complex whzch are obtazned from 
the Pi oteari Data Bank{PDB) Thermolysan-HONH- 
ben-ylnialoiiyl-L-Ala-Gly-p-natroanalide coinplex(5tln) 
o i id  HI\'- 1 protease-Hydroxyethylene isostere anhrbitoi. 
complex Hydroxyethylene rsostere aizhzbztor 6s one of 
new potentzal NlL'-I protease inhabitors synthesazed 
Through our experzments, all of the bindang re5tIk5 

not only keep the energy a t  low levels, but also hate  
a prorniszng bindrng geometracal structure an terms of  
number of hydrogen bonds formed 

1 Introduction 

Many cliiiica.1 drugs used today are generated in 
a lengthy drug discovery cycle. Generally speaking, 
such a lengthy cycle includes several important steps, 
including finding good startting molecular st,ructures 
which are called lead conipounds for optimization, re- 
fining t~he starting molecular structures to generat,e po- 
t,ential drugs, biologica.lly testing potential drugs gen- 
erated from previous steps and testing new drugs clin- 
i d l y  [3]. Each step requires 1-3 years t,o complete. It 
requires 6-12 years to bring a new drug from discovery 

t.o ma.rl;et in 1990[10]. Therefore, many researchers 
desire to shorten the cycle. 

One of t8he effortss in speeding up t,he time required 
to find lead coinpounds is a strategy extended from 
Cohen's paradigm[9]. In 1977, Cohen proposed a 
genera.1 pa.ra.digm to design drugs for infectious dis- 
eases. His paper revealed tha.t infectious agents, such 
as viruses, bind themselves with crucial proteins or 
nucleic acids. These crucial proteins serve as targets 
for intervention and can be utilized t80 design anti- 
cancer or ant.i-virus drugs. In other words, if certain 
drugs can bind appropriately with targets of infections 
agents, the diseases will be inhibited. Extending Co- 
hen's paradigm, alternative methods were applied to  
drug discovery [a] [ 191. Those met>hods are categorized 
in structure-based d r u g  design[18]. The key issue of 
structure-ba.sed drug design is to find a small molecule 
which b i d s  well wit,h t,he receptor geomet,rically and 
biologically. Finding a good lead compound with a de- 
sirable mode of act.ion and acceptable biological prop- 
erties corresponding to a specific receptor has been 
termed t,he moleculul- binding problem,. 

In the past, many researchers have proposed st.rat#e- 
gies, including simulated anneding-based [l] E121 a,nd 
genetic algorit,hm-based strategies [5] [71[23] t o  conquer 
the molecular binding problem. In this pa.per, we have 
proposed a novel stra.t,egy to  address the molecular 
problem. Our strategy is based on genetic algorithms 
plus simulated annealing hybrids, namely population- 
based annealing genetic algorithms(PAG) . 

2 Population-based annealing genetic 
algorithm 

Genetic algorithins(GA) [14][15] and simulated an- 
nealing(SA) [17][20] are two kiiids of useful stochastic 
techniques which can be used to solve optimization 
problems approximately. The research incorporating 
GA with SA can be roughly considered to be two com- 

0-7803-5214-9/98/$10.00 0 1998 IEEE. 328 



plenienta.ry categories, one using genetic approach t,o 
design parallel SA [13][22] and the other considering 
SA a.lgorithm as a, neighborhood operator of the ge- 
net'ic algorithms [4][2l]. The categories are not, appar- 
ent for some cases, since these cases can be explained 
by different ways from different perspectives. 

Observing the GA/SA hybrids listed, t8here is a 
common characteristic. No matter what the combi- 
i d i o n  between GA and SA is, a partial sequence of 
SA algorithm was performed on each individual of the 
population. From thse view point of GA,  this part,ial 
sequence of SA algor.ithm takes ca.re of improving in- 
dividuals before or afim genetic operators are applied. 
We can treat this sequence of SA algorithm as a iieigh- 
borhood operator which searches tthe neighbors of in- 
dividuals under the control of Metropolis condition. 

