(21 2)

NSC92-2213-E-002-014-
92 08 01 93 07 31

93 12 15

BRI E LR RSB EE T E S kR
B R D QP QP X X QI QD QP XS

PR IR PR IR R IR IR TR IR RO IR SR IR IR IR IR SR IR IR IR IR IR IR R

P EAEL X BEAE ClE &3+ 3%
24 4% 0 NSC 92-2213-E-002 —014-
HEHPHF: 91# 89 1 px 93& 7 31p

FF A ’]f; A

a :
SH AR E T GAM REE SER

AR RARL o 4EN T B 2
ENCRGRE Sy o R e A
(A A BEE RO LAY @2 - 5
L
[JR%Z & TR T ERMDETHL LT -

REEL=: o FF188 5

4 = 3 #10 *30F

T JT []

RPHE LR ¢ P74

FERE

Designs of Energy-Efficient Cache for Embedded Systems

24 e
P #
AEA PR

- P RE

d%ﬂ%*%ﬁ b
B A KA m‘ﬁ@f}ﬂni‘éﬁﬂ » TR
WA S - B R R T R o PiEiR
Wiadh P FRTRPELEF 27 LR
e Ao g BRI AR S - BAT
B A 0 Ui I e AR
FoHLFBhEd RE PR REBEERRT
- BAARR R E g BB e Tk
o e Bl P se R P
Bl o 2/ o BH R0 R IR AL e F
S g RN ki 0 Fl G AP R IR
BARRIATE BT AL G APty
m@&o“ﬁﬂ“dﬂﬂﬁﬂﬁ%%%ﬁ

SH o AI* 0 B I AR R s
iéﬁ° PR R A TR P P e R
Wﬂnkmﬂﬁoﬁdfﬂ}%%%%*
2 /’J\ﬁt»’ 4\,”13&),,97,&%4‘7 Sl
BpER o T pEiE T /)Ek‘ "a_,/@zﬂ%i-"\ﬂf*

&?%ﬁﬁ%—ﬁ’ﬂW§ﬁ

T2 R A2 3N o 3N

%%ﬁéﬁ%;%ﬁﬂ-; ‘i?
e PE AR AR

it 3 i
U H T Ty o

L =

Abstract

Power consumption is becoming a
critical design issue because portable devices
(e.g., hand-held computing and personal

£, e /gapplications.

92-2213-E-002 -014-

C < £ 7 2
S BT AR

telecommunication devices) increase in

£ 3 ;8 2 s ge popularity. Cache memories account for a

significant fraction of a chip’s overall energy
dissipation. In this project, we propose an
informed cache architecture that utilizes
application-specific information for energy
delay optimization. One commonly used
technique to save power on a cache access is
to enable smaler cache structures.
However, reducing power often comes at the
cost of sacrificing arbitrary amounts of
performance because of not being able to
predict where requested data exist in cache
memories accurately. Informed cache
architecture employs a hardware-software
cooperative scheme that assigns different
types of data in a program to specified
regions of cache memories. By explicitly
controlling the cache resource alocation, we
can avoid increasing cache access latency
while reducing cache energy dissipation
Power consumption is an important design
issue of current embedded systems. Data
caches consume a significant portion of total
processor power for data intensive
In this project, we propose to
utilize application-specific information for
cache resource alocation to achieve energy
saving, including cache bypassing, the
mini-cache and way-partition.

We use a software MPEG-2 video
decoder as our first targeted application to
test the effectiveness of the proposed
mechanism. The results show up to 40% of
cache energy reduction without sacrificing
performance.

Keywords. Power consumption, cache
memories, energy ¢ delay optimization

» Introduction & Objective

Power consumption is becoming a
critical design issue of embedded system due
to the popularity of portable devices such as

cellular phones and personal digital assistants.

