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Abstract 

Named entity (NE) recognition is a fundamental task in biomedical data mining.  Multiple-
class annotation is more challenging than single-class annotation.  Moreover, extracting 
newly discovered functional features from the massive literature is other major challenging 
issue.  In this project, we first we focused on the experiments of protein/gene names.  We 
considered protein/gene collocates extracted from biological corpora as restrictions to 
enhance the precision rate of protein/gene name recognition.  In addition, we integrate the 
results of multiple NE recognizers to improve the recall rates.  Then, we tried the extension to 
recognize the multiple-class named entities.  In this study, we took a single word 
classification approach to deal with the multiple-class annotation problem using Support 
Vector Machines (SVMs).  Finally, we considered the issues of biological relationship 
mining, and had an experiment on automatically annotating the Gene References into 
Function (GeneRIF) in a new literature.  In this project, when we focused on the 
enhancement of performance of protein and gene name recognizers, Yapex and KeX, and 
ABGene and Idgene are taken as examples of protein and gene name recognizers, 
respectively.  The precision of Yapex increases from 70.90% to 85.84% at the low expense of 
the recall rate (i.e. it only decreases 2.44%) when collocates are incorporated.  When both 
filtering and integration strategies are employed together, the Yapex-based integration with 
KeX shows good performance, i.e., the F-score increases by 7.83% compared to the pure 
Yapex method.  The results of gene recognition show the same tendency.  The ABGene-
based integration with Idgene shows a 10.18% F-score increase compared to the pure 
ABGene method.  These successful methodologies can be easily extended to other name 
finders in biological documents.  For the automatically multiple-class classification, word 
attributes, results of existing gene/protein name taggers, context, and other information are 
important features for classification.  For the experiments on GRIF extraction, we tried to 
find GRIF words in a training corpus, and then applied these informative words to annotate 
the GeneRIFs in abstracts with several different weighting schemes.   The experiments 
showed that the Classic Dice score is at most 50.18%.  In contrast, after employing Support 
Vector Machines (SVMs) and definition of classes proposed by Jelier et al. (2003), the score 
greatly improved to 56.86% for Classic Dice (CD).  Adopting the same features, SVMs 
demonstrated advantage over the Naïve Bayes Classifier. 
 
Keywords: named entity recognition; biological collocates; collocation model; t-test; Gene 
References into Function; Support Vector Machines 
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摘要 

在生物醫學的資料探勘上，具名實體辨識是最基礎的工作，而多種類的辨識則比單一

具名實體辨識更加有挑戰性。此外，如何從大量文件中擷取新的功能特徴，也是另一

項十分有挑戰性的議題。在本篇報告中，我們首先針對蛋白質及基因進行增加辨識效

能的實驗。我們利用從生物語料庫擷取出來的搭配詞語增加蛋白質/基因辨識的準確
率，並且整合多個具名實體辨識器的結果以便增加召回率。接下來，我們更擴展辨識

範圍至多種類實體辨識，在本篇報告中，我們使用單一字詞分類的方法處理此問題，

並且使用支援向量機進行訓練及學習。最後，我們探討生物關係的探勘，並且提出方

法，以便自動從文件中抽取出基因功能。在本篇報告中，為了增加蛋白質及基因辨識

效能時，我們利用 Yapex 、KeX、ABGene 及 Idgene 進行整合，當使用搭配詞語篩選
時，Yapex的準確率可從 70.90個百分比上升至 85.84個百分比，而召回率只下降 2.44
個百分比。若同時使用篩選及整合策略，以 Yapex 為主的整合方法會得到較佳的結
果，也就是 F分數可提升 7.83個百分比；有關基因辦識的結果也顯示相同趨勢。接下
來，在多種類實體辨識實驗中，字的屬性、蛋白質/基因辨識器辨識結果、本文上下關
係及其他資訊都會當做分類時的特徵。另外，在基因功能的擷取上，我們首先從訓練

語料中找到 GRIF 字詞，再配合各種加權方式以便標記出基因功能，本實驗最好可達
的 classic dice 分數為 50.18 個百分比、若再使用支援向量機進行學習，則可提升至
56.86 個百分比。此外，我們也證明使用相同特徵，支援向量機的表現會優於 Naïve 
Bayes分類器。 
 
關鍵字：具名實體辨識、生物搭配詞語、詞語同現模型、t 試驗、基因功能、支援向量
機。 
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1. Introduction 
The volume of on-line material in the biomedical field has been growing steadily for more 
than 20 years.  Several attempts have been made to mine knowledge from biomedical 
documents, such as identifying gene/protein names, recognizing protein interactions, and 
capturing specific relations in databases.  Among these, named entities are basic constituents 
in a document and recognizing them is a fundamental step for document understanding.  In 
the message understanding competition MUC (DARPA, 1998), named entity extraction was 
one of the evaluation tasks.  The named entities included organizations, people, locations, 
date/time expressions, monetary expressions and percentage expressions.  Several approaches 
have been proposed to capture these types of terms.  For example, corpus-based methods are 
employed to extract Chinese personal names, and rule-based methods are used to extract 
Chinese date/time expressions as well as monetary and percentage expressions (Chen and Lee, 
1996; Chen, et al. 1998).  The corpus-based approach is adopted because a large personal 
name database is available for training.  In contrast, rules that have good coverage exist for 
date/time expressions, so that the rule-based approach is adopted. 

In the past, named entity extraction has mainly focused on general domains.  However, 
many scientific documents have been published recently, especially in the biomedical domain.  
Several attempts have been made to mine knowledge from biomedical documents 
(Hirschman et al., 2002), such as identifying protein/gene names, recognizing protein 
interactions, and capturing specific relations in databases.  One of the goals is to construct a 
knowledge base automatically and find new information embedded in documents (Craven 
and Kumlien, 1999).  Craven and Kumlien (1999) identified that the information extraction 
task may include sub-cellular/cell localization of proteins, tissue localization of proteins, and 
drug interactions with a given protein.  Similar information extraction works have been 
explored in this domain.  Named entities, such as protein names, gene names, drug names, 
disease names, and so on, have also been recognized (Collier et al., 2000; Fukuda et al., 1998; 
Hanisch et al., 2003; Krauthammer et al., 2000; Morgan et al., 2003; Olsson et al., 2002; 
Rindflesch et al., 2000; Tanabe and Wilbur, 2002; Yamamoto et al. 2003).  Some of them 
have used machine learning methods, e.g., Hidden Markov Models (HMMs), and Support 
Vector Machines (SVMs), to recognize protein/gene names (Collier et al., 2000; Hanisch et 
al., 2003; Morgan et al., 2003; Rindflesch et al., 2000; Tanabe and Wilbur, 2002; Yamamoto 
et al. 2003).  Others have used knowledge-based rules, accompanied by lexical or 
morphological analysis, to help with protein/gene name detection (Fukuda et al., 1998; 
Krauthammer et al., 2000; Olsson et al., 2002).  The relationships between these entities, e.g., 
protein-protein, gene-gene, drug-gene, drug-disease, etc., have also been extracted (Adamic 
et al., 2002; Blaschke et al., 1999; Friedman et al., 2001; Hou and Chen, 2002; Hou and Chen, 
2003; Marcotte et al., 2001; Ng and Wong, 1999; Park et al., 2001; Rindflesch et al., 2000; 
Thomas et al., 2000; Tsuruoka and Tsujii, 2003; Wong, 2001).  EDGAR (Rindflesch et al., 
2000) used a POS tagger, NLP techniques, other knowledge sources and contextual rules to 
identify the relationships between genes and drugs in cancer therapy.  Meanwhile, Adamic, et 
al. (2002) used a statistical method to identify gene-disease connections from literature.  
Protein/gene interactions have been discovered automatically in the literature by methods that 
utilized natural language processing, parsing techniques or the analysis of sentences that 
discussed interactions by using frequency analysis of individual words (Blaschke et al., 1999; 
Friedman et al., 2001; Marcotte et al., 2001; Ng and Wong, 1999; Park et al., 2001; 
Rindflesch et al., 2000; Tsuruoka and Tsujii, 2003).  Other relationships were extracted to 
improve the performance of named entity recognition, e.g., through the information supplied 
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from protein/gene keywords (Hou and Chen, 2002; Hou and Chen, 2003) or the Naïve Bayes 
classifier (Tsuruoka and Tsujii, 2003). 

Named entity recognition is a fundamental step for mining knowledge from biological 
articles.  After identifying named entities, most research (Blaschke et al., 1999; Ng and Wong, 
1999; Park et al., 2001; Rindflesch et al., 2000; Sekimizu et al., 1998) has been based on 
some special verbs and their related noun forms to discover molecular pathways or 
relationships.  These pre-specified words indicate actions associated with protein or gene 
interactions.  Blaschke, et al. (1999) used fourteen keywords for protein-protein interactions 
from MEDLINE articles.  Ng, et al. (1999) applied some function words for the inhibit-
activate relationships.  Sekimizu, et al. (1998) extracted gene relations associated with seven 
frequently used verbs found in MEDLINE abstracts.  In all these papers, with the exception 
of Sekimizu, the keywords are listed by intuition.  Some keywords are common to most of 
the papers, while some are special.  The problem with the above approaches is that we cannot 
be sure if the keyword set is complete for mining biological relationships.  This motivated us 
to find biological keywords in an automatic way. 

