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一、中文摘要 

由於可攜式裝置 (如：手持式電腦與

個人通訊設備) 的普遍性日益增加，電源

消耗成為一個必要的設計考量。快取記憶

體在晶片的整體電源消耗上佔有不可忽視

的成分。在這個計劃裡，我們提出一個新

的快取記憶體結構，它能利用應用程式中

資料存取的特色來達到電源延遲最佳化。

一個常被使用來節省快取記憶體耗電的技

術，是盡量減小快取記憶體被存取的範

圍。然而，此種減少電源消耗的技術通常

也會犧牲部分的效能，因為我們無法正確

地預測所需要的資料存在於快取記憶體中

的何處。我們在此計劃中提出的快取記憶

體結構，利用了軟硬體互相搭配的機制，

來分配程式中不同型態的資料到快取記憶

體中不同的部分。藉由控制快取記憶體資

源之分配，我们能夠不增加快取記憶體存

取時間，並同時達到減少電源消耗之目地。 

此計畫執行第一年，我們選擇 MPEG-2

軟體解碼程式作為第一個使用這種省電管

理的應用程式。我們實驗的結果在快取記

憶體的耗電量方面可以達到 40%左右的省

電量，同時不影響程式執行的效能。 

 

關鍵詞：能量消耗，快取記憶體，電源延

遲最佳化 

 

Abstract 
Power consumption is becoming a 

critical design issue because portable devices 
(e.g., hand-held computing and personal 

telecommunication devices) increase in 
popularity.  Cache memories account for a 
significant fraction of a chip’s overall energy 
dissipation.   In this project, we propose an 
informed cache architecture that utilizes 
application-specific information for energy •  
delay optimization.   One commonly used 
technique to save power on a cache access is 
to enable smaller cache structures.   
However, reducing power often comes at the 
cost of sacrificing arbitrary amounts of 
performance because of not being able to 
predict where requested data exist in cache 
memories accurately.   Informed cache 
architecture employs a hardware-software 
cooperative scheme that assigns different 
types of data in a program to specified 
regions of cache memories.   By explicitly 
controlling the cache resource allocation, we 
can avoid increasing cache access latency 
while reducing cache energy dissipation 
Power consumption is an important design 
issue of current embedded systems. Data 
caches consume a significant portion of total 
processor power for data intensive 
applications.  In this project, we propose to 
utilize application-specific information for 
cache resource allocation to achieve energy 
saving, including cache bypassing, the 
mini-cache and way-partition. 

We use a software MPEG-2 video 
decoder as our first targeted application to 
test the effectiveness of the proposed 
mechanism.  The results show up to 40% of 
cache energy reduction without sacrificing 
performance.   
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二、Introduction & Objective  
Power consumption is becoming a 

critical design issue of embedded system due 
to the popularity of portable devices such as 
cellular phones and personal digital assistants.  
It has been reported that caches consume a 
significant portion of the total processor 
power. For example, 42% of processor power 
is dissipated in the cache subsystem in 
StrongARM 110 [1]. Many embedded 
applications, in both the multimedia and 
communication domains, are data dominated.  
Data storage and transfer account for a 
significant portion of overall power 
consumption.  Whether a reference goes to 
the main memory or not, it must access the 
data cache.  Therefore, techniques to reduce 
energy dissipation in the data cache are 
critical to deliver an energy-efficient 
embedded system. 

Cache partitioning and way-prediction 
are two commonly used techniques to reduce 
energy dissipation in data caches. Cache 
partitioning schemes divide caches into 
smaller components since a smaller cache has 
a lower load capacitance.  Way-prediction 
predicts the matching way and probes only 
the matching way instead of all ways to 
reduce power consumption for set-associative 
caches.  These techniques often increase 
average access latency if the referenced data 
is not located in the predicted region.  

The need for prediction is due to the fact 
that cache management is transparent to 
software.  If we allow software to control 
cache resource allocation, we can access the 
region where a memory reference is located 
directly.  In this way, we can achieve energy 
saving without increasing average cache 
access time.  Allowing software to control 
caches has been proposed to improve cache 
performance for embedded systems [2][3].  
In this paper, we exploit the potential of 
using a software-managed cache for energy 
optimization. 

We use a software MPEG-2 video 

decoder as our first targeted application.  An 
MPEG-2 decoder has large data set and 
requires high data processing rate, which are 
two important characteristics of real-time 
signal processing applications. We consider 
three software-controlled cache management 
mechanisms and demonstrate how to utilize 
the application-specific information of an 
MPEG-2 decoder to achieve energy saving.  
Cache bypassing saves energy by accessing 
the L2 cache directly for data that have little 
reuse.  The mini-cache scheme stores 
frequently accessed data with small memory 
footprints into a small on-chip memory area.  
Way-partition maps program data structures 
to different ways of set-associative caches 
according to their working set size and access 
frequency.  On each access, we can access 
the matching ways directly instead of probing 
all ways as in the traditional cache design.   

