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Abstract This paper presents an application of 
genetic algorithms in solving rectangle bin packing 
problems which belong to  the class of NP-Hard 
optimization problems. There are  three versions of 
rectangle bin packing problems to be discussed in 
this paper: the first version is to minimize the 
packing area, the second version is to minimize the 
height of a strip packing, and the final version is to 
minimize the number of bins used to pack the given 
items. Different versions of genetic algorithms are  
developed to  solve the three versions of problems. 
Among these versions of genetic algorithms, we 
have demonstrated two ways of applying the genetic 
algorithms, either to solve the problem directly or 
to tune an existing heuristic algorithm so that the 
performance is improved. Experimental results are 
compared to  well-known packing heuristics FFDH 
and HFF. From these results, we know that both 
methods can be  useful in practice. 

I. INTRODUCTION . The obvious industrial applications of stock cutting 
have been an  important stimulus to the research of 
two dimensional packing. Further motivation has 
been driven by the advances in VISI technology in 
which layouts on chips pose a number of important 
combinatorial packing problems. 
. It is well known that an efficient algorithm for 
finding optimal solutions for bin packing problems 
has proved to be quite difficult to find. In fact, the 
decision version of the bin-packing problem "Given 
C, L, and an  integer bound K, can L be packed into K 
or fewer bins of capacity C?" is NP-complete, this 
means that it is unlikely that efficient optimization 
algorithms can be found for these problems. Thus 
researchers  have turned  to  the  s tudy  of 
approximation algorithms, that is, algorithms which, 
although not guaranteed to find an optimal solution 
for every instance, usually find near-optimal 
solutions for most cases. 
. Genetic Algorithms(GAs) [3], [4], [5], [6] developed 
by John Holland in 1975 a r e  techniques for 
optimization and machine learning. A GA is 
composed of a reproductive plan which provides an 
organizational framework for representing the 
pool of genotypes of a generation. After the 
successful genotypes are selected from the last 

generation, a set of genetic operators are  used in 
creating the offsprings of the next generation. 
Whenever some individuals exhibit better then 
average performance, the genetic information of 
these individuals will be reproduced more often. 
GAS work with a rich database of population and 
simultaneously climb many peaks in parallel during 
the search so that the probability of trapping into a 
local minimum is reduced significantly. 

Procedure Genetic-Algori thm 
begin 

t = O  
initialize P( t) 
evaluate P( t) 
while (not termination-condition) do  
begin 

t = t + l  
select P( t) from P( t-1) 
recombine P( t) 
evaluate P( t) 

end 
end 
Fig. 1 A simple genetic algorithm 

The structure of a simple GA is shown in Fig. 1. 
The GA simulates a n  evolutionary process with n 
individuals which represent n points in a large 
search space. From the engineering point of view , 
GAS are a n  iterative process where each iteration 
has two steps, evaluation and generation. In the 
evaluation step, domain knowledge is used to  
determine the fitness of a candidate, a measure of 
its quality. Then an evaluation function maps a 
candidate solution into the  nonnegative real 
numbers. The generation step includes a selection 
operator and several modification operators. The 
selection operator chooses individuals with a 
probability that corresponds to the relative fitness. 
Two chosen individuals, called the parents, produce 
children using the genetic operator crossover. The 
crossover operator exchanges substring of the codes 
of the parents a t  the same randomly determined 
point or  points; however, it does not  create any 
new genetic material in the knowledge base. The 
mutation operator, on  the other hand, randomly 
changes a component in the structure introducing a 
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new material into the knowledge base. From 
another point of view, the mutation operator acts as 
a local search close to the current point in the 
search space while the crossover operator causes 
larger jumps in  the search space. Finally, the 
descendants replace some individuals in the 
population after the generation step is done. 

following components: 
( 1 )  a genetic representation for potential solutions 
to the problem, 
( 2 )  a way to create an  initial population of potential 
solutions, 
(3) an evaluation function that plays the role of the 
environment, rating solutions in terms of their 
fitness, 
(4) genetic operators that alter the composition of 
children during reproduction, 
(5) values for various parameters that the genetic 
algorithm uses (population size, probabilities of 
applying genetic operators, etc.) 
. In this paper we will try to solve the three versions 
of rectangle bin-packing problems, with slightly 
differences o n  their goals, by using GAS. We will 
denote the version to minimize the packing area as 
RBP1, denote the strip packing problems as RBP2, 
and denote the version to minimize the number of 
bins used as RBP3. 