It has been reported that caches consume a
significant portion of the total processor
power. For example, 42% of processor power
is dissipated in the cache subsystem in
StrongARM 110 [1]. Many embedded
applications, in both the multimedia and
communication domains, are data dominated.
Data storage and transfer account for a
significant portion of overall power
consumption. Whether a reference goes to
the main memory or not, it must access the
data cache. Therefore, techniques to reduce
energy dissipation in the data cache are
criticl to deliver an energy-efficient
embedded system.

Cache partitioning and way-prediction
are two commonly used techniques to reduce
energy dissipation in data caches. Cache
partitioning schemes divide caches into
smaller components since a smaller cache has
a lower load capacitance. Way-prediction
predicts the matching way and probes only
the matching way instead of al ways to
reduce power consumption for set-associative
caches. These techniques often increase
average access latency if the referenced data
is not located in the predicted region.

The need for prediction is due to the fact
that cache management is transparent to
software. If we alow software to control
cache resource allocation, we can access the
region where a memory reference is located
directly. In thisway, we can achieve energy
saving without increasing average cache
access time. Allowing software to control
caches has heen nronosed to imorove cache

Datatype Sizd Access¥gDatatype Sizd Access¥
i nput 2KB 0.2%Reference | 1500KB 27.5%
output 500KB 1.9%block 1.5KB 34.2%
tabul ar KB 9.20state LSKB 919

Table 1: Summary of decoder data types, size and % of
memory references

decoder as our first targeted application. An
MPEG-2 decoder has large data set and
requires high data processing rate, which are
two important characteristics of real-time
signal processing applications. We consider
three software-controlled cache management
mechanisms and demonstrate how to utilize
the application-specific information of an
MPEG-2 decoder to achieve energy saving.
Cache bypassing saves energy by accessing
the L2 cache directly for data that have little
reuse. The mini-cache scheme stores
frequently accessed data with small memory
footprints into a small on-chip memory area.
Way-partition maps program data structures
to different ways of set-associative caches
according to their working set size and access
frequency. On each access, we can access
the matching ways directly instead of probing
all ways asin thetraditional cache design.

We can break down the data types in a
MPEG-2 decoder into the following classes:

Input— The MPEG-2 bitstreams.

Output— The decoded picture data.
Tabular— Static and read-only tables used in
the decoder.

Reference— Buffers for both current and
reference frames.

Block—The buffer for pixel values of a
single macroblock.

Sate—Variables needed for setting and
operation of the decoder.

Table 1 lists the data set size and
percentage of total memory references for
different data types. Note that the access
percentage from the major data types only
addsup to 82%. A significant portion of the
remaining references comes from accessing
the stack region (12% of total memory

Datatype | (Associativity,size)
Input (1, 32 Bytes)
Output (1, 32 Bytes)

Tabular (1, 2 KBytes)

Reference | (2, 256 Bytes)

Block (1, 1 KBytes)
State (2, 1 KBytes)
Stack (1, 512 Bytes)
Others (1, 512 Bytes)

Table 2: Required minimal cache resour ces for
each data type

data type should be alocated as few ways as
possible. Therefore, we test cache
configurations in the increasing order of the
degree of set-associativity. For each
possible size given an associativity, we
calculate the number of cache misses from
the tested data type. If the number of misses
iIs not greater than that in the base
architecture, the minimal resources for that
data type is identified. No more profiling
runs are needed for that data type. The
proposed algorithm is listed below, and the
profiled result is shown asin Table 2.

A lponiben | Prodling Mathodole gy
1: for each data type do
for sl associativity, (1 © n),where o is the degree of
assocEtivily of L1 do
3: for cache sime, T (in power of 2, 5
site gwr _wvayh i
cakulae noomisacs
IT racz pragmaes o Bnae npe=es Hhen
repan 5.17)
goto the next data type
wnd If
L el for
1 e For
1: el for

il =d O e de

The second phase is to determine the
mapping between data types and cache
regions based on the profiling information.
We first identify data types that are eligible
for the mini-cache; that is, the required
associativity is one and the size is not greater
than the mini-cache size. To achieve more
energy savings, we would like to have more
memory accesses satisfied in the mini-cache.
Therefore, we place the most frequently
accessed data types to the mini-cache
provided that their size is not greater than the
mini-cache size. The proposed mini-cache

selection algorithm is shown as the following:

Algonihe 1 Muzi-cache Seleciion
I Select data types with 5 = | and T' < evimionchie size,
whemne (5.T) represenls the minimal required cache re-
SOURCES (AESOCIalvily, Size)
1 S e selecid data vpes in e no-decreasang order of
thesir ocess frequencies
3. The first & sypes of the somed list are mapped i the min-

coche, where sizeithe first b dala typesh < siceimin-
cache) and sizedthe Orsi & + 1 d&la Dypesh = size{mim-
cache)

The last step is to determine the
mapping between ways of the L1 cache and
the rest of data types (referred to as

way-partition). The allocation principle is to
keep the utilization of each cache way as
even as possible. In other words, a data type
should be mapped to ways with minimal
utilized resources. We quantify the utilized
resources of a way as the total sizes of data
types alocated to that way. The mapping
information for each data type is represented
as a bit vector. For example, if a data type
is mapped to the first 2 ways of a 4-way
cache, its mapping vector is (1,1,0,0). The
details of the way-partition algorithm is
summarized below.

Algraihm }. 1 Wy-pamiion
1: Keep nosed of ways in o sored list in the non-decreasing:

order of L, where U reprisents the amounl of widlized
TRl
t for each data type 0 wish required cache resources (5,7}

ti
for first & ways of the way lisl do
:

—_ i i

1
1 =
% el for
& Derive s mappang sector

Sort the way list in the non-decressing onder of |
E end far

The paper has been accepted by IEEE
Transactions on Circuits and Systems for
Video Technology. Below we summarize
the results.

» Results Summary

Since energy-saving methods may
reduce energy dissipation at the expense of
performance degradation, we evaluate the

performance, energy consumption and
energy-delay product of the proposed
energy-saving techniques. The proposed

energy-saving techniques may increase L1
cache miss rate, thereby increasing the L2
cache energy consumption. Therefore, for a
fair comparison, we consider both the L1 and
L2 caches for energy evaluation.

Softwar e controlled cache

Before presenting the effectiveness of
the software-controlled cache, we first
summarize the minimal resources required
for each data type in Table 2. The minima
resources for data types are gathered by our
proposed profiling algorithm.

1.1

1 —
0.9 T

0.8 T

0.7 T
0.6
0.5
0.4 T
0.3
0.2 A
0.1 1

0

base bypass bypass-+mini iCache bypass-+miniCache-+way

partition

‘D normalized execution time B normalized energy [l normalized energy*delay ‘

Figure 1: The normalized execution time,
energy consumption, and ener gy-delay product
of different softwar e-controlled techniques

We can see that the required cache size
Is smaller than the data set size presented in
Table 1. For example, the data set size of
the reference data type is 1500 KB while the
required cache size is only 256Bytes. For
data types that are not allocated contiguously
in memory, such as reference and state,
multiple ways are required to eliminate
self-interferences. Based on our proposed
mini-cache selection al gorithm we proposed:

the stack data are mapped to the mini-cache.
The way alocation information of the rest
data types are decided by our proposed
way-partition algorithm. Note that the output
data bypasses the on-chip caches.

To anadyze the effectiveness of the
proposed software-controlled cache in details,
we evauate the proposed scheme in three
configurations:bypassing,bypassing+mini-cac
he, bypassi ng+mini-cachet+way-partition.
Figure 3 shows the execution time, energy
and ED normalized to the base architecture
for these three configurations. We can see
that bypassing output data reduces the energy
by 1.4%. The performance advantage of
bypassing is not significant. For the MPEG-2
software decoder, the output data only
accounts for 2% of memory references. For
applications performing output operations
more often, we expect the bypassing
mechanism should present more performance
and energy advantages. Mapping the stack

data to the mini-cache in addition to
bypassing can achieve up to 9.5% energy
reduction with dlight performance
improvement. Partitioning the L1 cache
among the remaining data types can further
reduce the energy by more than 30% without
performance degradation. In summary, the
proposed software-controlled cache achieves
up to 40% energy reduction while
maintaining the comparable performance as
the base architecture.