Motivated by the clbservation mentioned above, SA 
algorit,hm being a neighborhood operator seems to be 
good for GA/SA hybrids. So we fix the nuniber of 
steps of SA algorithm performed on each individua.1 
and define a set of population-based annealing(PA) 
operators. That. is, a PA operator performs K times 
of one-step SA on the whole population. Following 
the concept, we can define a set, of population-based 
annealing operator: 

Definition 1 A population-based annealing(PA) op- 
e,rator is a neighborhood operator of G A .  PA  can be de- 
scribed ns a three tuples operator: PA={K,  Ng,  R.A}. 
I< i s  the nzim,ber of steps of one-step SA algorithm ap- 
plied to  each i n d i v i d d  of current population where 
Ii 2 1. .&/y is the neighbor generation method that is 
used by each individual of current population when per- 
forming one-step SA algorithm. R.A is the acceptance 
criterion used by one-step S A  algorithm for  competa- 
tion of the current individual and i ts  neighbors. 

According to Definition 1, when we incorporate PA 
wit,h GA, we can derive a new class of GA/SA hy- 
]>rids, na.mely population-based annealing genetic al- 
gorit,hms(PAG)~ [27][28][30]. The pseudo code of the 
a.lgorithm is given below: 

A. Initialize the parameters, i.e., populationsize, To, 
and decreasing factor tr(0 < a < 1)  

B. Randomly generate in,itial population. 
C. Repeatedly generate new populations as follows until 

system is frozen : 
1. For each individual do 

Best_point:=Currentpoint:=Currentindividual ; 
Do E; times : 

a. Generate nextpoint from currentpoint using the 
normal  probability density function(nOrma1 
P.D.F.) applied on the whole solution space ; 

b. Accept next-point as currentpoint by probability: 
Prob - e z p ( - c C , e z t / T k )  

eap(--C,,,,,,t/Tk)tESP(--C,,,tITk) ' 

2. 

3 .  

c. if (Ccrrrrent < C h e s t )  t hen  
Bestpoint := Currentpoint ; 

Pick Best-point into the transient population. 
Genetic stage. 
Apply the genetic operators to transient population; 
if (it is the first stage) then 

determine the initial temperature 7'1 

TI = fifaT,(Ck,,,-c:rn) 
populatton-szze/l 

else 
T A + ~  = CY. T k  : 

There is somet.hing interesting in the initia.lization 
of the system temperature. It. is recognized t,hat the 
execution time of SA depends on the init,ial temper- 
ature and the decreasing factor of the temperature. 
PAG includes SA as an operator, so t,he efficiency of 
PAG a.lso depends on the init.ia1 temperature. .4ct8u- 
ally, adjust,ing the initial temperature is a tradeoff be- 
t,weeii efficiency arid the mpability of diversit.y ma.in- 
tenance of the PA operat,or. When tshe init,ial tem- 
perat.ure is high, PA can accept worse solutions with 
a larger proba,bilities. That means, much more solu- 
tion space can be explored. But, on t,he other side, the 
higher initial temperature is, the more time a system 
takes to reach to the frozen condit,ion. In contrast, 
when the init,ial temperature is low, the exploration 
capability of PA is inhibited. 