Collocation denotes two or more words that have strong relationships (Manning and 
Schutze, 1999).  For example, if the phrase “NF-kappa B activation” often appears in a 
sentence where “NF-kappa B” is a protein name, it means that “NF-kappa B” and 
“activation” are collocations, i.e., “NF-kappa B” and “activation” occur together in the 
document.  The related technologies have been applied to terminological extraction, natural 
language generation, parsing, and so on.  This paper deals with two special collocations in the 
biological domain – namely: protein collocation and gene collocation.  We will determine 
those keywords that co-occur with protein or gene names by using statistical methods.  Such 
terms, referred to as collocates of proteins or genes hereafter, will be considered as 
restrictions in protein/gene name extraction.  In the former example of “NF-kappa B 
activation”, “activation” is the collocate of the protein “NF-kappa B”.  Improving the 
precision rate, without substantially lowering the recall rate is the primary goal of this 
approach.  Furthermore, how to improve the recall rate at a small expense to the precision 
rate is another interesting topic.  We will explore this issue by introducing an integration of 
multiple name recognizers.  In summary, the first motivation of this project is to increase the 
performance of existing molecular name detectors.  The methods we adopted will be 
explained in Sections 3 - 5. 

Previous approaches on biological named entity extraction can be classified into two 
types – rule-based (Fukuda et al., 1998; Olsson et al., 2002; Tanabe and Wilbur, 2002) and 
corpus-based (Collier et al., 2000; Chang et al., 2004).  Yapex (Olsson et al., 2002) 
implemented some heuristic steps described by Fukuda, et al., and applied filters and 
knowledge bases to remove false alarms.  Syntactic information obtained from the parser was 
incorporated as well.  GAPSCORE (Chang et al., 2004) scored words on the basis of 
statistical models that quantified their appearance, morphology and context.  The models 
include Naive Bayes (Manning and Schutze, 1999), Maximum Entropy (Ratnaparkhi, 1998) 
and Support Vector Machines (Burges, 1998).  GAPSCORE also used Brill’s tagger (Brill, 
1994) to get the POS tag to filter out some words that are clearly not gene or protein names.  
Efforts have been made (Hou and Chen, 2002, 2003; Tsuruoka and Tsujii, 2003) to improve 
the performance.  The nature of classification makes it possible to integrate existing 
approaches by extracting good features from them.  Several works employing SVM classifier 
have been done (Kazama et al., 2002; Lee et al., 2003; Takeuchi and Collier, 2003; 
Yamamoto et al., 2003), and will be discussed further in the rest of this report.  In this report, 
we addressed the task of recognizing biological named entities as a multi-class classification 
problem with SVMs and extended the idea of collocation to generate features at word and 
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pattern level in our method.  Existing protein/gene recognizers were used to perform feature 
extraction as well. 

Text Retrieval Conference (TREC) has been dedicated to information retrieval and 
information extraction for years.  TREC 2003 introduced a new track called Genomics Track 
(Hersh and Bhupatiraju, 2003) to address the information retrieval and information extraction 
issues in the biomedical domain.  For the information extraction part, the goal was to 
automatically reproduce the Gene Reference into Function (GeneRIF) resource in the 
LocusLink database (Pruitt et al., 2000).  GeneRIF associated with a gene is a sentence 
describing the function of that gene, and is currently manually generated.  Consequently, we 
made the experiments of biological domain on the information extraction task (i.e., secondary 
task).  The goal of this task is to reproduce the GeneRIF annotation from an article.  Bhalotia 
et al. (2003) converted this task into a binary classification problem and trained a Naïve 
Bayes classifier with kernels.  The title and last sentence of an abstract were concatenated and 
features were then extracted from the resulting string.  Jelier et al. (2003) observed the 
distribution of target GeneRIFs in 9 sentence positions and converted this task into a 9-class 
classification problem.  Both works indicated that the sentence position is of great importance.  
We therefore modified our system to incorporate the position information with the help of 
SVMs and we also investigated the capability of SVMs versus Naïve Bayes on this problem. 

The rest of this paper is organized as follows.  The protein and the gene name recognizers 
used in this study are introduced in Section 2.  The collocation method we adopted is 
described in Section 3.  The filtering and the integration strategies are proposed in Sections 4 
and 5, respectively and the experimental results of these two strategies are shown and 
discussed.  The methods for annotating multiple types of biological entities and results are 
presented in Section 6.  Section 7 presents the architecture, experimental methods and results 
for the extraction of gene functions.  Finally, in Section 8, we present our conclusions and 
suggest the direction of future research. 

2. Molecular Name Recognizers 
The detection of molecular names such as proteins and genes presents a challenging task due 
to their variant structural characteristics, their resemblance to regular noun phrases and their 
similarity to other kinds of biological substances.  Many irregularities and ambiguities exist 
in gene and protein nomenclature.  For example, protein/gene names may be synonymous 
with common words, such as “ran”, “envelope”, “cat”, etc.  In addition, some principles of 
the nomenclature are similar to chemicals, e.g., “Ca2+-ATPase” is a protein while “Ca2+” is 
a chemical.  Consequently, several issues have to be addressed during protein/gene name 
recognition. 

Previous approaches to biological named entity extraction can be classified in two types – 
namely: rule-based (Fan, 2003; Fukuda et al., 1998; Humphreys et al., 2000; Olsson et al., 
2002; Tanabe and Wilbur, 2002) and corpus-based (Collier et al., 2000; Chang et al., 2004).  
KeX developed by Fukuda, et al. (1998) and Yapex developed by Olsson, et al. (2002) were 
based on handcrafted rules for extracting protein names.  Kex used surface clues like upper 
case letters, numerical letters and symbols to extract core terms and later connected them to 
other terms in the surrounding text (Fukuda et al., 1998).  Yapex first implemented some 
heuristic steps described by Fukuda, et al. (1998), and then applied filters and knowledge 
bases to remove false hits.  Finally, Yapex utilized the syntactic information from the parser 
to identify protein names. 

ABGene developed by Tanabe, et al. (2002) used Brill’s tagger (Brill, 1994) as the 
fundamental extraction program, followed by additional layers of post-processing rules to 
filter out false positives, as well as to recover false negatives in the first-step tagging of gene 
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and protein names.  Brill’s tagger assigns part-of-speech tags to words.  For example, for the 
title “Genetic characterization in two Chinese women”, Brill’s tagger will produce the tagged 
result “Genetic/JJ characterization/NN in/IN two/CD Chinese/JJ women/NNS” to indicate 
“Genetic” as an adjective, “characterization” as a common noun, “in” as a preposition, “two” 
as a cardinal number, “Chinese” as an adjective and “women” as a plural common noun.  
Since gene names are usually single nouns or noun phrases, it is helpful to recognize gene 
names by applying Brill’s tagger.  After tagging, the post-processing rules are used to filter 
out false positives and recover false negatives.  For filtering false positives, on the one hand, 
ABGene precompiles some general biological terms (acids, antigen, etc.), amino acid names, 
restriction enzymes, cell lines and organism names.  On the other hand, ABGene uses regular 
expressions to indicate that a word is not a gene name, e.g., common drug suffixes (-ole, -ane, 
-ate, etc.).  For recovering false negatives, ABGene applies contextual rules to find 
compound names.  For example, one rule is “ANYGENE CC x”, where “ANYGENE” is a 
tagged gene, “CC” is a coordinating conjunction and “x” is the current word.  The constraint 
of this rule is that “x” contains a capital letter, dash or number, and is not a verb or an adverb.  
If matched, the tag of “x” will be changed to CONTEXTGENE.  Finally, compound names 
are found.  Some examples of filtering out false positives and recovering false negatives are 
described in (Tanabe and Wilbur, 2002).  Idgene developed by Fan (2003) is a dictionary-
based gene name identification program.  The basic idea of Idgene is to use exact match for 
gene symbols and fuzzy match for gene names/phenotypes, which gives a suggestion list of 
the hit genes weighted by surrounding contexts.  Idgene also uses Brill’s tagger to get POS 
tags, and then computes the scores of the exact/fuzzy matches.  Finally, Idgene merges 
shorter terms with longer terms to obtain the final scores.  Both ABGene and Idgene utilize 
some hand-made rules for extracting gene names.  Collier, et al. (2000) adopted a machine 
learning approach that involved training a Hidden Markov Model with a small corpus of 100 
MEDLINE abstracts to extract the names of gene and gene products. 

Different taggers have their own specific features.  Idgene was evaluated on 156 Chinese 
Gene Variation papers selected from 1997-1998 BIOSIS Previews and EMBASE (BIOSIS 
organization, 1999).  It had a 24.68% precision rate and an 85.39% recall rate.  ABGene was 
developed as a general-purpose gene tagger.  Fan (2003) applied ABGene to the same test 
collection as the one used in Idgene.  ABGene achieved a 31.32% precision rate and an 
81.46% recall rate.  KeX was evaluated by using 30 abstracts of SH3 domain and 50 abstracts 
of signal transduction.  It achieved a 94.70% precision rate and a 98.84% recall rate.  Yapex 
was applied to a test corpus of 101 MEDLINE abstracts.  Of these, 48 documents were 
obtained from queries about protein binding and interaction, and 53 documents were 
randomly chosen from the GENIA corpus (Collier et al., 1999).  The query posed to 
MEDLINE was “protein binding [Mesh term] AND interaction AND molecular” with the 
parameters abstract, English, human, publication date 1996-2001.  The performance of 
tagging protein names was 70.90% for precision and 69.53% for recall.  When the same test 
corpus was applied to KeX, it achieved a 40.41% precision rate and a 41.13% recall rate.  
These results show that each tagger has its own characteristics and changing the domain may 
result in the variant performances.  Therefore, how to select the correct molecular entities 
proposed by the existing taggers is an interesting issue. 

