
Efficient Allocation Algorithms for FLASH File Systems

Li-Fu Chou Pangfeng Liu
Department of Computer and Information Engineering

National Taiwan University
pangfeng@csie.ntu.edu.tw

Abstract

Embedded systems have been developing rapidly in re-
cent years, and flash memory technology has become an es-
sential building block because of its shock-resistance, low
power consumption, and non-volatile nature. Since flash
memory is a write-once and bulk-erase medium, an in-
telligent allocation algorithm is essential to providing
applications efficient storage service. In this paper, we pro-
pose three allocation algorithms – a First Come First
Serve (FCFS) method, a First Re-arrival First Serve
(FRFS) method, and an Online First Re-arrival First
Serve (OFRFS) method. Both FCFS and OFRFS are
on-line allocation mechanisms which make allocation de-
cision as the requests arrive. The FRFS method, which
serves as an off-line mechanism, is developed as the stan-
dard of performance comparison. The capability of the
proposed mechanisms is demonstrated by a series of exper-
iments and simulations. The experimental results indicate
that FRFS provide superior performance when the data ac-
cess pattern is analyzed in advance, and the on-line OFRFS
method provides good performance by run-time estima-
tion of access patterns.

1. Introduction

The recent rapid developments of embedded systems
have changed many aspects of our daily life. More and
more embedded systems are deployed in household appli-
ances, office machinery, transportation vehicles, and indus-
trial controllers. These tiny devices, with the help from in-
creasing computing power of modern microprocessors, are
able to perform and control complex operations. With this
advancing embedded system technology more and more
”smart” devices are able to provide inexpensive and reli-
able controlling capability.

Flash memory system has become a very important part
of embedded systems because of its shock-resistance, low
power consumption, and non-volatile nature. With recent

technology breakthroughs in both capacity and reliability,
more and more embedded system applications tend to use
flash memory as the storage systems. As a result, the effi-
cient use of flash memory system, including a good alloca-
tion algorithm to fully utilize flash memory, is the motiva-
tion for this research.

There are two important issues in the efficiency of the
flash memory storage system implementation – write-
once and bulk-erasing. Since the existing data within a
flash memory cell cannot be overwritten directly, a spe-
cial “erase” operation must be performed before the same
cell can be reused. The new version of data will be writ-
ten to some other available “live” space, and the old ver-
sion of data is then invalidated and considered ”dead”. As
data being repeatedly updated, the locations of the data
change from time to time. This out-place-update scheme is
adopted by flash memory systems.

A bulk-erase is initiated when the flash memory storage
systems have a large number of live and dead cells mixed
together. A bulk-erase could involve a large number of live
data copying since the live data within the regions that will
be erased must be copied to somewhere else before the eras-
ing. This garbage collection recycles the space occupied by
dead data.

There have been various techniques proposed to im-
prove the performance of garbage collection for flash mem-
ory [5, 6, 2]. Kawaguchi, et al. proposed a cost-benefit pol-
icy [5], which uses a value-driven heuristic function as a
block-recycling policy. Chiang, et al. [2] refined the work
by considering the locality in the run-time access patterns.
Kwoun, et al. [6] proposed to periodically move live data
among blocks so that blocks have more even life-cycles.

Although researchers have proposed excellent garbage-
collection policies, there is little work done in providing
a deterministic performance guarantee for flash-memory
storage systems. It has been shown that garbage collection
could impose almost 40 seconds of blocking time on time-
critical tasks without proper management [7]. As a result,
Chang, et al. [1] proposed a deterministic garbage collec-
tion mechanism to provide a predictable garbage collection

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

mechanism.
The focus of this research is to emphasize the impor-

tance of allocation strategy, so that the system requires less
times for garbage collection. In time-critical systems we
must consider both efficient garbage collection and alloca-
tion mechanism. A good allocation algorithm greatly im-
proves garbage collection time by reducing the number of
flash memory blocks required to realize a data update pat-
tern. This motivates us to develop intelligent data alloca-
tion algorithms to reduce the resource consumption for flash
memory storage systems.