In [ 'L l] ,  the aut,liors provided a method deciding a 
reasona.ble range of initia.1 temperature to prevent the 
deficiency. Here we provide another strategy. The 
strategy is defined as follows. For balancing the ef- 
ficiency and the capa.bility of diversity mairiteiiaiice 
of the PA operat,or, we define the acceptance proha.- 
bility of detriment,al move t,o be 0.6 when the algo- 
rit,hni starts. From Met.ropolis criterion Prob(AC) = 
exp(-AC/T), we obtain T = 2.AC where AC 
is determined by t,he largest possible detrimental niove 
of current genedion .  Since we are not sure how large 
a possible detrinienta.1 niove can be, we try to est,imate 
tshe possible det,riinent,al move by the values generated 
from the first cycle of PAG algorithm. In the first cy- 
cle of PAG, a piecewise Markov chains are generated 
from each individual of initial population, these indi- 
vidua,ls inay be located a t  very different hills. We have 
to consider all chains to  estimate the largest possible 
detrimental move. Therefore, we calculate the initial 
temperatsure as : 

Ma.cc;(c:n,, - CLin) T. . - 
znzt - populat ion_size/2 

where C&,, ,C:nz,, are the largest and lowest cost of 
the ith sequence of Markov chain generated by ith 
individual of first generation. We take the maximal 
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difference of all sequences of Markov chain as AC to 
det,ermine the initial temperature. 

As for the genetic phase, t,here are two important 
issues. One is the selection mechanism and the other 
is the genetic operators. 

At the genetic phase, we use the ranking algorithm 
as a selection mechanism. As presented by Whitley 
[29], the ranking algorit,hm not only prevented GA 
from premature convergence but also provided a di- 
rect control on selective pressure which affects the 
search speed. iVe propose a dynamic ranking proce- 
dure which adaptively changes the select#ive bias from 
generatmion to genemtion. The dyna.mic ra.nking pro- 
cedure is given as : 

Assign initial value of bias. The value biases the 
ratio of the offspring with expected value between 
the best and the worst, individual in current pop- 
ulation. 

For each individual, evaluate t.he number of the 
expected offspring, E,, based on the bias and the 
following linear function from the best, one to the 
worst one. 

(popula tzon-s i ze  . b i a s )  - ( 2 .  (b ias  - 1) ‘ r a n k , )  
(population-size + bias - 1) 

E, = 

(2) 
where rank, is the rank of each individual. The 
best one is zero, and the worst one is (popula- 
tionsize-1). When bias equals 1.2 , the ratio be- 
tween t.he best and the worst is about 1.5. When 
the bias reaches 1.5 , the ratio becomes 3.  

Raise the bias by a. factor ct from generation to 
generation. 

Since we want to keep tjhe diversity at, the first few 
generations of PAG and after that  we need to grad- 
ually inherit good materials from better individuals, 
therefore dynamically changing the bias of ranking is 
a.ppropriate. After a few tests, we use 1.2 as t.he initial 
bias and multiply t,he bias by 1.005 after ea,ch genera- 
t,ion. 

Moreover, the crossover and mutation opera.tors are 
performed according to the following steps. 

1. At first, t,he parents are selected from the popula- 
tion randomly. The crossover operator is applied 
with a predefined crossover rate. After t,hat, two 
offspring are produced. 

2. The offspring survive only when the costs of these 
two offspring are both less than average cost 
of the previous generation. Otherwise, give up 
the offspring and continue to apply the mutation 

opera.t,or t,o the parents. The mut,ation opera- 
tor is an annealing-like mut,ation opera.tor which 
mimics t.he exploration capability of SA. It ex- 
plores the neighborhood of the parents. Mu- 
tation occurs with a logistic probability given 
as e z p (  - E $ e w ) / ( e z p ( w ) + e z p (  -*pew)), where 
E,,, and Eold are the evaluation functions of a 
problem, and are binding energies in our problem 
domain. 

3 .  Finally, the offspring or the mutated parents are 
copied into the ilew popula.tion. 

Finally, for the frozen condition, PAG will stop 
when 80% chromosomes’ genes are all the same. 
Choosing 80% as the stopping criterion is only for the 
sake of efficiency for our problem domain. 

3 The Problem 

The key issue of the molecular binding problem 
is to find the binding structure of the drug-receptor 
complex. To judge whether a binding structure of 
molecules is stable or not, scientists use the potential 
energy between binding pairs as a reference. 