3. Statistical Methods for Collocation 
The overall flow of our method is shown in Figure 1.  To extract protein/gene collocates, we 
need a corpus in which protein/gene names have been tagged.  Preparing a tagged biological 
corpus is the first step, after which common stop words are removed and stemming (e.g., map 
“listed” and “listing” to its root form “list”) is applied to gather and group more informative 



 - 9 -

words.  The collocation values of the proteins/genes and surrounding words are then 
calculated.  Finally, these values are employed to determine which neighbouring words are 
the desired collocates.  The major modules are specified in detail in the following subsections. 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.1  Step 1: Tagging the Corpus 
In order to calculate the collocation values of words with proteins/genes from a corpus, it is 
first necessary to recognize protein/gene names.  Nevertheless, the goal of this paper deals 
with the performance issue of protein/gene name tagging.  Hence, preparing a protein/gene 
name tagged corpus and developing high performance protein/gene name taggers seem to be 
a chicken-and-egg problem.  Because the corpus developed in the first step is used to extract 
the contextual information of proteins/genes, a completely tagged corpus is not necessary at 
the first step.  A dictionary-based approach for molecular name tagging, i.e. full pattern 
matching between the dictionary entries and the words in the corpus, is simple.  The major 
problem is its coverage.  Those protein/gene names that are not listed in the dictionary, but 
appear in the corpus will not be recognized.  Thus, this approach only produces a partially 
tagged corpus, which is sufficient to acquire contextual information for use later in this 
research. 

3.2  Step 2: Preprocessing 
3.2.1  Step 2.1: Exclusion of Stopwords 
Stopwords are common English words (such as the preposition “in” and the article “the”) that 
frequently appear in the text, but are not helpful in discriminating special classes.  Because 
they are distributed throughout the corpus, they should be filtered out to remove their 

Figure 1. Flow of Mining Protein/Gene Collocates 
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unnecessary impact in the text.  The stopword list in this study was collected with reference 
to the stoplists of Fox (1992), but words that also appeared in the protein/gene lexicon have 
been removed from the stoplist.  For example, “of” is a constituent of the gene name 
“translocase of inner mitochondrial membrane 8 homolog A”, so “of” is excluded from the 
stoplist.  The major reason for excluding such stopwords from the Fox list is to enable exact 
pattern matching with protein/gene names.  Finally, 387 stopwords were used. 

3.2.2  Step 2.2: Stemming 
Stemming is the procedure of transforming a word from an inflected form to its root form.  
For example, “suggested” and “suggestion” will be mapped into the root form “suggest” after 
stemming.  The procedure can group the words with the same semantics and therefore reflect 
more information around the proteins/genes. 

3.3  Step 3: Computing Collocation Statistics 
Pearson (2001) has discussed problems of gene nomenclature in detail.  The irregularity and 
the ambiguities in gene and protein nomenclature make name identification more difficult.  
From one MEDLINE abstract, we have the following title: “The relationship between Ca2+-
ATPase and freely exchangeable Ca2+ in the dense tubules: a study in platelets from 
women.”  In this example “Ca2+-ATPase” is a protein, while “Ca2+” is a chemical.  
However, they are both composed of letters plus numbers and symbols.  Obviously, the 
nomenclature rules are irregular, so we must find other clues to help name recognition.  The 
clues here are in the context.  For “Ca2+-ATPase”, the context is “The relationship between” 
and “and freely exchangeable Ca2+ in” if we take the three words before, and the five words 
after it.  For “Ca2+”, its context is “between Ca2+-ATPase and freely exchangeable” and “in 
the dense tubules: a”.  If we know the protein collocates contain “relationship”, we can pick 
“Ca2+-ATPase” as a protein and discard “Ca2+”.  In such a way, a collocate of protein/gene 
can help to improve precision.  This section proposes three collocation statistics to find the 
collocates of proteins/genes, which often co-occur with protein/gene names in the corpora. 

Frequency 

The first statistical method we used in this study was frequency.  In this phase, the collocates 
were selected by frequency.  To gather more flexible relationships, we defined a collocation 
window that has five words on each side of protein/gene names.  Then, collocation bigrams at 
a distance were captured.  In general, more occurrences in the collocation windows are 
preferred, but the standard criteria for frequencies are not acknowledged.  For example, “go” 
occurs in the protein collocation window fourteen times, and “pathway” occurs in the gene 
collocation windows nine times.  How to decide if “go” is a good protein collocate, while 
“pathway” is not a good gene collocate is a difficult issue.  Hence, other collocation models 
are also considered. 

Mean and Variance 

The second statistical method we applied was mean and variance.  The mean value of 
collocations can indicate how far collocates are typically located from protein/gene names.  
Furthermore, this method shows the deviation from the mean.  The standard deviation of 
value zero indicates that the collocates and the protein/gene names always occur at exactly 
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the same distance equal to the mean value.  If the standard deviation is low, two words 
usually occur at about the same distance, i.e., near the mean value.  If the standard deviation 
is high, then the collocates and the protein/gene names usually occur at random distances. 

We used the following formulas to calculate mean and standard deviations, 
respectively. 
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Where id  is the average distance for word i in the collocation windows.  ijd  is the distance of 
the j-th occurrence of word i away from proteins/genes in the collocation windows.  For 
example, ijd =-1 means the j-th occurrence of word i is located directly to the left of the 
proteins/genes in the collocation window.  icountn _  is the total number of occurrences of 
word i in the document set.  is  is the standard deviation of ijd . 

The following examples illustrate the meaning of mean and variance for the word 
“activation” and proteins. 

(1) IL-2 gene expression and <prot>NF-kappa B</prot> activation through 
<prot>CD28</prot> requires reactive oxygen production by <prot>5-lipoxygenase</prot>. 

(2) Activation of the <prot>CD28 surface receptor</prot> provides a major 
costimulatory signal for T cell activation. 

In Sentence (1), “activation” occurs directly on the right of “NF-kappa B” and on the left 
2nd position away from “CD28”.  In Sentence (2), “activation” occurs on the left 3rd position 
away from “CD28 surface receptor”.  Thus, the average distance for activation is (1+(-2)+(-
3))/3.  The result is –1.33, and the standard deviation is 

13
))33.1(3())33.1(2())33.1(1( 222

−
−−−+−−−+−− .  The value of the standard deviation is equal 

to 1.472 which means that “activation” may occur on the left or right at a distance of 1.472 
words away from the average distance, which is -1.33 in this example. 

t-test Model 

When the values of mean and variance are computed, it is necessary to know that two words 
do not co-occur by chance.  We also need to know if the standard deviation is low enough.  In 
other words, we have to set a threshold in the above approach.  To achieve the statistical 
confidence that two words have a collocation relationship, a hypothesis testing, t-test, is 
adopted. 

Consider a document set with total n words.  The t-value for each word i, ti, is formulated 
as follows: 
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N = total word frequencies in the window, 
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)1(2
iii pps −×= , 

ncountnp ii /_= , 
igeneproteini ppu ×= / , and 

geneproteinp /  is the probability of protein/gene. 
The confidence level, i.e. α, is a statistical calculation that measures the degree of 

certainty (or likelihood) of a correlation, result or forecast.  When α is equal to 0.005, the 
value of t is 2.576.  In the t-test model, if the t-value is larger than 2.576, the word is regarded 
as a good collocate of a protein/gene with 99.5% confidence. 

3.4  Step 4: Extraction of Collocates 
MEDLINE is a massive biomedical corpus for information retrieval, information extraction 
and knowledge discovery.  Biomedical experts often explore new developments in special 
topics by retrieving relevant documents from MEDLINE.  To preserve the independence 
between proteins and genes, we used different document sets as training corpora for proteins 
and genes in this extraction phase. 

In the experiments for proteins, the documents used in TREC 2003 Genome Track 
(http://medir.ohsu.edu/~genomics/) were considered as the training corpus.  The text 
collection consists of 525,936 MEDLINE abstracts where indexing was completed between 
4/1/2002 and 4/1/2003.  We applied the procedures Steps 1-3 mentioned in this section to this 
data collection.  There are 57,307 protein collocations generated in Step 3.  The collocates are 
not filtered out by part of speech, so the output may contain nouns, prepositions, numbers, 
verbs, etc. 

In the experiments for genes, the documents gathered from the LocusLink database 
(Pruitt et al., 2000) (http://www.ncbi.nlm.nih.gov/LocusLink) were adopted as the training 
corpus.  The text collection consists of 30,936 MEDLINE abstracts.  Applying Steps 1 - 3 in 
Section 3 to this document collection, we obtained 14,150 gene collocations. 

The collocates extracted from a corpus not only serve as conditions of protein or gene 
names, but also facilitate the discovery of the relationship between proteins (genes) (Hou and 
Chen, 2002).  Verbs are the major targets in the extraction of biological information, (such as 
Blaschke, et al.,1999; Ng, et al.,1999; and Ono, et al., 2001 etc.).  This is because the 
subjects and the objects related to these verbs tend to be names of proteins or genes.  To 
ensure that the collocates selected in Step 3 were verbs, we assigned part of speech to these 
words.  There are 12,826 protein collocates and 3,541 gene collocates.  Examples of protein 
and gene collocates are listed in Tables 1 and 2. 