The rest of this paper is organized as follows: Section
2 introduces the flash memory operation and allocation
model. Section 3 presents three allocation algorithms. Sec-
tion 4 summarizes the experimental results and Section 5
concludes with possible future research directions.

2. Flash Memory Allocation Model

This section describes the allocation model for flash
memory file systems. There are two major architectures in
flash memory design: NOR flash and NAND flash [10].
NOR flash is a kind of EEPROM and NAND flash is de-
signed for data storage. This paper focuses on NAND flash
as a storage for embedded system. NAND also has a bet-
ter price/capacity ratio compared to NOR flash. We will de-
scribe the properties of flash memory systems and the allo-
cation problem we would like to resolve.

2.1. Flash Memory Systems

A flash memory system is a collection of n cells. Each
cell in the flash memory has a unique ID, therefore the cells
are denoted by c0, c1, c2, . . . cn−1. B cells are grouped into
a block and we assume that there are F blocks, denoted by
b0, b1, b2, . . . , bF−1. As a result the cells in block bk are
cB∗k, cB∗k+1, cB∗k+2, cB∗k+3, . . . , cB∗(k+1)−1.

Each flash memory cell can be in one of the following
three states – free, used, and invalid. A free cell has no data
in it, a used cell has data written into in it, and an invalid
cell has a data that is no longer valid. On the other hand,
a block can be in one of the following two states – active,
inactive. An active blocks has valid data written in some of
its cells, and an inactive block only has free or invalid cells.

Initially all cells are free. When a data is written into a
free cell, the cell becomes used. Unlike a sector in a hard
disk, a written cell cannot be rewritten. If we would like to
rewrite a data stored a cell, we need to write it to another
free cell, and mark the original cell invalid. Invalid cells can
be put back into the free state only through an “erase” op-
eration. However, a block can be erased only when every
cell of the block is free or invalid. That means only inac-
tive blocks can be erased. After the erase operation all cells

become free and new data can be written into them. On the
other hand, if any cell of a block is in the used state the
block is active, and we cannot erase it.

2.2. Page Access Pattern

A file is divided into several pages denoted by
p0, p1, p2, . . . , pm−1. Each file page has the same size and
can fit into a memory cell. The pages of the file will be writ-
ten into allocated flash memory cells. We assume that the
file operation will be performed in pages, and we will con-
centrate on those pages that are modified. As a result,
file modification operation can be modeled as a se-
quence of page (and flash memory cell) modification. This
sequence is called the page access pattern.

2.3. Flash Memory Access

After we define the file access pattern and flash mem-
ory model, we formally define the access of flash memory.
Access to the flash memory can be divided into two cate-
gories – reading and writing. Since only the write operation
changes the state of cells and the allocation status of flash
memory, we just need to focus on the write operations. That
is, we simply ignore the read operations in the page access
pattern.

We divide the process of writing to the flash memory into
three stages. In the first stage, we transform the file modi-
fication process into a page access pattern. In the second
stage, we use a function f to map each page in the page ac-
cess pattern to a free cell. This function is called page allo-
cation function. We then apply function f on the page ac-
cess pattern obtained from the first stage and allocate a cell
for each page in the page access pattern. At the third stage,
the page of the page access pattern pk will be allocated a
memory cell cf(pk), decided in the second stage, and the
state of cell cf(pk) is set to “used”. If the same page ap-
peared in the page access pattern before, we set the state of
the cell it was previously allocated “invalid”.

3. Algorithms

3.1. First Come First Serve Allocation

The First Come First Serve Allocation algorithm places
pages according to their arrival time, with the first coming
page occupying the first available flash memory cell. This
strategy is very intuitive for the following reasons. First,
FCFS is very easy to implement and we can simply place
the pages without any complex computation. Secondly, it
seems reasonable that the first incoming page will become
invalid first, so that if we apply FCFS the blocks could be
reused in the earliest possible time. As a result FCFS may

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

require less memory blocks for the same page access pat-
tern.

We use a block list to store the flash memory blocks. We
allocate block from the block list for the incoming pages.
Initially the block list contains all the blocks of the flash
memory, and the blocks are ordered in increasing identifi-
cation number order.

