
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 預先擷取鏈結資料結構之可程式化記憶體階層 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：x 個別型計畫 □整合型計畫

計畫編號：NSC 91-2213-E-002- 056 -

執行期間： 91 年 1 月 1 日至 91 年 7 月 31 日

計畫主持人：楊佳玲

共同主持人：

計畫參與人員：曾宏偉 楊善詠 蘇夢昌 費懷忠

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：台灣大學資訓工程學系

中 華 民 國 91 年 10 月 28 日

2

行政院國家科學委員會專題研究計畫成果報告
預先擷取鏈結資料結構之可程式化記憶體階層

A Programmable Memory Hierarchy for Prefetching Linked
Structures

計畫編號：NSC 91-2213-E-002-056-
執行期限：91 年 1月 1日至 91 年 7月 31 日
主持人：楊佳玲 台灣大學資訊工程系

e-mail: yangc@csie.ntu.edu.tw
http://www.csie.ntu.edu.tw/~yangc

一、中文摘要

由於中央處理器與記憶體間效能的差
距日益擴大，如何減輕此差距對高性能電
腦系統建構上的影響，成為一個重要的課
題。快取記憶體的應用被公認為可以非常
有效的改進記憶體系統效能。然而，其有
效性往往會因為程式本身對於快取記憶體
取用能力不佳而受到侷限。因此，發展隱
藏記憶體存取時間的技術，對於彌補處理
器與記憶體間效能差距是非常重要的。

 預先擷取常被運用來重疊運算與資料
的存取。對於以矩陣為主的應用程式，預
先擷取技術在過去十年間已經發展相當成
熟。但是如何運用預先擷取技術在鏈結資
料結構為主的應用程式卻仍然是一個極具
挑戰性的問題。其原因在於鏈結資料結構
在記憶體位址的配置上並不如矩陣那樣的
規律，以及指標追逐為問題。

 在這個計畫中，我們針對以鏈結資
料結構為主的程式，建立一個上推模式預
先存取架構。在此架構中，我們在記憶體
階層中的每一層裡安裝一個可程式化的預
先擷取引擎。 這些預先擷取引擎協調地執
行存取鏈結資料結構的指令。被這些預先
擷取引擎存取的資料會主動推進至記憶體
階層中的頂層。在計畫執行期間，我們發

展出此架構之模擬器並對一些以鏈結資料
結構為主的應用程式加以測試。實驗結果
顯示此預先擷取技術最高可消除 100%的
記憶體延滯時間，總執行時間平均減少
19%。

關鍵詞：預先擷取、鏈結資料結構、快取
記憶體、記憶體階層

Abstract

The widening performance gap between
processors and memory makes techniques
that alleviate this disparity essential for
building high-performance computer systems.
Caches are recognized as a cost-effective
method to improve memory system
performance. However, a cache's
effectiveness can be limited if programs have
poor locality. Thus techniques that hide
memory latency are essential to bridging the
CPU-memory gap.

Prefetching is a commonly used technique to
overlap memory accesses with
computation.Prefetching for array-based
numeric applications with regular access
patterns has been well studied in the past
decade. However, prefetching for
pointer-intensive applications remains a
challenging problem. Prefetching linked
data structures (LDS) is difficult because
address sequences do not present the same
arithmetic regularity as array-based
applications and because data dependence of

3

pointer dereferences can serialize the address
generation process (the pointer-chasing
problem).

In this project, we built a generic
prefetching framework for pointer-based
applications based on the previously
proposed push model. We use a
programmable processor, a prefetch engine
(PFE), at each level of the memory hierarchy
to cooperatively execute instructions that
traverse a linked data structure. Cache blocks
accessed by the processors at the L2 and
memory levels are pro-actively pushed up to
the CPU. Simulation results show that the
proposed prefetching scheme can reduce up
to 100% of the memory stall time on a suit of
pointer-based applications, reducing overall
execution time by an average 19%.