 

Table 1 Examples of Protein Collocates 

bind active determine regulate involve 

refine resolve find express recognize 

inhibit catalyze reveal increase detect 

react control study contain result 
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Table 2 Examples of Gene Collocates 

active specify express mediate increase 

associate inhibit resist bind concentrate 

regulate response study suggest stimulate 

treat result release depend decrease 

4. Consideration of Precision Rate 

4.1  Filtering strategies 
For protein/gene name recognition, rule-based systems and dictionary-based systems are 
usually complementary.  Rule-based systems can recognize those protein/gene names not 
listed in a dictionary, but some false entities may also pass at the same time.  For example, 
both “HCMV” and “NFAT” are composed of capital letters.  However, “HCMV” is a virus 
that may be recognized as protein/gene, whereas “NFAT” is definitely a protein.  Other 
examples are “BL-2”, a cell line which may be tagged as a protein/gene name, and “AP-2”, 
which is a protein.  Dictionary-based systems can recognize molecular entities in a dictionary, 
but the coverage of all proteins/genes is a major deficiency.  A challenge is how to use 
dictionary information to correctly identify molecular entities.  In this section, we employ 
collocates of proteins/genes mined earlier to help identify the molecular entities.  The Yapex 
system (Olsson et al., 2002) and ABGene (Tanabe and Wilbur, 2002) are adopted to propose 
candidates, and protein/gene collocates serve as restrictions to filter out less likely 
protein/gene names. 

The following filtering strategies are proposed.  We explain them from a protein 
viewpoint.  Let us assume that the candidate set M0 is the output generated by Yapex. 

 M1: For each candidate in M0, we will check if a collocate is found in its 
collocation window.  If it is, we will tag the candidate as a protein name.  Otherwise, 
we will discard it.  For example, in the sentence “IL-2 gene expression and NF-
kappa B activation through CD28 requires reactive oxygen production by 5-
lipoxygenase.”, Yapex tagged “IL-2”, “CD28” and “5-lipoxygenase” as proteins.  If 
“activation” and “reactive” are protein collocates, then “CD28” and “5-
lipoxygenase” will be retained, since “activation” and “reactive” occur in the 
collocation window of “CD28” and “reactive” occurs in the collocation window of 
“5-lipoxygenase”. 

 M2: Some of the collocates may be substrings of protein names.  We relax the 
restriction in M1 as follows: If a collocate appears in the candidate, or in the 
collocation window of the candidate, then we tag the candidate as a protein name; 
otherwise, we discard it.  For example, in the sentence: …, since FGF-1 -induced 
Rel/kappaB binding proteins do not contain significant levels of c-Rel and are not 
identical with the CD28 response complex, “FGF-1” and “Rel/kappaB binding 
proteins” are protein names.  “FGF-1” can be retained with strategy M1, while 
“Rel/kappaB binding proteins” cannot because the protein collocate “binding” is 
located in the window of “FGF-1” and not in the window of “Rel/kappa B binding 
proteins”.  If we apply strategy M2, the latter will be found. 

 M3: Some protein names may appear more than once in a document.  They may not 
always co-occur with some collocates in each occurrence.  In other words, the 
protein candidate and some collocates may co-occur in the first, the second, or even 
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the last occurrence.  To resolve this problem, we revise M1 and M2 as follows.  If 
there exists a collocate co-occurring with a protein candidate during checking, the 
candidate without any collocate is kept undecided instead of being discarded.  After 
all the protein names have been examined, those undecided candidates may be 
considered as protein names if one of their co-occurrences contains any collocate.  
In other words, as long as a candidate has been confirmed once, it is assumed to be a 
protein throughout.  In this way, there are two filtering alternatives M31 and M32 
from M1 and M2, respectively.  For example, in the sentence: “Full activation of the 
MAP kinases that phosphorylate the Jun activation domain, JNK1 and JNK2, 
required costimulation of T cells with either TPA and Ca2+ ionophore or 
antibodies to TCR and CD28.”, there are no protein collocates around “CD28”.  If 
we apply strategy M31, “CD28” will be retained as a protein because it has been 
collocated with protein collocates from other parts of the documents.  The example 
for strategy M32 is the same with the one illustrated for strategy M31.  Although 
there are no protein collocates around proteins “the Jun activation domain” and 
“CD28”, strategy M32 helps recognize them as follows.  First, “the Jun activation 
domain” will be detected because a collocate “activation” appears in the protein 
name “the Jun activation domain”.  Furthermore, “CD28” will be retained as a 
protein because it has been collocated with protein collocates from other parts of the 
documents. 

4.2  Evaluation of filtering strategies 
To get an additional objective evaluation, we utilized another corpus of 101 abstracts used by 
Yapex (http://www.sics.se/humle/projects/prothalt) for protein extraction.  Similarly, we used 
the GENIA corpus version 3.02 (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA) of 2,000 
abstracts for the gene evaluations.  Using the test corpora and answer keys provided in the 
Yapex project and the GENIA project, the evaluation results of filtering strategies for 
proteins and genes are listed in Tables 3 and 4, respectively.  Note that the baseline model 
M0 was not applied during the filtering strategies. 
 

Table 3. Protein Evaluation on Filtering Strategies 

 Precision Recall F-score 

M0 70.90% 69.53% 70.22% 

M1 82.10% 57.42% 69.76% 

M2 82.35% 57.96% 70.16% 

M31 85.89% 66.48% 76.19% 

M32 85.84% 67.09% 76.47% 
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Table 4. Gene Evaluation on Filtering Strategies 

 Precision Recall F-score 

M0 55.87% 74.56% 65.22% 

M1 65.93% 69.50% 67.72% 

M2 69.26% 69.89% 69.58% 

M31 69.79% 71.46% 70.63% 

M32 70.08% 71.89% 70.99% 

 
We can partition the labelled results into four groups: 

True Positives (TP): items correctly labelled as positive; 
False Positives (FP): items incorrectly labelled as positive; 
True Negatives (TN): items correctly labelled as negative; 
False Negatives (FN): items incorrectly labelled as negatives. 

In Table 3, precision, recall and F-score are calculated according to the following 
equations: 

Precision (P) =
FPTP

TP
+

, 

Recall (R) =
FNTP

TP
+

, and 

F-score =
RP

PR
+

2 . 

Compared with the baseline model M0 in Table 3, the precision rates of all the four 
models using protein collocates improved more than 11.20%.  The recall rates of M1 and M2 
decreased 12.11% and 11.57%, respectively.  Thus, the overall F-scores of M1 and M2 
decreased 0.46% and 0.06%, compared to M0.  In contrast, if the decision of tagging was 
deferred until all the information was considered, the recall rates only decreased by 3.05% 
and 2.44%, and the F-scores of M31 and M32 increased 5.97% and 6.25% relative to M0.  
The best strategy, M32, improved the precision rate from 70.90% to 85.84%, and the F-score 
from 70.22% to 76.47%. 

In Table 4, the precision rates of all the four models using gene collocates were improved 
more than 10.06%.  The recall rates of M1 and M2 decreased 5.06% and 4.67%, respectively.  
Thus, the overall F-scores of M1 and M2 increased 2.50% and 4.36%, compared to M0.  If 
the decision of tagging was deferred until all the information was considered, the recall rates 
only decreased by 3.10% and 2.67%, and the F-scores of M31 and M32 increased by 5.41% 
and 5.77% relative to M0.  The best one, M32, improved the precision rate from 55.87% to 
70.08%, and the F-score from 65.22% to 70.99%.  Compared to the experimental results 
shown in Table 3, the same trends occurred for genes shown in Table 4.  The results meet our 
expectations, i.e., to enhance the precision rate, without significantly reducing the recall rate. 

5. Consideration of the Recall Rate 

5.1  Integration strategies 
Here, we analyze the tagged results from protein/gene taggers.  There are four types of errors 
generated by the taggers. 

(1) Type 1: completely wrong labelling, e.g., “HCMV” may be tagged as a protein. 
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(2) Type 2: partially wrong labelling with some correct components in the tagged 
results.  This is due to a mistake about the boundary.  For example, “soluble CD4-
IgG” may be tagged as a protein rather than the correct tagging “CD4-IgG”. 

(3) Type 3: incomplete labelling.  For example, “NAFT or AP-1 sites”, is an instance of 
a complete gene, but it may be incompletely labelled as “NAFT or AP-1”. 

(4) Type 4: missing labelling.  This occurs when some protein/gene names are not 
tagged.  For example, “E2F-1” may be considered as a non-protein. 

Using the filtering strategies introduced in Section 4.1, the most helpful collocates were 
of Type 1.  For Types 2 and 3, the collocates help a little because they may also appear in the 
collocation window of the wrong labelled gene/protein names.  To solve the errors of Types 2 
and 3, there is an additional requirement to determine where the name begins and ends within 
a sentence.  Finally, our filtering method cannot help with Type 4, since we cannot produce 
untagged names. 

In order to improve recall, we introduce integration strategies based on a hybrid concept 
of two protein/gene name taggers.  By employing the integration strategies, we resolve errors 
of Types 2 and 3 by employing integration strategies.  The basic idea is that different 
protein/gene name taggers have their own specific features such that they can recognize 
different sets of NEs according to their rules or recognition methods.  Among the proposed 
protein/gene names provided by different systems, there may exist some overlaps and some 
differences.  In other words, a protein/gene name recognizer may tag a protein or gene that 
another recognizer cannot identify, or both of them may accept certain common molecular 
entities.  The integration strategies are used to select correct protein/gene names proposed by 
multiple recognizers.  In this study, we conducted several experiments for different domains: 
(1) For protein name recognition, Yapex and KeX are adopted because they are freely 
available on the web; (2) For gene name recognition, ABGene and Idgene are included 
because the developers were kind enough to provide the resources for our experiments. 