FCFS places each page into memory cell according to its
arrival time. That is, the first page is placed into the first po-
sition of the first blocks in the block list; the second page
is placed into the second position of the first blocks in the
block list, and so on. In other words, we start placing the
pages into the second block in the block list only when the
cells of the first block are all used. As a result we place the
pages into blocks sequentially one block at a time.

The flash memory recycles blocks when necessary. If a
block becomes inactive, it can be erased and become ready
to use again. If FCFS finds that a block becomes inactive, it
erases the block and moves it to the end of the block list so
it can be reused.

During the FCFS allocation procedure, we keep track of
the total number of the active blocks. At the end, the maxi-
mum of these active blocks number is the number of blocks
required by FCFS for this access pattern. Figure 1 gives the
FCFS pseudo code.

for each page in the page access pattern {
Place the page into the first available
cell from the block list.

If the page appeared before, mark the
cell it previously resided invalid.

If the block the page previously resided
now becomes inactive, erase it and move
it to the end of the block list.

}

Figure 1. The pseudo code for First Come
First Serve Allocation (FCFS) algorithm.

3.2. First Re-arrival First Serve Allocation

Despite the fact that FCFS is intuitive and easy to im-
plement, it does not perform well in practice. Instead of
placing pages according to their arrival time, we propose
another strategy called First Re-arrival First Serve (FRFS)
that places pages according to their re-arrival time. A page
re-arrives when the same page appears again in the page
access pattern. And the re-arrival time is the time when the
page re-arrives. if a page does not re-arrive in the access pat-
tern, its re-arrival time is set to infinity

The intuition that we use the re-arrival time to allocate
cells is that we want to reuse blocks as soon as possible, so
that the allocation could uses the minimal number of blocks.
By assigning those pages that will be marked invalid first,
the first used block will be reused at the earliest possible
time.

FRFS algorithm has three stages. In the first stage FRFS
computes the re-arrival time of each page by scanning
through the entire access pattern. Note that FRFS needs to
know the page access pattern in advance in order to com-
pute the re-arrival time. The re-arrival time of those pages
that do not appear again is set to infinity. Figure 1 gives the
computation of the re-arrival time.

In the second stage FRFS allocates a cell for each page.
We sort the page sequence by their re-arrival time and as-
sign each of them a ordinal order according to its re-arrival
time. The page having the earliest re-arrival time is assigned
0, the page with the second earliest re-arrival time is as-
signed 1, and so on. Table 1 illustrates an access pattern, the
re-arrival time of each page, and the ordinal numbers they
are assigned according to their re-arrival time.

T 1 2 3 4 5 6 7 8 9 10 11 12 13
P a b c b a a d b d a d d a
R 5 4 i 8 6 10 9 i 11 13 12 i i
O 1 0 9 3 2 5 4 10 6 8 7 11 12

Table 1. FRFS timestamps each page and
computes its re-arrival time. Note that the re-
arrival time i means infinity.

In the third stage FRFS places the pages into the blocks
according to the ordinal number they are assigned from the
second stage. If the page has ordinal number k, it will be
placed into the k%B-th cell of the k/B-th block in the block
list, where B is the number of pages in a block. Note that
when a page re-arrives, we need to set the status of the cell
it previously resided to be invalid. Similar to FCFS, if FRFS
finds that a block becomes inactive, it erases the block and
moves it to the end of the block list so it can be reused. We
also keep track of the number of active blocks, and at the
end the maximum of these active block numbers is the num-
ber of blocks required by FRFS. Figure 2 gives the pseudo
code for FRFS.

3.3. Online First Re-arrival First Serve Allocation

Despite the fact that FRFS performs much better than
FCFS, as we shall see in the experimental results, FRFS
may not be practical since it needs to know the entire ac-
cess pattern in advance. However, in practice it is impossi-
ble to obtain this knowledge beforehand, and most of the
time we are required to to make an allocation decision as

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Compute the re-arrival time for each page
Compute an order of re-arrival time.

for each page in the page access pattern {
Let k be the ordial number
Place the page into the k % B-th cell
of the k / B-th block in the block list.

If the same page appeared before, mark the
cell it previously resided invalid.