We can break down the data types in a 
MPEG-2 decoder into the following classes: 

Input— The MPEG-2 bitstreams.  
Output— The decoded picture data.  
Tabular— Static and read-only tables used in 
the decoder. 
Reference— Buffers for both current and 
reference frames. 
Block—The buffer for pixel values of a 
single macroblock. 
State—Variables needed for setting and 
operation of the decoder. 

Table 1 lists the data set size and 
percentage of total memory references for 
different data types.  Note that the access 
percentage from the major data types only 
adds up to 82%.  A significant portion of the 
remaining references comes from accessing 
the stack region (12% of total memory 
references).  Based on this information, we 
can determine an coarse cache allocation 
policy for individual data type. To achieve 
better energy-efficiency, we propose a 
two-phase data allocation policy based on 
additional off-line profiling algorithm. The 
first phase is gathering information of 
minimal resources required by each data 
types. To reduce the energy consumption, a 

Data type size Access%Data type size Access%
input 2KB 0.2%Reference 1500KB 27.5%
output 500KB 1.9%block 1.5KB 34.2%
tabular 5KB 9.2%State 1.5KB 9.1%
 Table 1: Summary of decoder data types, size and % of 
memory references 

Data type (Associativity,size) 

Input (1, 32 Bytes) 

Output (1, 32 Bytes) 

Tabular (1, 2 KBytes) 

Reference (2, 256 Bytes) 

Block (1, 1 KBytes) 

State (2, 1 KBytes) 

Stack (1, 512 Bytes) 

Others (1, 512 Bytes) 
Table 2: Required minimal cache resources for 
each data type 
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data type should be allocated as few ways as 
possible.  Therefore, we test cache 
configurations in the increasing order of the 
degree of set-associativity.  For each 
possible size given an associativity, we 
calculate the number of cache misses from 
the tested data type. If the number of misses 
is not greater than that in the base 
architecture, the minimal resources for that 
data type is identified.  No more profiling 
runs are needed for that data type. The 
proposed algorithm is listed below, and the 
profiled result is shown as in Table 2. 

 

The second phase is to determine the 
mapping between data types and cache 
regions based on the profiling information. 
We first identify data types that are eligible 
for the mini-cache; that is, the required 
associativity is one and the size is not greater 
than the mini-cache size.  To achieve more 
energy savings, we would like to have more 
memory accesses satisfied in the mini-cache. 
Therefore, we place the most frequently 
accessed data types to the mini-cache 
provided that their size is not greater than the 
mini-cache size. The proposed mini-cache 
selection algorithm is shown as the following: 

 

The last step is to determine the 
mapping between ways of the L1 cache and 
the rest of data types (referred to as 

way-partition). The allocation principle is to 
keep the utilization of each cache way as 
even as possible. In other words, a data type 
should be mapped to ways with minimal 
utilized resources.  We quantify the utilized 
resources of a way as the total sizes of data 
types allocated to that way.  The mapping 
information for each data type is represented 
as a bit vector.  For example, if a data type 
is mapped to the first 2 ways of a 4-way 
cache, its mapping vector is (1,1,0,0). The 
details of the way-partition algorithm is 
summarized below. 

 
 

The paper has been accepted by IEEE 
Transactions on Circuits and Systems for 
Video Technology.  Below we summarize 
the results. 

 
三、Results Summary 

Since energy-saving methods may 
reduce energy dissipation at the expense of 
performance degradation, we evaluate the 
performance, energy consumption and 
energy-delay product of the proposed 
energy-saving techniques.  The proposed 
energy-saving techniques may increase L1 
cache miss rate, thereby increasing the L2 
cache energy consumption. Therefore, for a 
fair comparison, we consider both the L1 and 
L2 caches for energy evaluation.  

 
Software controlled cache 

Before presenting the effectiveness of 
the software-controlled cache, we first 
summarize the minimal resources required 
for each data type in Table 2. The minimal 
resources for data types are gathered by our 
proposed profiling algorithm. 
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We can see that the required cache size 
is smaller than the data set size presented in 
Table 1.  For example, the data set size of 
the reference data type is 1500 KB while the 
required cache size is only 256Bytes.  For 
data types that are not allocated contiguously 
in memory, such as reference and state, 
multiple ways are required to eliminate 
self-interferences.  Based on our proposed 
mini-cache selection algorithm we proposed: 

the stack data are mapped to the mini-cache.  
The way allocation information of the rest 
data types are decided by our proposed 
way-partition algorithm. Note that the output 
data bypasses the on-chip caches.  