Because protein/gene candidates are proposed by two named entity extractors 
independently, they may be completely separate, completely the same, overlapped in between, 
overlapped in the beginning, or overlapped at the end.  Figure 2 shows these five cases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Candidates Proposed by Two Systems 

Type C: overlapped in between 

Type E: overlapped at the end 

Type D: overlapped in the beginning

Type B: completely the same 

Type A: completely separate 
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For example, if there is a sentence as follows: 
We have previously found a high expression of human Ah receptor (TCDD receptor) 
mRNA in peripheral blood cells of individuals. 
If one system only tagged “Ah receptor” as a protein name and the other system proposed 

“TCDD receptor” as a protein name, then this sentence belongs to Type A: completely 
separate.  If two systems all tagged “TCDD receptor” as a protein name, this is a case of 
Type B: completely the same.  If one system tagged “human Ah receptor” as a protein name, 
while another tagged “Ah receptor (TCDD receptor)” as a protein name, this is a case of 
Type C: overlapped in between, where “Ah receptor” is the overlapped part.  If one system 
tagged “Ah receptor” as a protein name and the other one proposed “Ah receptor (TCDD 
receptor)” as a protein name, this is a case of Type D: overlapped in the beginning where “Ah 
receptor” is the overlapped part. 

For the last case: Type E, let us look at another example: 
Whereas different anti-CD4 mAb or HIV-1 gp120 could all trigger activation of the 
protein tyrosine kinases p56lck and p59fyn and phosphorylation of the Shc adaptor 
protein, which mediates signals to Ras, they differed significantly in their ability to 
activate NF-AT. 
If one system recognized “protein tyrosine kinases p56lck” as a protein name and the 

others recognized “p56lck” as a protein name, we called this a Type E and “p56lck” the 
overlapped part. 

The integration strategies shown as follows combine the results from two molecular 
named entity extractors. 

 When the protein/gene names produced by two recognizers are completely separate 
(i.e., type A), we retain each of them as the protein/gene candidates.  This 
integration strategy postulates that one protein (or gene) name recognizer may 
extract some proteins (or genes) that another recognizer cannot identify. 

 When the protein/gene names proposed by two recognizers are exactly the same 
(i.e., type B), we also retain each of them as the protein/gene candidates.  The 
reason is that when both taggers accept the same protein (or gene) names, there 
must be some special features that the protein (or gene) names fit. 

 When the protein/gene names tagged by two taggers have partial overlap (i.e., types 
C, D and E), two additional integration strategies are employed, i.e., Yapex-based 
and KeX-based strategies for proteins, and AB-based and Id-based strategies for 
genes.  In the former strategy, we adopt protein/gene names tagged by 
Yapex/ABGene as candidates and discard the ones produced by KeX/Idgene.  In 
contrast, the names tagged by KeX/Idgene are kept in the latter strategy.  The 
integration strategy is used because each recognizer has its own characteristics, and 
we do not know, in advance, which one will perform better.  Therefore, we consider 
one of them as a basis, and then introduce new contributions from another 
recognizer.  That is, if KeX serves as a basis, we choose the tagged names by KeX 
if any overlaps exist between KeX and Yapex. 

5.2  Integration evaluation of proteins 
The integration strategies described in Section 5.1 bring together all the possible protein/gene 
candidates except the ambiguous cases (i.e., types C, D and E).  That tends to increase the 
recall rate.  To avoid reducing the precision rate, we also employed the protein/gene 
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collocates mentioned in Section 3 to filter out the less likely protein/gene candidates.  
Furthermore, to objectively evaluate the performance of the proposed collocates, we applied 
our strategies to the test corpus using the terms suggested by human experts on protein 
evaluation.  A total of 48 verbal protein keywords that were used to find the pathway of 
proteins are listed in Appendix A. 

The following four sets of experiments were designed for the Yapex- and KeX-based 
integration strategies. 

(1) YA and KA: The possible protein candidates are merged from the results of the Yapex 
and KeX systems.  If there are any conflicts, the candidates are selected based on either 
Yapex or KeX.  Then, we use the protein collocates automatically extracted in Section 3 to 
filter out the candidates described in Section 4.  That is, we check the co-occurrence of the 
collocate and protein candidate, no matter which type the protein candidate belongs to. 

(2) YB and KB: In the second experiment, we use the terms suggested by human experts 
for the filtering strategies.  YB (KB) is similar to integration strategy YA (KA), except that 
the collocates are terms suggested by human experts, rather than terms extracted in Section 3. 

(3) YA-C and KA-C: If Yapex and KeX recommend the same protein names (i.e., type B), 
we regard them as protein names, without consideration of the collocates.  Otherwise, we use 
the protein collocates proposed in this study to do the filtering. 

(4) YB-C and KB-C: The method is similar to (3) except that the protein collocates are 
replaced by the terms suggested by human experts. 

The experimental results for Yapex-based and KeX-based integration are listed in Tables 
5 and 6, respectively.  M0 is the baseline model.  The named entities proposed by M0 are 
combined from the results of Yapex and KeX without filtering (i.e., without collocate 
checking).  M0 is used to evaluate the performance changes of the following four cases: 
without filtering, filtering only, integration only; and both filtering and integration. 

The tendencies M32>M31>M2>M1 are still kept in the new experiments.  The strategy of 
delaying the decision until clear evidence found is workable.  The performances of YA, YA-C, 
KA, and KA-C are better than the performances of the corresponding models (i.e., YB, YB-C, 
KB, and KB-C).  This shows that the set of collocates proposed by our system is more 
complete than the set of terms suggested by human experts.  Compared with the recall rate of 
M0 in Table 3 (i.e., 69.53%), the recall rates of both Yapex- and KeX-based integration are 
increased, i.e. 77.52% and 70.60%, respectively.  This matches our expectations.  However, 
Table 6 shows that the precision rates are reduced more than the increase of the recall rates in  
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Table 5. Evaluation Results on Yapex-based Integration Strategy 

YA Precision Recall F-score YA-C Precision Recall F-score 

M0 61.98% 77.52% 69.75%     

M1 73.56% 71.95% 72.76% M1 73.83% 74.18% 74.01% 

M2 74.98% 72.21% 73.60% M2 75.93% 75.25% 75.59% 

M31 78.84% 75.37% 79.11% M31 79.42% 76.43% 77.93% 

M32 78.81% 76.24% 77.53% M32 79.40% 76.69% 78.05% 

YB    YB-C    

M1 66.79% 44.30% 55.55% M1 68.92% 58.09% 63.51% 

M2 66.79% 44.81% 55.80% M2 68.78% 58.49% 63.64% 

M31 70.20% 65.06% 67.63% M31 69.07% 69.08% 69.13% 

M32 70.19% 65.51% 67.85% M32 69.07% 69.63% 69.35% 

 

Table 6. Evaluation Results on KeX -based Integration Strategy 

KA Precision Recall F-score KA-C Precision Recall F-score 

M0 60.43% 70.60% 65.52%     

M1 66.93% 57.48% 62.21% M1 67.83% 64.28% 66.06% 

M2 66.54% 58.36% 62.45% M2 67.64% 64.87% 66.26% 

M31 67.89% 66.79% 67.34% M31 66.93% 67.92% 67.43% 

M32 67.63% 67.21% 67.42% M32 66.81% 68.35% 67.58% 

KB    KB-C    

M1 67.56% 41.20% 54.38% M1 69.57% 55.60% 62.59% 

M2 66.99% 41.71% 54.35% M2 69.15% 56.10% 64.06% 

M31 69.57% 55.70% 61.64% M31 68.36% 60.22% 64.29% 

M32 69.25% 56.26% 62.76% M32 68.09% 60.78% 64.44% 
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some cases.  The F-score of KeX-based integration strategy in M1 model is 3.31% worse 
than that of the baseline M0.  This shows that KeX did not perform well in this test set, 
because it cannot recommend good candidates at the integration stage.  Moreover, Table 5 
shows that the F-scores of all YA and YA-C models are better than the corresponding models 
in Table 3 where only the filtering strategies are used.  This indicates that Yapex performed 
better in this test corpus, so that we can enhance the performance by using both the filtering 
and integration strategies.  On the other hand, the F-scores of YB and YB-C are worse than 
those of M0 in Table 3.  This shows that the set of terms suggested by human experts is too 
weak to improve the performance in the integration strategies.  Nevertheless, the models in 
Tables 6 still cannot compete with M32 in Table 3.  The reason may be that some heuristic 
rules used in Yapex are borrowed from KeX (such as the use of feature terms, e.g., protein, 
particle and receptor) (Olsson et al., 2002), and added additional filtering strategies (e.g., 
filtering out names of chemical substances, bibliographical references, chemical formulas, 
etc.). 

5.3  Integration evaluation of genes 
We have shown the evaluation results using our integration strategies in the protein domain in 
Section 5.2.  A similar scheme can be applied to the gene domain. 

Here, we employ the integration strategies to enlarge the candidate sets, and the gene 
collocates mentioned in Section 3 to filter out the less likely gene candidates.  The terms 
suggested by human experts are not as complete as the ones our automated method produced.  
This is demonstrated by the following two sentences. 

 

The binding capacity and affinity of the glucocorticoid receptors were measured 
and compared to clinical data and the plasma cortisol concentrations. 
An over-representation of T2 in ovarian cancer patients compared with controls in 
the pooled Irish/German population (P<0.025) was observed. 
 

 
The protein “glucocorticoid receptors” and gene “T2” are collocated with “compared” 

which is missed by human experts. 
Since the terms suggested by human experts are not as complete as the ones extracted 

from the corpus, we did not conduct experiments on the terms suggested by human experts in 
this section.  In the following, two sets of experiments for different bases (i.e., ABGene and 
Idgene), called AB- and Id-based integration strategies, respectively, are conducted. 

(1) AB and ID: In these experiments, we use the gene collocates automatically extracted 
in Section 3 to filter out the candidates merged from the results of ABGene and Idgene. 