If the block the page previously resided
becomes inactive, erase it and move it to
the end of the block list.

}

Figure 2. The pseudo code of First Re-arrival
First Serve Allocation (FRFS) algorithm.

soon as a page request arrives. As a result, we have to mod-
ify FRFS so that it will be able to adapt to the on-line sce-
nario.

We observe that most of the page access patterns contain
certain amount of “regularity”. By regularity we mean that
the interval between the same page appears and re-appears
is more or less the same. In the next section we will for-
mally define this interval regularity, and describe evidences
that this regularity does exist in file access trace records col-
lected in real systems. Based on this observation, we mod-
ify our FRFS algorithm to explore the interval regularity,
and build an on-line FRFS (OFRFS) that can correctly es-
timate the time a page will re-appear. Namely we use the
interval obtained from the history and the time it lastly ap-
peared to estimate when the same page will reappear, and
allocate the page for it accordingly.

The online FRFS uses two essential data structures. The
first data structure is a block list as in FRFS, and the sec-
ond one is a prediction table that contains prediction infor-
mation for all the pages that have appeared. For actual im-
plementation the prediction table will be placed in random
access memory of the embedded devices, so that we can ac-
cess the prediction information fast. Each page in the pre-
diction table contains two important data – the estimated ar-
rival interval for this page (denoted by α) and the last time
it appeared (denoted by β).

Initially, the prediction table is empty. When a new page
appears, we set its estimated arrival interval α to a default
value v, which is the mean value of the intervals of all pages
we have observed in the past. Then we set the last arrival
time β of this page to the current time, and insert this en-
try into the prediction table. If an incoming page is already
present in the prediction table, we update the estimated in-
terval as a linear combination of the previous α, and the
length of interval between the current time and the previ-
ously arrival time β. Formally, we compute the new esti-

mated interval length as the following Equation 1, where
α∗ is the new estimated interval length, t is the current time,
and r is the constant between 0 and 1 [9], and by definition
we set the previously arrival time β to the current time.

α∗ = rα + (1 − r)(t − β) (1)

We now complete the online FRFS implementation after
we know how to estimate the re-arrival time for each page.
When a page appeared we first obtain its estimated re-arrival
interval from the prediction table. Then we add the new esti-
mated interval and the current time together as the predicted
re-arrival time. When FRFS allocates a cell for the incom-
ing page, it needs to “skip” certain number of cells, for those
pages that will have re-arrival time smaller than the current
page. The reason is that by allocating the order the pages
reappear, blocks of cells can be reused as soon as possi-
ble. Therefore, we need to count the total number of pages
which will have smaller estimated re-arrival time.

We now describe the process of counting the number of
pages that will have smaller estimated re-arrival time than
the current page, so that we may skip the right number of
cells during allocation. When the current page arrives, its
re-arrival time is the sum of its estimated interval α and
the current time. Now for the other pages, by adding its es-
timated interval α to its last arrival time β, we obtain the
time it will arrive and be allocated into a cell we reserved
for it. However, the time this page is expected to leave the
reserved cell is the sum of twice of their estimated inter-
val α and the last arrival time β – the re-arrival time of this
page after being allocated into the reserved cell. For each of
the other pages p we compare the sum of twice of its esti-
mated interval and the last arrival time with the sum of the
estimated interval of the current page and the current time.
If the page p has a smaller re-arrival time, we reserve a cell
for it.

During the estimation process, we do not know the sta-
tus of every pages that will eventually appear, and we only
know the predicted re-arrival time of those pages that have
appeared in the past. As a result we simply count the num-
ber of pages that we are aware of that have a smaller pre-
dicted re-arrival time than the current page. Let us denote
this number of other pages that will reappear earlier than
the current page as S. After knowing S, we look for the
(S + 1)-th free cell in the block list and put the page into it.

3.4. Hybrid Online Allocation

Despite that our online FRFS allocation algorithm allo-
cates pages in an on-line manner with the aid of prediction
table, we do not have sufficient information to deduce the
re-arrival time for those pages that have very little informa-
tion in the prediction table. When a new page arrives, we
just set its estimated arrival interval α to a default value v,

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Initialize the prediction table
for each page in the page access pattern {

If the page did not appear before, set
the estimated interval to a default
value and insert it into prediction
table, otherwise, re-calculate the
estimated interval.