To further demonstrate the importance
of our proposed data alocation policy. We
compare the above data allocation with
another one derived smply by the
information presented in Table 1. The output
data still bypass the on-chip caches, and the
stack variables are mapped to the mini-cache
since it isthe only data type whose size is not
greater than the mini-cache. The rest of
data types are mapped to different ways of
the L1 cache. Note that the allocation
policy still triesto keep the utilization of each
way as even as possible. Since the
differences between these two data
alocations are in how the L1 cache is
partitioned among data types, we focus on
the comparison between these two
way-partition methods. A good
way-partition method should reduce the
energy consumed in the L1 cache without
increasing that of other memory components;
that is, way-partition should not increase L1
misses significantly. The optimized-partition
by our proposed data allocation policy
consumes 28% less L1 energy than that of
coarse-partition with less than 1% differences
in the L1 miss ratios. Note that the dlight
increase in the L1 miss ratios comes from the
interferences among data types alocated to
the same region.

1.1

1

0.9 1

0.8 —

0.7 1

0.6 1

0.5 1

0.4 1

0.3 7

0.2 7

0.1 1

[¢]
base ED optimal cache software controlled cache

‘D normalized execution time B normalized energy [normalized energy*delay ‘

Figure 2: The normalized execution time, energy
consumption, and ener gy-delay product of best
design space point and algorithm optimization

Software-Controlled Cache ED
Optimal Cache

To find the ED optima cache
architecture for the software MPEG-2
decoder, we perform a thorough design space
exploration. We vary the cache size from
4K to 128K, degree of set associativity from
direct-mapped to 4-way and block size from
8 to 128B. A 64B, 2-way 8K cache has the
lowest ED value among the configurations

tested.

V.S

Figure 2 compares the normalized
execution time, energy and ED of the
software-controlled cache and the ED
optimal cache (64B, 2-way, 8K). All three
metrics are normalized to the base
architecture (32B, 4-way, 8K). We can see
that the ED optimal cache performs dlightly
worse than the base architecture but it
consumes 23% less energy. This tells us
that if we ssimply use the cache architecture in
an ARM-like processor, a significant amount
of cache energy is wasted. However, by
employing the proposed software-controlled
cache techniqgue, an ARM-like cache
architecture consumes even less energy than
a dedicated cache tuned for the MPEG-2
software decoder.

~ Conclusion

In this project, we propose to use a
software-controlled cache for
energy-efficiency optimization on a shared
cache architecture of an integrated
multimedia system. The proposed
software-controlled cache allocates data types

in an application to different cache regions.
A data type is either mapped to the
mini-cache, ways of the L1 cache or bypass
on-chip caches. The optimization goal is to
achieve energy reduction without
performance degradation. We test the
effectiveness of the software-controlled cache
on the MPEG-2 software decoder. The
results show that the software-controlled
cache reduces 40% of energy on an
ARM-like cache architecture without
sacrificing performance. It consumes even
less energy in comparison with a cache
architecture tuned specificaly for the
MPEG-2 decoder. This study has shown
that the proposed software-controlled cache
does provide a way to improve the energy
efficiency of a shared cache architecture for
an integrated multimedia system on an
application-specific basis. In the future, we
will apply the software-controlled cache
technique to other multimedia applications,
such as the MPEG-4 decode.

This research work has been published in the
IEEE Transactions on Circuits and System
for Video Technology, specia issue on
integrated multimedia system.

I ~ Acknowledge
Students who join this project are ,

- ~ Bibliography
[1] J. Montanaro, et al. A 160-MHz, 32-b,
0.5-W CMOS RISC microprocessor.