(2) AB-C and ID-C: If ABGene and Idgene recommend the same gene names, we will 
select them without consideration of gene collocates.  Otherwise, we will use the gene 
collocates proposed in this study to do the filtering. 

The evaluation results of integration strategies on gene domain are listed in Tables 7 and 8. 
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Table 7. Evaluation Results on AB-based Integration Strategy 

AB Precision Recall F-score AB-C Precision Recall F-score 

M0 54.29% 84.47% 69.38%     

M1 64.84% 74.98% 69.91% M1 67.41% 78.16% 72.78% 

M2 65.15% 75.46% 70.31% M2 67.92% 78.85% 73.39% 

M31 67.21% 76.88% 72.05% M31 69.93% 80.54% 75.24% 

M32 68.35% 77.33% 72.84% M32 69.99% 80.81% 75.40% 

 

Table 8. Evaluation Results on Id-based Integration Strategy 

ID Precision Recall F-score ID-C Precision Recall F-score 

M0 31.79% 75.22% 53.51%     

M1 44.62% 66.96% 55.79% M1 46.31% 68.71% 57.51% 

M2 45.03% 67.53% 56.28% M2 47.29% 69.23% 58.26% 

M31 49.16% 68.28% 58.72% M31 50.44% 70.04% 60.24% 

M32 49.74% 69.04% 59.39% M32 51.71% 70.82% 61.27% 

 
Some results are in agreement with those in the protein experiments.  First, the tendencies 

M32>M31>M2>M1 are still kept in the gene experiments.  Second, the recall rates of all 
models in AB-based integration are increased compared with the recall rate of M0 in Table 4.  
Third, the results AB-C>AB and ID-C>ID are similar to the results YA-C>YA and KA-C>KA.  
These results demonstrate that (1) the strategy of delaying the decision until clear evidence is 
found is useful, (2) the integration strategy is workable for collecting additional correct 
molecular entities, and (3) if two systems recommend the same biological name, it is an 
important cue.  We now examine Tables 7 and 8 further.  Table 7 shows that the precision 
rates are decreased less than the increase of the recall rates.  In contrast, the precision rates 
are decreased more than the increase of the recall rates shown in Table 8.  Idgene-based 
strategies cannot compete with the M32 strategy in Table 4.  This means that the AB-based 
integration strategy performed well in this test set, but the Id-based integration strategy did 
not achieve a good performance.  In other words, ABGene performed better in this test set 
than Idgene.  Consequently, we infer that ABGene recommended more good candidates than 
Idgene.  The reason may be that ABGene is a general-purpose gene recognizer (Tanabe and 
Wilbur, 2002) and Idgene focuses on Chinese Gene Variation (Humphreys et al., 2000).  
Meanwhile, the test set, i.e. the GENIA corpus, covers general documents, rather than 
documents in some specific topic like Chinese Gene Variation.  This leads to the decreased 
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performance of Idgene, which is worse than ABGene. 

6. Annotating Multiple Types of Biomedical Entities 
Most of the works in the past on recognizing named entities in the biomedical domain 
focused on identifying a single type of entities like protein and/or gene names.  It is obviously 
more challenging to annotate multiple types of named entities simultaneously.  Intuitively, 
one can develop a specific recognizer for each type of named entities, run the recognizers one 
by one to annotate all types of named entities, and merge the results.  The problem results 
from the boundary decision and the annotation conflicts.  Instead of constructing five 
individual recognizers, we regarded the multiple-class annotation as a classification problem, 
and tried to learn a classifier capable of identifying all the five types of named entities. 

Before classification, we have to decide the unit of classification.  Since it is difficult to 
correctly mark the boundary of a name to be identified, the simplest way is to consider an 
individual word as an instance and assign a type to it.  After the type assignment, continuous 
words of the same type will be marked as a complete named entity of that type.  The feature 
extraction process will be described in the following subsections. 

6.1  Feature extraction  
The first step in classification is to extract informative and useful features to represent an 
instance to be classified.  In our work, one word is represented by the attributes carried per se, 
the attributes contributed by two surrounding words, and other contextual information.  The 
details are as follows. 

6.1.1   Word attributes 
The word “attribute” is sometimes used interchangeably with “feature”, but in this report they 
denote two different concepts.  Features are those used to represent a classification instance, 
and the information enclosed in the features is not necessarily contributed by the word itself.  
Attributes are defined to be the information that can be derived from the word alone in this 
paper. 

The attributes assigned to each word are whether it is part of a gene/protein name, 
whether it is part of a species name, whether it is part of a tissue name, whether it is a stop 
word, whether it is a number, whether it is punctuation, and the part of speech of this word.  
Instead of using a lexicon for gene/protein name annotation, we employed two gene/protein 
name taggers, Yapex and GAPSCORE, to do this job.  As for part of speech tagging, Brill’s 
part of speech tagger was adopted. 

6.1.2   Context information preparation 
Contextual information has been shown helpful in annotating gene/protein names, and 
therefore two strategies for extracting contextual information at different levels are used.  
One is the usual practice at a word level, and the other is at a pattern level.  Since the training 
data released in the beginning does not define the abstract boundary, we have to assume 
sentences are independent of each other and the contextual information extraction was thus 
limited to be within a sentence. 

For contextual information extraction at a word level (Hou and Chen, 2003), collocates 
along with 4 statistics, including frequency, the average and standard error of distance 
between word and entity and t-test score, were extracted.  The frequency and t-test score were 
normalized to [0, 1].  Five lists of collocates were obtained for cell-line, cell-type, DNA, 
RNA, and protein, respectively. 
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As for contextual information extraction at a pattern level, we first gathered a list of 
words constituting a specific type of named entities.  A hierarchical clustering with cutoff 
threshold was then performed on the words with edit distance as measure of dissimilarity (see 
Figure 3).  Afterwards, common substrings were obtained to form the list of patterns.  With a 
list of patterns at hand, we estimated the pattern distribution, the occurrence frequencies at 
and around the current position, given the type of word at the current position.  Figure 4 
showed an example of the estimated distribution.  The average KL-Divergence between any 
two distributions was computed to discriminate the power of each pattern.  The formula is as 
follows: 

1 1,

1 ( || )
( 1)

n n

i j
i j j i

D p p
n n = = ≠− ∑ ∑ , where pi and pj are the distributions of a pattern given the word 

at position 0 being type i and j, respectively. 

 
 

Figure 3. Example of Common Substring Extraction 
 

 
 

Figure 4. Pattern Distributions Given the Type of Word at Position 0 
 

6.2  Constructing training data 
For each word in a sentence, the attributes of the word and the two adjacent words are put 
into the feature vector.  Then, the left five and the right five words are searched for previously 
extracted collocates.  The 15 variables thus added are shown below. 
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patterns matching wi, Prob p  denotes the pmf for pattern p.  Finally, the type of the previous 
word is added to the feature vector, mimicking the concept of a stochastic model. 

6.3  Classification  
Support Vector Machines classification with radial basis kernel was adopted in this task, and 
the package LIBSVM – A Library for Support Vector Machines (Hsu et al., 2003) was used 
for training and prediction.  The penalty coefficient C in optimization and gamma in kernel 
function were tuned using a script provided in this package. 
The constructed training data contains 492,551 instances, which is too large for training.  
Also, the training data is extremely unbalanced (see Table 9) and this is a known problem in 
SVMs classification.  Therefore, we performed stratified sampling to form a smaller and 
balanced data set for training. 

Table 9. Number of Instances for Each Type 

Type # of instances (words)

cell-type 15,466 

DNA 25,307 

cell-line 11,217 

RNA 2,481 

protein 55,117 

O 382,963 

6.4  Results and discussion 
Since there is a huge amount of training instances and we do not have enough time to tune the 
parameters and train a model with all the training instances available, we first randomly 
selected one tenth and one fourth of the complete training data.  The results, as we expected, 
showed that model trained with more instances performed better (see Table 10).  However, 
we noticed that the performances vary among the 6 types and one of the possible causes is the 
imbalance of training data among classes (see Table 9).  Therefore we decided to balance the 
training data. 
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First, the training data was constructed to comprise equal number of instances from each 
class.  However, it didn’t perform well and lots of type ‘O’ words were misclassified, 
indicating that using only less than 1% of type ‘O’ training instances is not sufficient to train 
a good model.  Thus two more models were trained to see if the performance can be 
enhanced.  One model has slightly more type ‘O’ instances than the equally balanced one, 
and the other model has the ratio among classes being 4:8:4:1:8:16.  The results showed 
increase in recall but drop in precision. 

 
 

 

 
After carefully examining the classification results, we found that many of the ‘DNA’ 

instances were classified as ‘protein’ and many of the ‘protein’ instances were classified as 
‘DNA’.  For example, 904 out of 2,845 ‘DNA’ instances were categorized as ‘protein’ under 
‘model 1/4’.  The reason may be that Yapex and GAPSCORE do not distinguish gene name 
from protein names.  Even humans don’t do very well at this (Krauthammer et al., 2002). 

We originally planned to verify if the tag of the previous word is useful and to obtain the 
results assuming the previous word is always correctly predicted.  Because the previous word 
tag is predicted with our classifier, this introduced a lot of noise. 

7. Extracting Gene References into Function 

7.1  Architecture overview 
A complete annotation system may be done at two stages, including (1) extraction of 
molecular function for a gene from a publication and (2) alignment of this function with a GO 
term.  Figure 5 shows an example.  The left part is an MEDLINE abstract with the function 
description highlighted.  The middle part is the corresponding Gene References into Function 
(GeneRIF).  The matching words are in bold, and the similar words are underlined.  The right 
part is the GO annotation.  This figure shows a possible solution of maintaining the 
knowledge bases and ontology using natural language processing technology.  We addressed 
automation of the first stage in this report. 