Generally speaking, the interaction pqtential en- 
ergy of a specific binding structure can be approxi- 
mately evaluated by molecular mechanics[6]. In gen- 
eral, the potential energy of a given system is deter- 
mined by the summation of all kinds of force fields. 
The following equation is a canonical form of the total 
potential energy function: 

where Vb is the bond strekhing force field, 1$ the bond 
angle bending force field, V+ the bond torsion force 
field, V, t8he out-of-plane bending force field, Vnb the 
non-bonded interaction force field, Ve the electrostatic 
interaction energy and is the hydrogen bonding 
force field. 

Fortunately, not all of these terms are crucial to 
solve the molecular binding problem. Actually, only 
three terms of them are dominant when calculating 
the intermolecular potential energy. These three terms 
are non-bonded interaction, bond torsion(steric) and 
electrostatic force fields. Therefore, without loss gen- 
erality, we can simplify Equation 3 as follows: 

Since we start with a simplified case based on pre- 
vious work of [24]. Therefore, about the scoring func- 
tion, we follow authors in [24] to use the Lennard- 
Jones 6-12 pot,ential function to represent non-bonded 
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interaction !& and electrostatic interaction V,. The 
Lennard-Jones equation is defined as follows[26] : 

-’ (5) 
Molecule Atoms Single bonds DOF 

26 32 Inhibitor f i r  HIV-1 SS 
Inhibitor for TLN 42 10 16 

where Kat is the total binding energy. qr and qd are 
the partial charges of atoms b_elongin$to the receptor 
and the drug respectively. R, and Rd represent the 
three dimensional coordinates of atom in the-receptor 
and the drug molecule. Therefore, IZ,. - RdJ is the 
distance between atoms of the receptor and drug dif- 
ferently. E ,  Ardl B p d  are the dielectric and non-bond 
const,ants. In this function, the first summation simu- 
lat,es the electrostatic interaction between each pair of 
atoms, and the second and third summation simulate 
the repulsive and attractive terms in Van der Waals 
interaction energy respectively. 

Following the work in [24], we will first bind three 
ligands to  dihydrofolate reductase(DHFR) to demon- 
strate our algorithms. Three kinds of ligands are used 
to be “docked” to  DHFR: methotrexate, inhibitor 91 
and inhibitor 309. Methotrexate is an anti-cancer drug 
which is used clinically to  cure patients. Inhibitor 91 
and 309 are analogues of trimethoprim which is an 
anti-bacterial drug. To reduce computational com- 
plexity in this pilot research] we only fetch the active 
site of DHFR as our t srget molecule. The constitution 
of all molecules including the receptor and the number 
of degrees of freedom are listed on Table 1. 

Table 1: The data set of our simulation model. 

In addition, we also study two other well-resolved 
ligand-receptor molecular complex which are obtained 
from the Protein Data Bank(PDB): Thermolysin- 
HONH-benzylmalonyl-L-Ala- 
Gly-p-nitroanilide coinplex(5tln) and HIV-1 protease- 
Hydroxyethylene isostere inhibitor complex. Ther- 
molysin is one of the important enzymes that ex- 
ist widely and participate in a number of impor- 
t,ant biological and physiological processes. HONH- 
benzylmalonyl-L-Ala-Gly-p-nitroanilide is one of the 
well-known inhibitors which bind well to thermolysin 

[16]. Hydroxyethylene isostere inhibit,or is one of new 
potential HIV-1 prot,ease inhibitors synt,liesized[l1]. 
The DOF and numbers of at80m of receptors and lig- 
ands are listed on Table 2 .  

I _. 

HIV-1 I 3122 I 
TLN I 4711 I 

Table 2. The data set of our sirnulataon model. where 
DOF as the number of sangle bonds plus sax degrees 
of freedom an translatzon and rotataon. T L N  as ther- 
molysan, HI\‘-1 as Human Immunodeficaency Varus-1 
Protease. 