IEEE Journal of Solid Sate Circuits,
31(11):1703-1714, November 1996

[2] D. Chiou, P. Jain, L. Rudolph and S.
Devadas. Application-Specific
Memory Management for Embedded
Systems Using Software-Controlled
Cache. In Proceedings of DAC, 2000.
Los Angeles, California

[3] P. Soderquist and M. Leeser. Memory
Traffic and Data Cache Behavior of an
MPEG-2 Software Decoder. In
Proceedings of Inter national
Conference on Computer Design, 1997

[4] T. L. Johnson, D. A. Connors, M. C.
Merten, and W. W. Hwu. Run-Time
Cache Bypassing. |EEE Transactions
on Computers, Vol. 48, No. 12,
December 1999, pp. 1338-1354

[5] B. Case. SPARC V9 Adds Wedth of
New Features. Microprocessor Report,
7 (9), February 1993

[6] J Kin, M. Gupta, W. H.
Mangione-Simith. The Filter Cache:
An Energy Efficient Memory Structure.

In Proceedings of 30" Annual
Inter national Symposium on
Microarchitecture, December, 1997

[7 H-H. Lee ad G. S Tyson.
Region-Based Caching: An
Energy-Delay Efficient Memory

Architecture for Embedded Processors.
In Proceedings of International
Conference on Compilers, Architectures
and Synthesis for Embedded Systems
(CASES 2000), Nov. 2000.

[8] O. S. Unsd, I. Koren, C. M. Krishna
and C. A. Mortiz. The Minimax Cache:
An Energy-Efficent Framework for
Media Processors. In Proceedings of
8" International Conference on High
Performance Computer, Febuary 2002

[9] M. D. Powell, A. Agarwa, T. N.

Vijaykumar, B. Falsafi and K. Roy.
Reducing Set-Associative Cache Energy

via Way-Prediction and Selective
Direct-Mapping. In Proceedings of
34th Intel Symposium on

Microar chitecture, 2001

[10] C.-L. Su and A. Despain. Cache
Design Tradeoffs for Power and
Performance Optimization. A Case

Study. In Proceedings of International
Symposium on Low Power Design, Apr.
1995, pp. 63-68

[11] David H. Albonesi. Selective Cache
Ways. On-Demand Cache Resource
Allocation. Journal of
Instruction-Level Parallelism, 2000

[12] S-H Yang, M. D. Powell, B. Falsdfi,
and T. N. Vijaykumar. Exploiting

Choices in Resizable Cache Design to
Optimize Deep-Submicron Processor
Energy-Delay. In Proceedings of the
8" International Symposium on
High-Performance Computer
Architecture, November 2001

[13] S.-H Yang, M. D. Powell, B. Fasdfi, K.
Roy, and T .N. Vijaykumar. An
Integrated Circuit/Architecture approach
to reducing leakage in deep-submicron
high-performance I-cache. In
Proceedings of the 7" IEEE Symposium
on High-Performance Computer
Architecture, Jan 2001.

M. Huang, R. Reanu and J. Torellas.
L1 Cache Decomposition for Energy
Efficient Processors. In Proceedings of
Internatinal Symposium on Low-Power
Electronics and Design (ISPLED’01),
Huntington Beach, CA, August 2001.

P. R. Panda, N. D. Dutt and A. Nicolau.
Efficient Utilization of Scratch-Pad
Memory in Embedded Processor
Applications. In Proceeding of
European Design & Test Conference,
1997

Intel StrongARM SA-1110
Microprocessor Brief Datasheet, April
2000

[17] D. Brooks, V. Tiwari, and M.
Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and
optimizations. In Proceedings of the
27th International Symposium on
Computer Architecture (ISCA),
Vancouver, British Columbia, June
2000.

[18] S. Echart and C. Fogg. ISO/IEC
MPEG-2 Software Video Codec. In
Proceeding of the SPIE conference on
Digital Video Compression: Algorithms
and Technologies, Vol. 2419, 7-10
February 1995, San Jose, California, pp.
100-109.

[14]

[15]

[16]