Keywords: prefetching, pointer-based
applications, cache, the memory hierarchy

二、Introduction & Objective

 Microprocessor performance has been
growing at a rate of 60% per year in the past
decade. However, memory access time is
increasing at a much slower rate, at about 7%
per year. Current DRAM (Dynamic Ram)
implementations usually take a few hundred
naroseconds to retrieve data. As the
performance gap between processors and
memory continues to grow, techniques that
reduce the effect of this disparity are essential
to building a high-performance computer
system.

The use of caches between the CPU and
main memory is recognized as an effective
method to bridge this gap. The design of
caches is based on one important program
property - locality of references. If
programs exhibit good locality, the majority
of memory requests can be satisfied by
caches without having to access main
memory. However, a cache's effectiveness

can be limited for programs with poor
locality. For applications with regular
access patterns several compiler techniques
(e.g. blocking and loop transforms)1 can be
used to improve program locality. However,
it is difficult for compilers to perform such
optimization for applications with irregular
access patterns. Thus techniques that hide
memory latency are important in addition to
the use of caches.

The idea of hiding memory latency is
allowing CPU execution and memory
accesses to proceed in parallel. One
commonly used latency hiding technique is
prefetching. Prefetching for array-based
numeric applications with regular access
patterns has been well studied [1][2][3][4].
However, prefetching for pointer-intensive
applications remains a challenging problem.

Conventional prefetching schemes rely
on address stream regularity to predict future
addresses. Many scientific computing
applications, which use array data structures,
present such regularity. Unfortunately,
commercial applications, such as databases,
graphics and VLSI applications, usually
create sophisticated data structures using
pointers and do not exhibit sufficient
regularity for conventional prefetch
techniques to exploit. Furthermore,
prefetching pointer-intensive data structures
can be limited by the serial nature of pointer
dereferences---called the pointer-chasing
problem---since the address of the next node
is not known until the contents of the current
node are accessible. The pointer-chasing
problem makes it difficult to schedule
prefetch requests far enough ahead to actually
hide memory latency.

In this project, we develop a
programmable memory hierarchy that is able
to perform prefetching for pointer-based
applications based on the previously
proposed data movement model – push [6].
The push model performs pointer
dereferences at lower levels of the memory

4

hierarchy and pushes data up to the processor.
This decouples the pointer dereference from
the transfer of the current LDS element up to
the processor. Implementations can pipeline
these two operations and eliminate the
request-response delay required for a
conventional pull-based technique where the
processor fetches an LDS element before
requesting the next element. To realize this
push model, a prefetch engine (PFE) is
attached to each level of the memory
hierarchy. The prefetch engine executes
instructions that access LDS elements, and
cache blocks accessed by the prefetch
engines are pushed up to the CPU.

The existing push-based prefetching
framework performs a preliminary
performance evaluation using a limited
implementation of the push model. The
initial design can only support linked-list
traversals, which simplifies the interaction
among prefetch engines. In this project, we
build a flexible implementation of the push
model, which is capable of performing
prefetching for a multitude of LDS traversal
kernels.

Simulation results show that the proposed
prefetching scheme can reduce up to 100% of
the memory stall time on a suit of
pointer-based applications, reducing overall
execution time by an average 19%. We
have published the results in the 4th

International Symposium on High
Performance Computing (ISHPC-IV) [7].

三、Results Summary

ba
se

pu
sh pu

ll

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

health em3d mst rayshade perimeter bh bisort treeadd tsp voronoi

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

memory latency

computation time

In this section, we summary the simulation
results based on the Olden Benchmark [8].
Figure1 shows execution time normalized to
the base system without prefetching. For
each benchmark, the three bars correspond to
the base, push and pull models, respectively.
Execution time is divided into 2 components,
memory stall time and computation time. We
obtain the computation time by assuming a
perfect memory system. For the set of
benchmarks with tight traversal loops (health,
mst, treeadd), the push model is able to
reduce between 25% and 38% of memory
stall time (13% to 25% overall execution
time reduction) while the pull model can only
reduce the stall time by at most 4%.
Perimeter traverses down a quad-tree in
depth-first order, but has an unpredictable
access pattern once it reaches a leaf.
Therefore, we only prefetch the main
traversal kernel. Although perimeter
performs some computation down the leaves,
it has very little computation to overlap with
the memory access when traversing the
internal nodes. So the pull model is not able
to achieve any speedup, but the push model
reduces the execution time by 4%.