All test molecules listed above can be viewed as a 
number of atoms defined by their three-dimensional 
coordinates. Using these data  sets as well as scoring 
functions mentioned previously, we will use PAG to  
regenerate binding structures of these molecular com- 
plex. 

Int,uitively, the three-dimensional location of the 
drug and its three rotational angles relative t,o 3 axes 
are all adjustable. Moreover, the molecules have a 
number of deformable single bonds. Each single bond 
is a degree of freedom. Based on the description, the 
energy minimization between a molecular system be- 
comes: 

1. Fix the location of the receptor. Initialize the 
structure of the drug molecule. Evaluate the in- 
teraction energy based on the scoring function. 

2. Repeatedly adjust different degrees of freedom, 
including translating and rotating the drug 
molecule and twisting single bonds inside the 
drug, to fit the receptor. Evaluate the interac- 
tion energy of each new configura.tion. 

3. Find the best configuration wit,li t,he lowest inter- 
actmion energy from these configurations. 

By adjusting the value of each degree of freedom, a 
new configuration will be generated. The whole search 
space is the combimtion of possible values of all de- 
grees of freedom. Therefore we encode all degrees of 
freedom as a chromosome: 

where t ,  , t, and t ,  represent the positmion of the drug 
molecule relative to the centroid of the receptor, T,  , 
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Table 3 .  The results evaluated by PAG, where the bandang energy need to  be globally manamazed. Ewaluataon means 
the count of ewaleiataoii about scorang functaon 

ry ~ r, are the rotational angles of the drug, and s, are 
the twisting angles about the single bonds inside the 
drug molecule. 

For convenience, we use real-coded scheme to ea- 
code each parameter. That  is, all parameters are real 
numbers. In addition, we use one-point crossover and 
blend crossover as genetic operators. 

4 Experimental results and discussion 

4.1 Molecular binding results 

We have implemented PAG algorithms on a Sun 
UltraSparc workstation.(hloreover, we also have im- 
plemented another PC version of PAG algorithms.) 
Three pairs of receptor-ligand: DHFR-MTX, DHFR- 
Inhibitor 309 and DHFR-Inhibitor 91 are evaluated 
by using the algorithm listed in previous section. The 
preliminary results in this pilot research are given in 
Ta.ble 3 .  

In the table, PAGs are executed 10 times for each 
case. All of the parameter settings are the same. The 
decreasing factor of temperature is 0.9. K ,  the number 
of steps performing PA operator in each generation is 
equal to  degrees of freedom in each problem. We use 
one-point crossover and blend crossover as the genetic 
operators. The probability of crossover and blend 
crossover are both 0.5. Based on the design of genetic 
stage explained in the previous section, the mutation 
rate is dependent on the success of the crossover opera- 
t,ors. Moreover, the final results of PAG is improved by 
a steepest-descent local minimizer. Since we use the 
real number encoding, each DOF is a 64-bit real num- 
ber, the total number of possible candidates for each 
DOF are 264. Therefore, if a drug molecule possesses 
12 single bonds, the total number of possible position 
a id  conformation will be 2G4*18 = 6.07*1034G. We also 
compare our results with similar results from Oshiro, 
Kuntz and Dixon [23]. The following is a table of com- 
parison (Table 4). Please note that Kuntz’s method is 

a pure genetic algorit,hni, and uses binary coding for 
the solution space, while we use real number coding; 
furthermore, Kuntz’s algorithm needs to  know the ac- 
tive sitme first, but ours can use random position for the 
starting points. For initial population, we use a much 
smaller size (100) as compared to 12167 from Kuntz. 
The result,s show that our P,4G is 24% better in terms 
of number of energy function evaluations, even if our 
solution space is much bigger. 