Use the sum of current time and
estimated interval as the predicted
re-arrival time.

Use the sum of the previous arrival
time and twice of the estimated interval
as predicted re-arrival time for other
pages.

Count the number of pages which have
smaller re-arrival time than the current
page in prediction table. Let the number
be S. Place the page into the (S+1)-th free
cell in the block list.

}

Figure 3. The pseudo code of On-line First
Re-arrival First Serve Allocation (OFRFS) al-
gorithm.

which is the mean value of the intervals of all pages we have
observed in the past. This could seriously mislead the pre-
diction since even when the page access pattern does have
certain regularity, the interval of one page could be very dif-
ferent from the other. Setting the estimated interval of all
pages to the same initial constant seems questionable. To
overcome this problem we modify our allocation algorithm
as follows: If the number of the times a page has appeared
is small, we do not use the estimated interval from the pre-
diction table to predict its re-arrival time. Instead we allo-
cate these page with the naive FCFS method. We will re-
fer to this algorithm as the Hybrid Online Allocation Algo-
rithm. This algorithm solves the problem that the estimated
interval is not correct because of insufficient data in the pre-
diction table.

4. Experimental Results

4.1. Regularity of Page Access Pattern

In order to predict the re-arrival time of a particular page,
we must have certain confidence in the “regularity” of the
page access pattern. In this section we formally define the
regularity, and demonstrate that it does exist in the trace files
we collected from real systems. In order to quantify this in-
terval regularity, for each page we calculate the mean value
and standard deviation of the intervals the same page reap-
pears. We then for each page calculate the ratio of the stan-
dard deviation to mean value of these intervals. This ratio

is denoted by R, and a small value of R indicates that the
page reappears in a predictable pattern. We use this ratio R
as the criterion to judge the regularity of page access pat-
tern.

Since each page has its own ratio R of standard deviation
to mean interval length, the distribution of R from all pages
is a good indicator of how well we will be able to predict the
re-arrival time. We construct this R histogram as follows.
We first find the maximum ratio R among all pages and de-
note it as RM . The R domain is then divided to produce 100
equally sized sub-domains, denoted by r0, r1, . . . , r99. The
range of rk is between RM ∗ k/100 and RM ∗ (k +1)/100.
We then construct the histogram by counting the number of
pages that will fall into each sub-domain. Figure 4 gives the
histogram on the left.

To compute the probability of the event that a page has a
specified range of R, we put a weight on the each page. The
weight of a page is the frequency that this page appears in
the trace file. Now each page has a weight, so we can com-
pute its weighted contribution towards the overall distribu-
tion. We now compute the sum of weight for all pages from
a sub-domain of R, and divided it by the total weight from
all pages. This quantity is indeed the probability of the event
that a page has a specified range of R.

Now we calculate the accumulated probability of these
ratio values. We are interested in the calculation that given a
fixed probability p, what is the minimum ratio value R∗ that
the event of having the random variable R smaller or equal
to R∗ is at least p? Formally we have Pr(R ≤ R∗) ≥ p.
For the sub-domain rk we sum up the probability of sub-
domains r0, r1, . . . , rk, and plot the accumulated probabil-
ity in the right hand side of Figure 4.

We have three trace files collected in three different real
systems. The first trace file is collected from an FAT32 file
system. Applications are a web browser and an email client.
The second trace is a disk trace downloaded from BYU
Trace Distribution Center [4]. This disk trace file is from a
TPC-C database benchmark with 20 warehouses, with one
client running one iteration. The database system is Postgres
7.1.2, and the trace is collected with DTB v1.1 from Red-
hat Linux kernel 2.4.13. The third trace is collected from an
FAT32 file system. The applications include web browser,
text editor, P2P software, and email client. It is collected
with Microsoft tracelog v5.0.

From Figure 4, as we set p to 90%, R∗ equals 31, 3, 49
respectively in each of the three trace records. We conclude
that trace2 has higher regularity than trace1, which in turn
has higher regularity than trace3.