For applications that have longer
computation lengths between node accesses
(bh, rayshade, em3d), we expect larger
reductions in memory stall time than for
programs with little computation between
node accesses. From Figure 1 we see that
the push model performs close to a perfect
memory system for rayshade and bh (89%
and 100% memory stall time reduction),
reducing execution time by 57% and 36%,

Figure 1: Performance comparison between the

push and pull model

5

respectively. The pull model achieves
similar improvements for bh, but reduces
execution time by only 39% for rayshade.
The exception is em3d, which shows only a
31% reduction in memory stall time and 25%
in execution time, with similar performance
for the pull model. That is because Em3d
has poor L1 cache performance (57% load
miss rate), but the L2 cache is able to capture
80% of these misses. Bisort and tsp
dynamically change the data structure while
traversing it so the prediction accuracy is low
for this type of application is low. For tsp,
we are able to identify some traversal kernels
that do not change the structure dynamically.
The results presented here prefetch only these
traversal kernels. The push model is able to
reduce the execution time by 4% and the pull
model 1%. For bisort, neither the push or pull
model is able to improve performance
because the prediction accuracy is low (only
20% of prefetched cache blocks are useful).
By only prefetching one node ahead, both the
push and pull can reduce the execution time
by 3%. Voronoi uses pointers, but array and
scalar loads cause most of the cache misses.
So we are not able to see any performance
improvement for either the push or pull
model.

四、Conclusion

 In the project, we have successfully built
a programmable memory hierarchy for
prefetching linked-data structures. We
showed the effectiveness of the proposed
scheme through simulations. We have
published this work in the 4th International
Symposium on High Performance
Computing (ISHPC-IV)[7].

五、 Acknowledge
Students who join this projects are

Houng-Wei Tseng, Hsun-Young Yang,
Men-Chan Shu and Hwi-Cheng Fei.

六、Bibliography

1. M. E. Wolf and M. S. Lam. A Data
Locality Optimizing Algorithm. In
Proceedings of the SIGPLAN '91
Conference on Programming
Language Design and
Implementation, pages 30-44, June
1991.

2. Norman P. Jouppi. Improving
Direct-Mapped Cache Performance
by the Addition of a Small
Fully-Associative Cache and Prefetch
Buffers. In Proceedings of the 17th
Annual International Symposium on
Computer Architecture, pages
363-363, May 1990.

3. Tien-Fu Chen and Jean-Loup Baer.
Reducing Memory Latency via
Non-Blocking and Prefetching
Caches. In Proceedings of the Fifth
International Conference on
Architectural Support for
Programming Languages and
Operating Systems, pages 51-61,
1992.

4. A. K. Porterfield. Software Methods
for Improvement of Cache
Performance on Supercomputer
Applications. Ph.D Thesis,
Department of Computer Science,
Rice University, May 1989.

5. T.C. Mowry and M. S. Lam and A.
Gupta. Design and Evaluation of a
Compiler Algorithm for Prefetching.
In Proceedings of the Fifth
International Conference on
Architectural Support for
Programming Languages and
Operating System, pages 62-73,
October 1992.

6. C. Yang and A. R. Lebeck. Push vs.
Pull: Data Movement for Linked-Data
Structures. In Proceedings of the
ACM International Conference on
Supercomputing, pages 176-186, May
2000

7. C. Yang and A. R. Lebeck A
Programmable Memory Hierarchy for
Prefetching Linked Data Structures,
in Proceedings of the 4th

6

International Symposium on High
Performance Computing (ISHPC-IV),
Springer-Verlag, May 2002, Japan

8. A. Roger, M. Carlisle, J. Reppy and L.
Hendren. Supporting Dynamic Data
Structures in Distributed Memory
Machines. ACM Transactions on
Programming Languages and
Systems 19 (1995)

	page1
	page2
	page3
	page4
	page5
	page6