Drug I Population I Evaluation I Rmsd I Solutionspace I 
Kuntz I 12167 I 940332 I 0.8 A I active site 
PAG I 100 I 757069 I 0.8 A I whole mace 

Table 4: Table of compcarzson wath the bandang of an 
anhabator M T X  to  a receptor DHFR, where Rmsd  as 
root- mean-squa re dew a at aon . 

4.2 Comparison of experimental results 

There are many criteria to judge whether the bind- 
ing structures generat,ed by the program are reason- 
able. The first criterion is the binding energy. Since we 
use the sa.me data  set and energy functions as the ex- 
periment done in [24][25], the results can be compared 
with the data  listed in [24]. In [24], the best binding 
energy of t.hese three drugs are from -4OKcal/mol to  
-120Kcal/mol. PAGs have obtained the minimal en- 
ergy at the range from -40I<cal/mol to  -1lOKcal/mol. 
The binding energy of the pairs MTX-DHFR, 91- 
DHFR and 309-DHFR are in the range of -7OKcal/mol 
to  -1 lOKcal/mol, -4OKcal/mol to -8OKcal/mol and - 
SOKcal/mol to -70Kcal/mol respectively. 

The results listed above roughly verify that PAGs 
can find out the binding structures witah reasonable 
low binding energy. However, the corresponding drug 
structures of approximative binding energy may be 
different in orientation and conformation. 
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In addition to t,he binding energy, the existence of 
hydrogen-bonds is the other stronger criterion that de- 
termines the goodness of fitting between ligands and 
proteins. The hydrogen bond is formed when the hy- 
drogen atom is close enough (2.4,a - 2.8A in distance) 
to another atom such as oxygen. Since the hydrogen 
bond involves a strong “binding energy”, two to five 
pairs of such hydrogen bonds becomes dominant in the 
total binding energy. There are 4 primary hydrogen 
bonds formed between MTX and DHFR. These 4 pri- 
mary hydrogen bonds construct the elementary con- 
formational structure of MTX-DHFR complex. The 
same situation happens to the 309-DHFR and 91- 
DHFR complex. 

Table 5 shows our experimental results obtained 
from the PAG. From the analysis of hydrogen bond- 

Table 5: The  hIydrogen bonds found by PAG. 

aThe largest distance of forming a hydrogen bond 
bForms 4 hydrogen bonds 
‘Forms at least 3 ]hydrogen bonds 

ing between drugs and DHFR, we can claim the pre- 
sented PACT have found some good fitting molecular 
structures between drugs-DHFR complex, since most 
of the resulting drug structures getting from PAG are 
buried deeply into the correct pocket of DHFR. 

Figure 1 illustrates the superimposing of MTX 
crystal structure with the best of our results. The 
rinsd(root-mean-square deviation) value of this struc- 
ture is 0.81k 

4.3 Experimental results of more general 
cases 

We have applied PAG to solve more compli- 
cated cases. Thes8e cases are molecular complex 
obtained from PDB, including Thermolysin-HONH- 
benz ylma1onyl-L- Ala- 
Gly-p-nitroanilide complex( 5 t h )  and HIV-1 protease- 
Hydroxyethylene isostere inhibitor complex. Since the 
problem size is bigger than the cases of DHFR, we use 
larger population siz,e for PAG. The experimental re- 
sults of more general cases are listed in Table 6. 

All of the cases listed above are the best cases. The 
parameter settings and genetic operators are all the 

Figure 1. The superimposzng of our resultzng structure 
with the crystal structure of hfT.ri wath rnisd value of 

0.8-4. The brzghter lzne segments alp the crystal struc- 
tures of M T X ,  and the darker lzne scgments are oui- 
resultzng structure. 

same with the ca.ses of DHFR. We will discuss the 
results with the following issues: 