4.2. Experimental Guidelines and Results

We implemented four algorithms – First Come First
Serve (FCFS), First Re-arrival First Serve (FRFS), Online

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 p

ag
es

percentage of Rm

’analysis_trace_0_0.pl’

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

po
ss

ib
ili

ty

percentage of Rm

’analysis_trace_0_1.pl’

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 p

ag
es

percentage of Rm

’analysis_trace_1_0.pl’

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

po
ss

ib
ili

ty

percentage of Rm

’analysis_trace_1_1.pl’

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 p

ag
es

percentage of Rm

’analysis_trace_2_0.pl’

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

po
ss

ib
ili

ty

percentage of Rm

’analysis_trace_2_1.pl’

Figure 4. The histogram and accumulated
probability of the three trace records.

First Re-arrival First Serve (OFRFS) and Hybrid Online
(HO). For each trace file, we compare their performance
under different access patterns length N . We conducted ex-
periments for different values of N , which is set to 2n ∗ 256
for n = 1, 2, 3, . . . till the maximum value depending on
the length of trace files. For each of these page access pat-
terns we run the three allocation algorithms for 100 times
and compare the average number of requested blocks.

Figure 5 plots the relation between the length of the page
access pattern and the average number of requested blocks
for each trace file.

Observations From Figure 5 we have the following obser-
vations. First for each trace file, the average number of re-
quested blocks of FCFS is larger than that of FRFS. Sec-
ondly, the average number of requested blocks of OFRFS is
less than that of FCFS in the first trace file, almost the same
as that of FCFS in the second trace file, and actually larger
than that of FCFS in the third trace file. Thirdly, the aver-
age number of requested blocks of HO is only larger than
FRFS, and is smaller than that of OFRFS in all trace files.

Explanations There are two reasons that FRFC outper-
forms FCFS. First FRFS permutes the pages of the page ac-
cess pattern in an order obtained from their re-arrival time.
Consequently we put those pages that will become invalid
earlier into the first blocks. When the last page in the first
block arrives again, the block can immediately be erased

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50000 100000 150000 200000 250000 300000

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
ed

 B
lo

ck
s

Lenght of Page Access Pattern

FCFS
FRFS

OFRFS
HO

 0

 50

 100

 150

 200

 250

 300

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
ed

 B
lo

ck
s

Lenght of Page Access Pattern

FCFS
FRFS

OFRFS
HO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
ed

 B
lo

ck
s

Lenght of Page Access Pattern

FCFS
FRFS

OFRFS
HO

Figure 5. The average number of the re-
quested blocks from the four allocation algo-
rithms on the three trace files.

and re-used. This accelerates the rate of producing re-usable
blocks and decreases the number of requested blocks. Sec-
ondly, every page access pattern has some pages that ex-
ist forever, which we call infinite pages, and these infinite
pages do not re-appear. Consequently the infinite pages oc-
cupy the cells they reside forever. In FRFS allocation algo-
rithm, these infinite pages are of infinite re-arrival time, so
they are all allocated to the last possible blocks. In our im-
plementation we allocate these infinite pages separately in
a different block area, so that they will not be distributed
among those blocks that could be reused, causing those
blocks not being able to be reused. As a result FRFS avoids
the case that infinite pages interfere the recycle process and
this also decreases the final number of requested blocks.

We observe that OFRFS performs quite differently in dif-
ferent trace files. The reason seems to be that the regularity

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

of the trace files, i.e. the regularity of trace2 is higher than
that of trace1, which is higher than that of trace3. As a re-
sult the average number of requested blocks of OFRFS is
larger than that of FCFS in the third trace file, because the
third trace file has the least regularity among all three and
OFRFS cannot precisely predict the re-arrival time of each
page.

From the experiments we know that FCFS performance
improves when the trace file has high regularity, i.e., the av-
erage number of requested blocks by FCFS in the second
trace file is smaller than that in the first trace file. Similarly
the performance of OFRFS also improves from the first to
the second trace file. Although OFRFS is sensitive to regu-
larity, it seems that FCFS is even more sensitive, so its per-
formance degrades much more than OFRFS does.