To analyze the effectiveness of the 
proposed software-controlled cache in details, 
we evaluate the proposed scheme in three 
configurations:bypassing,bypassing+mini-cac
he, bypassing+mini-cache+way-partition. 
Figure 3 shows the execution time, energy 
and ED normalized to the base architecture 
for these three configurations.  We can see 
that bypassing output data reduces the energy 
by 1.4%.  The performance advantage of 
bypassing is not significant. For the MPEG-2 
software decoder, the output data only 
accounts for 2% of memory references.  For 
applications performing output operations 
more often, we expect the bypassing 
mechanism should present more performance 
and energy advantages. Mapping the stack 

data to the mini-cache in addition to 
bypassing can achieve up to 9.5% energy 
reduction with slight performance 
improvement.  Partitioning the L1 cache 
among the remaining data types can further 
reduce the energy by more than 30% without 
performance degradation.  In summary, the 
proposed software-controlled cache achieves 
up to 40% energy reduction while 
maintaining the comparable performance as 
the base architecture. 

To further demonstrate the importance 
of our proposed data allocation policy. We 
compare the above data allocation with 
another one derived simply by the 
information presented in Table 1. The output 
data still bypass the on-chip caches, and the 
stack variables are mapped to the mini-cache 
since it is the only data type whose size is not 
greater than the mini-cache.  The rest of 
data types are mapped to different ways of 
the L1 cache.  Note that the allocation 
policy still tries to keep the utilization of each 
way as even as possible.  Since the 
differences between these two data 
allocations are in how the L1 cache is 
partitioned among data types, we focus on 
the comparison between these two 
way-partition methods.  A good 
way-partition method should reduce the 
energy consumed in the L1 cache without 
increasing that of other memory components; 
that is, way-partition should not increase L1 
misses significantly. The optimized-partition 
by our proposed data allocation policy 
consumes 28% less L1 energy than that of 
coarse-partition with less than 1% differences 
in the L1 miss ratios.  Note that the slight 
increase in the L1 miss ratios comes from the 
interferences among data types allocated to 
the same region. 
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 Figure 1: The normalized execution time, 
energy consumption, and energy-delay product 
of different software-controlled techniques 
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Software-Controlled Cache v.s. ED 
Optimal Cache 

To find the ED optimal cache 
architecture for the software MPEG-2 
decoder, we perform a thorough design space 
exploration.  We vary the cache size from 
4K to 128K, degree of set associativity from 
direct-mapped to 4-way and block size from 
8 to 128B. A 64B, 2-way 8K cache has the 
lowest ED value among the configurations 
tested.  

Figure 2 compares the normalized 
execution time, energy and ED of the 
software-controlled cache and the ED 
optimal cache (64B, 2-way, 8K). All three 
metrics are normalized to the base 
architecture (32B, 4-way, 8K).  We can see 
that the ED optimal cache performs slightly 
worse than the base architecture but it 
consumes 23% less energy.  This tells us 
that if we simply use the cache architecture in 
an ARM-like processor, a significant amount 
of cache energy is wasted.  However, by 
employing the proposed software-controlled 
cache technique, an ARM-like cache 
architecture consumes even less energy than 
a dedicated cache tuned for the MPEG-2 
software decoder. 

四、Conclusion 
In this project, we propose to use a 

software-controlled cache for 
energy-efficiency optimization on a shared 
cache architecture of an integrated 
multimedia system.  The proposed 
software-controlled cache allocates data types 

in an application to different cache regions.  
A data type is either mapped to the 
mini-cache, ways of the L1 cache or bypass 
on-chip caches.  The optimization goal is to 
achieve energy reduction without 
performance degradation. We test the 
effectiveness of the software-controlled cache 
on the MPEG-2 software decoder.  The 
results show that the software-controlled 
cache reduces 40% of energy on an 
ARM-like cache architecture without 
sacrificing performance.  It consumes even 
less energy in comparison with a cache 
architecture tuned specifically for the 
MPEG-2 decoder.  This study has shown 
that the proposed software-controlled cache 
does provide a way to improve the energy 
efficiency of a shared cache architecture for 
an integrated multimedia system on an 
application-specific basis. In the future, we 
will apply the software-controlled cache 
technique to other multimedia applications, 
such as the MPEG-4 decoder. 

This research work has been published in the 
IEEE Transactions on Circuits and System 
for Video Technology, special issue on 
integrated multimedia system.  
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