Binding energy When the population size is 200, 
the binding energy of HIV-1 protease with it.s ,in- 
hibitor obtained from PAG are in the range of 
-110 Kcal/mol t,o -130 Kcal/mol . As to the cases 
of Thermolysin, the binding energy are in the 
range of -40 Kcal/mol to -80 Kcal/mol. Com- 
parison with the binding energy of crystal struc- 
tures which are -145 Kcal/mol(HIV-1) and -88 
Kcal/mol(TLN) respectively, our results are near 
enough. Moreover, we also try another exper- 
iments of parameter settings of PAG. We have 
focused on the initial temperature To and tem- 
perature decreasing factor a respectively. Since 
raising the initial temperature and the tempera- 
ture decreasing factor could strengthen the effects 
of simulated annealing to prevent from trapping 
into local optimal. Due to the stochastic property 
of PAC, the results aren’t, always much better. 
We will try more experiments about parameter 
settings of PAG in the future. 

’ 

Hydrogen bonding According to the results pre- 
sented in [ll] and [16], there are a few primary 
hydrogen bonds formed between HIV- 1 protease 
and Thermolysin with their inhibitors. There are 
5 primary hydrogen bonds between HIV-1 pro- 
tease with its inhibitor. In one experiment done 
by Wang [30] has showed 5 out of 10 runs could lo- 
ca,te these 5 hydrogen bonds. In the case of Ther- 
molysin, there are 4 primary hydrogen bonds be- 
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Drug Population size 
Inhibitor for HIV-1 100 

200 
Inhibitor for TLN 100 

200 

Table 6: The results eualuuted by PAG. Eualuatzon nzeuns the count of euulziatzon about scorzng functzon. 

Generations Evaluation( times) Energy (kcal/mol) 
473 2608561 -124.11 
538 5384201 -126.19 
171 451049 -77.87 
436 2204649 -80.20 

tween Thermolysin with its inhibitor. 6 out of 10 
runs in his results locate these 4 hydrogen bonds. 
From the a.nalysis of hydrogen bonds, PAG still 
have found good fit.ting molecular struchres over 
50% even when the problem size is much larger 
than the cases of DHFR. 

From the discussion list,ed above, we can claim 
PAG still have found the reasonable fitting struct,ures 
over 50% even when the problem size is getting much 
larger. The following figure(Figure 2) shows the illus- 
tration of the binding structures. 

Figure 2: The bandang structure of Inhzbztor wzth HIV- 
i, where the central small molecule as the anhabator, 
and the outsade rabbon model as the HIV-1. 

5 Conclusion 

The importance of the molecular binding prob- 
lem is without questioning. In this paper, we have 
developped a ciass of neighborhood operators called 
populat.ion-based annealing operators for genetic al- 
gorit.hms. Incorporating a different PA operator with 
genet,ic algorithms will form a new GA/SA hybrid. 
Pire design t,he PAGs to solve the level-2 [S] molecular 
binding problem. Experimental studies not only indi- 
cate t,he usefulness of PAGs but also the properties of 
different PA operators. 

The near-optimal solutions obtained by PAG can 
be used for the work of drug design. We have verified 
that the genetic algorithms incorporating with SA are 
suitable to solve the molecular binding problem and 
believe these results are very useful for the biotechnol- 
ogy community. In summary, the contribution of this 
paper are: 

1. We have discussed the GA/SA hybrids in de- 
tails. Aftfer some elementary analysis, we design 
the GA/SA hybrids. The  algorithm can be used 
to solve the level-2 molecular binding problem. 
Furthermore, in the binding problem, we don’t 
need to know the binding pocket site a t  first, 
where most researchers have to know for their 
algorithms to reduce the problem size. We also 
hied the case of HIV-1 protease with its inhibitor, 
where the size of the problem have kept others 
from automatically finding its binding position. 

2. Our PACT algorithms are extensible since we have 
focused on ba.lancing the efficiency a.nd enhanc- 
ing the capabilit,y of diversity maintenance of the 
algorithms. Based on the extensibilit,y, we ha.ve a 
great chance to examine the level 3 binding prob- 
lem. 
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