The performance of HO is only second to FRFS, and the
average number of requested blocks of HO is smaller than
that of OFRFS and FCFS in all trace files. HO eliminates
the situation that we allocated page according to wrongly
predicted re-arrival time, due to insufficient data in the pre-
diction table. If we do not trust the estimated interval, we re-
sort to allocating the page in FCFS scheme. It is not until we
have sufficient data to make reasonably correct interval es-
timation before we allocate the pages according to OFRFS
scheme. This ensures that the performance of HO is at least
as good as that of FCFS. The experimental results have ver-
ified this.

5. Conclusion

This paper discusses efficient allocation algorithms for
flash file systems. The goal is to allocate a flash memory
cell for each incoming page from a file access pattern so
that the number of requested blocks for the file access pat-
tern is reduced. We also implemented these algorithms and
conduct experiments to compare their performances.

From the experimental result, and consisting with our in-
tuition, the First Re-arrival First Serve (FRFS) method out-
performs the First Come First Serve (FCFS) method. How-
ever FRFS may not be practical since it needs to know the
entire access pattern in advance in order to make the alloca-
tion decisions. In practice this global knowledge is impos-
sible to obtain, and most of the time we are required to allo-
cate pages in an on-line manner. Nevertheless, FRFS illus-
trates a very important idea that if we can allocate pages
according to their re-arrival time, we can reuse block as
soon as possible and the number of requested blocks will
decrease.

In our empirical study we demonstrated that file ac-
cess patterns usually do have regularity. With this observa-
tion, we can predict the re-arrival time of each page from
the history. This motivates us to allocate the page into the
cell according the predicted re-arrival time, instead of the

real re-arrival time. The Online First Re-arrival First Serve
(OFRFS) method also exhibited good performance as we
observed in Chapter 4. OFRFS performs exceptionally well
when the length of file access pattern increases, so that it
can predict next arrival time of each page precisely, and al-
locate pages accordingly. This reduces the number of re-
quested blocks for the same access pattern, when compared
with FCFS.

The current scope of this paper does not consider the life
cycle of flash memory. That is, most flash memories only
guarantee a limited number of erase and re-write cycles, and
typical values are guaranteed up to 10,000 times [8]. Our
allocation algorithm focuses on the number of requested
blocks and do not take the number of erase and re-write op-
erations into consideration. It is possible that if an allocation
algorithm does not evenly distribute the erase and re-write
operations to all cells, some cells may be worn out much
earlier than the others are. As a result, our future work in-
cludes a more balanced cell allocation strategy by which the
number of operations is balanced on all cells. This broader
and more complex cost measurement model will certainly
be more realistic, and hence more practical.

References

[1] L.-P. Chang and T.-W. Kuo. A real-time garbage collection
mechanism for flash-memory storage systems in embedded
systems. In Preceedings of the 8th International Conference
on Real-Time Computing Systems and Applications, 2002.

[2] M. L. Chiang, C. H. Paul, and R. C. Chang. Manage flash
memory in personal communicate devices. In Proceedings
of IEEE International Symposium on Consumer Electronics,
1997.

[3] S. E. Company. K9f2808u0b 16mb*8 nand flash memory
data sheet.

[4] K. Flanagan. Byu trace distribution center.
http://tds.cs.byu.edu/tds/index.jsp.

[5] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash memory
based file system. In Proceedings of the USENIX Technical
Conference, 1995.

[6] H.-J. Kim and S.-G. Lee. Memory management for flash
storage system. In Proceedings of the Computer Software
and Applications Conference, 1999.

[7] V. Malik. Jffs2 is broken. In Mailing List of Memory Tech-
nology Device (MTD) Subsystem for Linux, June 28th 2001.

[8] O. Pfeiffer and A. Ayre. Using
flash memory in embedded applications.
http://www.esacademy.com/faq/docs/flash/index.htm.

[9] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating Sys-
tem Concepts Sixth Edition. John Wiley & Sons, Inc., 2003.

[10] Wikipedia. Flash memory.
http://en.wikipedia.org/wiki/Flash memory.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