Table 10. Performance of each model (only FULL is shown) 

 
 Model 1/10 Model 1/4    
 Recall Prec. F-score Recall Prec. F-score Recall Prec. F-score

Full (Object) 0.4756 0.4399 0.4571 0.5080 0.4759 0.4914    
Full (protein) 0.5846 0.4392 0.5016 0.6213 0.4614 0.5296    
Full (cell-line) 0.2420 0.2909 0.2642 0.2820 0.3341 0.3059    

Full (DNA) 0.2784 0.3249 0.2998 0.2888 0.4479 0.3512    
Full (cell-type) 0.3863 0.5752 0.4622 0.4196 0.6115 0.4977    

Full (RNA) 0.0085 0.1000 0.0156 0.0000 0.0000 0.0000    
 Model balanced equally Model slightly more ‘O’ Model 4:8:4:1:8:16 

Full (Object) 0.1480 0.0990 0.1186 0.1512 0.1002 0.1206 0.5036 0.3936 0.4419
Full (protein) 0.1451 0.1533 0.1491 0.1458 0.1527 0.1492 0.5629 0.4280 0.4863
Full (cell-line) 0.1580 0.0651 0.0922 0.2280 0.0319 0.0560 0.4060 0.2261 0.2904

Full (DNA) 0.1326 0.0466 0.0690 0.1591 0.0582 0.0852 0.3759 0.2457 0.2972
Full (cell-type) 0.1650 0.1375 0.1500 0.1494 0.1908 0.1676 0.4701 0.4900 0.4798

Full (RNA) 0.0932 0.0067 0.0126 0.0169 0.0075 0.0104 0.0593 0.1148 0.0782
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The overall architecture is shown in Figure 6.  First, we constructed a training corpus in 
such a way that GeneRIFs were collected from LocusLink and the corresponding abstracts 
were retrieved from MEDLINE.  “GRIF words” and their weights were derived from the 
training corpus.  Then Support Vector Machines were trained using the derived corpus.  
Given a new abstract, a sentence is selected from the abstract to be the candidate GeneRIF. 
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Figure 6. Architecture of Extracting Candidate GeneRIF 

7.2  Methods  
We adopted several weighting schemes to locate the GeneRIF sentence in an abstract in 

the official runs (Hou et al., 2003).  Inspired by the work by Jelier et al. (2003), we 
incorporated their definition of classes into our weighting schemes, converting this task into a 
classification problem using SVMs as the classifier.  We ran SVMs on both sets of features 
proposed by Hou et al. (2003) and Jelier et al. (2003), respectively.  Finally, all the features 
were combined and some feature selection methods were applied to train the classifier. 

Figure 5. An Example of Complete Annotation from a Literature to Gene Ontology 

extraction 

alignm
ent 

The Bcl10 gene was recently isolated 
from the breakpoint region of 
t(1;14)(p22;q32) in mucosa-associated 
lymphoid tissue (MALT) lymphomas. 
Somatic mutations of Bcl10 were found 
in not only t(1;14)-bearing MALT 
lymphomas, but also a wide range of 
other tumors. …… Our results strongly 
suggest that somatic mutations of 
Bcl10 are extremely rare in malignant 
cartilaginous tumors and do not 
commonly contribute to their molecular 
pathogenesis. 
PMID: 11836626 

MEDLINE abstract 
Mutations, 
relatively 
common in 
lymphomas, 
are extremely 
rare in 
malignant 
cartilaginous 
tumors. 

GeneRIF 
 GO:0005515  
term: protein binding 
definition: Interacting selectively with any protein, or 
protein complex (a complex of two or more proteins 
that may include other nonprotein molecules). 

 GO:0008181  
term: tumor suppressor 

 GO:0006917  
term: induction of apoptosis 

 GO:0005622 
term: intracellular 

 GO:0016329  
term: apoptosis regulator activity 
definition: The function held by products which directly 
regulate any step in the process of apoptosis. 

GO 0045786

GO annotation 



 - 27 -

7.2.1   Training and test material preparation 
Since GeneRIFs are often cited verbatim from abstracts, we decided to reproduce the 
GeneRIF by selecting one sentence in the abstract.  Therefore, for each abstract in our 
training corpus, the sentence most similar to the GeneRIF was labelled as the GeneRIF 
sentence using Classic Dice coefficient as similarity measure.  Totally, 259,244 abstracts 
were used, excluding the abstracts for testing.  The test data for evaluation are the 139 
abstracts used in TREC 2003 Genomics track. 

7.2.2  GRIF words extraction and weighting scheme 
We called the matched words between GeneRIF and the selected sentence as GRIF words in 
this paper.  GRIF words represent the favorite vocabulary that human experts use to describe 
gene functions.  After stop words removal and stemming operation, 10,506 GRIF words were 
extracted. 

In our previous work (Hou et al., 2003), we first generated the weight for each GRIF 
word.  Given an abstract, the score of each sentence is the sum of weights of all the GRIF 
words in this sentence.  Finally, the sentence with the highest score is selected as the 
candidate GeneRIF.  This method is denoted as OUR weighting scheme, and several heuristic 
weighting schemes were investigated.  Here, we only present the weighting scheme used in 
classification.  The weighting scheme is as follows.  For GRIF word i, the number of 
occurrence G

in  in all the GeneRIF sentences and the number of occurrence A
in  in all the 

abstracts were computed and A
i

G
i nn /  was assigned to word i as its weight. 

7.2.3   Class definition and feature extraction 
The distribution of GeneRIF sentences showed that the position of a sentence in an abstract is 
an important clue to where the answer sentence is.  Jelier et al. (2003) considered only the 
title, the first three and the last five sentences, achieving the best performance in TREC 
official runs.  Their Naïve Bayes model is as follows.  An abstract a is assigned a class vj by 
calculating vNB: 

,

,arg max ( ) ( | )
j a i

NB j k i j
v V i S k W

v P v P w v
∈ ∈ ∈

= ×∏ ∏
 

where vj is one of the nine positions aforementioned, S is the set of 9 sentence positions, Wa,i 
is the set of all word positions in sentence i in abstract a, wk,i is the occurrence of the 
normalized word k in sentence i and V is the set of 9 classes. 

We, therefore, represented each abstract by a feature vector composed of the scores of 9 
sentences.  Furthermore, with a list of our 10,506 GRIF words at hand, we also computed the 
occurrences of these words in each sentence, given an abstract.  Each abstract is then 
represented by the number of occurrences of these words in the 9 sentences respectively, i.e., 
the feature vector is 94,554 in length.  Classification based on this type of features is denoted 
the sentence-wise bag of words model in the rest of this paper.  Combining these two models, 
we got totally 94,563 features. 

Since we are extracting sentences discussing gene functions, it’s reasonable to expect 
gene or protein names that appeared in the GeneRIF sentence.  Therefore, we employed 
Yapex (Olsson et al., 2002) and GAPSCORE (Chang et al., 2004) protein/gene name 
detectors to count the number of protein/gene names in each of the 9 sentences, resulting in 
94,581 features. 
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7.2.4   Training SVMs 
The whole process related to SVM is done via LIBSVM – A Library for Support Vector 
Machines (Hsu et al., 2003).  Radial basis kernel was adopted based on our previous 
experience.  However, further verification showed that the combined model with either linear 
or polynomial kernel only slightly surpassed the baseline, attaining 50.67% for CD.  In order 
to get the best-performance classifier, we tuned two parameters, C and gamma.  They are the 
penalty coefficient in optimization and a parameter for the radial basis kernel, respectively.  
Four-fold cross validation accuracy was used to select the best parameter pair. 

7.2.5  Picking up the answer sentence 
Test instances are first fed to the classifier to get the predicted positions of GeneRIF 
sentences.  In case that the predicted position doesn’t have a sentence, which happens when 
the abstract doesn’t have enough sentences, the sentence with the highest score is picked for 
the weighting scheme and the combined model, and the title is picked for the sentence-wise 
bag of words model. 

7.3  Results and Discussion 
The performance measures are based on Dice coefficient, which calculates the overlap 
between the candidate GeneRIF and actual GeneRIF.  Classic Dice (CD) is the classic Dice 
formula using a common stop word list and the Porter stemming algorithm.  Due to lack of 
space, we referred you to the Genomics track overview for the other three modifications of 
CD (Hersh and Bhupatiraju, 2003). 

The evaluation results are shown in Table 11. 
 

Table 11. Comparison of performances on the 139 abstracts 
 

  CD MUD MBD MBDP

1 Jelier (Sentence-wise bag of words + Naïve 
Bayes) 

57.83% 59.63% 46.75% 49.11%

2 Sentence-wise bag of words + SVMs 58.92% 61.46% 47.86% 50.84%

3 OUR Weighting scheme 50.18% 46.71% 33.47% 38.83%

4 OUR Weighting scheme + SVMs 56.86% 58.81% 45.08% 48.10%

5 Combined 59.51% 62.16% 48.17% 51.25%

6 Combined + gene/protein names 57.59% 59.95% 46.69% 49.68%

7 Combined + BWRatio feature selection 57.59% 59.90% 47.11% 50.08%

8 Combined + Graphical feature selection 58.81% 61.09% 47.98% 50.92%

9 Optimal Classifier 67.60% 70.74% 59.28% 62.09%

10 Baseline 50.47% 52.60% 34.82% 37.91%

 
The first row shows the official run of Jelier’s team, the first place in the official runs.  

The second row shows the performance when the Naïve Bayes classifier adopted by Jelier is 
replaced with SVMs.  The third row is the performance of our weighting scheme without a 
classifier.  The fourth row then lists the performance when our weighting scheme is 
combined with SVMs.  The fifth row is the result when our weighting scheme and the 
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sentence-wise bag of words model are combined together.  The sixth row is the result when 
two gene/protein name detectors are incorporated into the combined model.  The next two 
rows were obtained after two feature selection methods were applied.  The ninth row shows 
the performance when the classifier always proposes a sentence most similar to the actual 
GeneRIF.  The last row lists the baseline, i.e., a title is always picked. 

A comparative study on text categorization (Joachims, 1998) showed that SVMs 
outperform other classification methods, such as Naïve Bayes, C4.5, and k-NN.  The reasons 
would be that SVMs are capable of handling large feature space, text categorization has few 
irrelevant features, and document vectors are sparse.  The comparison between SVMs and the 
Naïve Bayes classifier again demonstrated the superiority of SVMs in text categorization 
(rows 1, 2). 

The performance greatly improved after introducing position information (rows 3, 4), 
showing the sentence position plays an important role in locating the GeneRIF sentence.  The 
2% difference between rows 2 and 4 indicates that the features under sentence-wise bag of 
words model are more informative than those under our weighting scheme.  However, with 
only 9 features, our weighting scheme with SVMs performed fairly well.  Comparing the 
performance before and after combining our weighting scheme and the sentence-wise bag of 
words model (rows 2, 5 and rows 4, 5), we can infer from the performance differences that 
both models provide mutually exclusive information in the combined model.  The result 
shown in row 6 indicates that the information of gene/protein name occurrences did not help 
identify the GeneRIF sentences in these 139 test abstracts. 

We performed feature selection on the combined model to reduce the dimension of 
feature space.  There were two methods applied: a supervised heuristic method (denoted as 
BWRatio feature selection in Table 2) (S. Dutoit et al., 2002) and another unsupervised 
method (denoted as Graphical feature selection in Table 2) (Chang et al., 2002).  The number 
of features was then reduced to about 4,000 for both methods.  Unfortunately, the 
performance did not improve after either method was applied.  This may be attributed to 
over-fitting training data, because the cross-validation accuracies are indeed higher than those 
without feature selection.  The result may also imply there are little irrelevant features in this 
case. 

8. Concluding Remarks 
Table 12 summarizes the results of enhancing the performance of protein and gene name 
recognizers with filtering and integration strategies.  We propose a fully automatic method of 
mining collocates from scientific texts in the protein and gene domains, and employ the 
extracted collocates to improve the precision rate of protein/gene name recognition.  The 
precision of Yapex is increased from 70.90% to 85.84% at a small expense in the recall rate 
(i.e. it only decreases 2.44%) when collocates are incorporated.  When the integration-only 
approach is adopted (i.e. -filtering, +integration), the F-score of the Yapex-based (ABGene-
based) integration is a little lower than that of the filtering-only approach (i.e. +filtering, -
integration).  This shows that collocation learning is useful, and integration depends on the 
individual performance NE recognizers.  When both filtering and integration (i.e. +filtering, 
+integration) strategies are employed together, the Yapex-based integration with KeX 
achieves 7.83% F-score increase compared to the pure Yapex method (i.e., -filtering, -
integration).  The ABGene-based integration with Idgene shows a 10.18% F-score increase 
relative to the pure ABGene method. 
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Performance  
of protein/gene 
 

 

Table 12. Summary of Experimental Results for enhancing performance of protein and 
gene name recognizers 
 

-filtering +filtering -filtering +filtering  

-integration -integration +integration +integration 

 Precision 70.90% 85.84% 61.98% 79.40% 

Protein Recall 69.53% 67.09% 77.52% 76.69% 

 F-Score 70.22% 76.47% 69.75% 78.05% 

 Precision 55.87% 70.08% 54.29% 69.99% 

Gene Recall 74.56% 71.89% 84.47% 80.81% 

 F-Score 65.22% 70.99% 69.38% 75.40% 

 
The main benefits of our method are: (1) The collocates used in the filtering strategies are 

produced by the training corpus rather than by intuition.  This forms a more complete set than 
one identified by human experts; (2) The combination of the filtering and integration 
strategies shows better performance than the original protein/gene name taggers.  The main 
drawback of our method is that we cannot solve the problem of false negatives.  To solve 
such problems, more linguistic technologies need to be investigated in order to recover the 
false negatives.  In addition, the performance of integrity strategies relied on the performance 
of the selected taggers as shown in Table 12. 

This tendency is consistent with gene and protein name entity extraction.  We expect that 
the methodologies can be easily extended to other domains, such as drugs and diseases.  This 
will be verified in future work.  The protein (or gene) collocates extracted from the domain 
corpus are also important keywords for pathway discovery, so that a systematic way from 
basic named entities finding to the discovery of complex relationships can be explored.  
Although the relation extraction involves more complex issues, such as related objects, 
pathway direction and dependency relation, the correct recognition of genome/protein is the 
most basic task and this can be help with our methods.  The values of the frequency, average 
distance, standard deviation and t-score can serve as some features for machine learning 
approaches to tag the protein/gene names.  This will be studied.  The experimental systems 
adopted in this paper are rule-based.  The effects of combining different types of protein/gene 
name taggers, e.g., rule-based and corpus-based, will be investigated in the future. 

In the second study of annotating multiple types of biological entities, we introduced the 
use of existing taggers and presented a way to collect common substrings shared by entities.  
Due to lack of time, the models were not well tuned against the two parameters – C and 
gamma, influencing the capabilities of the models.  Further, not all of the training instances 
provided were used to train the model, and it will be interesting and worthwhile to investigate.  
How to deal with data imbalance is another important issue.  By solving this problem, further 
evaluation of feature effectiveness would be facilitated.  We believe there is much left for our 
approach to improve and it may perform better if more time is given. 

For the last application of extracting GeneRIF from biological documents, we proposed 
an automatic approach to locate the GeneRIF sentence in an abstract with the assistance of 
SVMs, reducing the human effort in updating and maintaining the GeneRIF field in the 
LocusLink database. 

Strategy 
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We have to admit that the 139 abstracts provided in TREC 2003 are too few to verify the 
performance among models, and the results based on these 139 abstracts may be slightly 
biased.  Our next step would aim at measuring the cross-validation performances using Dice 
coefficient. 

The syntactic information is worth exploring, since the sentences describing gene 
functions may share some common structural patterns.  Moreover, how the weighting scheme 
affects the performance is also very interesting.  We are currently trying to obtain a weighting 
scheme that can best distinguish GeneRIF sentence from non-GeneRIF sentence without 
classifiers. 
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Appendix A: Terms suggested by an expert 

accompan (-ied, -ies, -y, -ying),  
activat (-e, -ed, -es, -ing, -ion, -or, -ors, -ory),  
affect (-, -ed, -ing, -s),  
aggregat (-e, -ed, -es, -ing, -ion),  
assembl (-e, -ed, -es, -ing, -y),  
associat (-e, -ed, -es, -ing, -ion),  
attract (-, -ed, -ing, -ion, -s),  
bind (-, -ing, -s) / bound,  
catalys (-e, -ed, -es, -ing, -tic),  
catalyz (-e, -ed, -es, -ing),  
cluster (-, -ed, -ing, -s),  
communicat (-e, -ed, -es, -ing, -ion),  
complex (-, -ed, -es, -ing),  
construct (-, -ed, -ing, -ion, -s),  
control (-, -ed, -ing, -led, -ling, -s),  
cooperat (-e, -ed, -es, -ing, -ion, -or, -ors),  
correlat (-e, -ed, -es, -ing, -ion),  
coupl (-e, -ed, -es, -ing),  
crosslink (-, -ed, -ing, -s),  
deglycosylat (-e, -ed, -es, -ing, -ion, -ory),  
demethylat (-e, -ed, -es, -ing, -ion, -ory),  
dephosphorylat (-e, -ed, -es, -ing, -ion, -ory),  
effect (-, -ed, -ing, -s),  
eliminat (-e, -ed, -es, -ing, -ion),  
enabl (-e, -ed, -es, -ing),  
enhanc (-e, -ed, -er, -es, -ing),  
glycosylat (-e, -ed, -es, -ing, -ion, -ory),  
group (-, -ed, -ing, -s),  
help (-, -ed, -ing, -s),  
hinder (-, -ed, -ing, -s),  
inactivat (-e, -ed, -es, -ing, -ion, -or, -ors, -ory),  
inhibit (-, -ed, -ing, -ion, -or, -ors, -ory, -s),  
integrat (-e, -ed, -es, -ing, -ion),  
interact (-, -ed, -ing, -ion, -s),  
link (-, -ed, -ing, -s),  
methylat (-e, -ed, -es, -ing, -ion),  
obstacl (-e, -ed, -es, -ing),  
participat (-e, -ed, -es, -ing, -ion),  
phosphorylat (-e, -ed, -es, -ing, -ion, -ory),  
prim (-e, -ed, -es, -ing),  
process (-, -ed, -es, -ing),  
react (-, -ed, -ing, -ion, -or, -ors, -ory, s),  
regulat (-e, -ed, -es, -ing, -ion, ,-or, -ory),  
relat (-e, -ed, -es, -ing, -ion),  
signal (-, -ed, -ing, , -led, -ling, -s),  
stimulat (-e, -ed, -es, -ing, -ion, ,-or, -ory),  
suppress (-, -ed, -es, -ing, -ion),  
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transduc (-e, -ed, -es, -ing, -tion, ,-tor, -tory),  
trigger (-, -ed, -ing, -s) 