A GA for a particular problem must have the 

11. Literature Review 
. So far, we have found two papers that solve the 
rectangle bin packing problems by using CAS. The 
first work is done by D. Smith [8 ] .  The goal of his 
CA is to put as many blocks into a single rectangular 
region as possible. Experimental results have shown 
that this CA can produce the same packing density 
300 times faster than their previously developed 
deterministic bin packing algorithm which used 
some heuristics a n d  dynamic programming 
techniques. However, the genetic encoding does not 
allow for the recognization of characteristic features 
of packing schemes in their encoding, as most of 
these characteristics are  hidden in an  algorithm to 
place a sequence of rectangles. Thus this approach 
cannot support the inheritance of certain features 
by the offsprings. 
. The second paper we have found is by B. Kroger, P. 
Schwendering and  0. Vornberger [l]. They try to 
solve the strip bin packing problems (RBPZ in this 
paper) by using GAS. Their representation is much 
more complex than that of Smith. They also devise 
a special  c rossover  o p e r a t o r  for  the i r  
representation. This representation of packing is 
better than the list representation because the 
features of the parents are specified more explicitly 
in the chromosome, a n d  thus the offsprings can 
inherit features from their parents so that the 
building block hypothesis can be satisfied. They 
implement their CA o n  a parallel machine 
transputer. Experimental results show that this CA 
is  able to solve large bin packing problems in 
reasonable time and that smaller instances are likely 
to  be solved optimally. However, the complexity of 

the representation makes the design of the genetic 
operators more difficult and the time complexity of 
evaluating a chromosome is still too high. Also, the 
cost of applying the associated genetic operators to 
this representation is much more than the 
associated genetic operators for list representation. 

111. On Solving RBP1: Minimizing the 
Packing Area 

rectangles, we wish to pack them into a rectangular 
area, so that no two items overlap and so that the 
packing area is minimized. For all items, rotation 
by 90 degree is allowed. Square packing is 
preferred. 

The problem is stated below: Given a set of 

We will denote our GA for solving RBPl as GA1. 

A. The Representation 
. For CA1, we conceptually use a slicing tree (See 
Fig. 2 )  to represent a solution. A slicing tree is a n  
oriented rooted binary tree. Each internal node of 
the tree is labeled either * or  +, corresponding to 
either a vertical o r  a horizontal cut, respectively. 
Each leaf corresponds to a basic rectangle or item 
and is labeled by a identification number between 1 
and n, where n is the problem size. A slicing tree 
can be viewed either from top down or from bottom 
u p  fashion. From a top down point of view, a slicing 
tree specifies how a given rectangle is cut into 
smaller rectangles by horizontal and  vertical cuts. 
From a bottom u p  point of view, a slicing tree 
describes how smaller rectangles are combined. The 
operator * and + are no  more than left-right and 
top-down relations for two adjacent rectangles, 
respectively. Corresponding to  each slicing tree, 
there exists a polish expression to describe it. The 
polish expression can be easily obtained through 
post-order traversal of the slicing tree. Thus, in the 
implementation of GA1, we actually use the polish 
expression as our  internal representation of a 
packing. Althugh there are  certain packing that 
cannot be described by slicing trees (see Fig. 3), we 
still believe that the slicing tree can represent most 
good and near optimal packings. 

A 

t 
1 1 * 3 + 5 2 + *  

Fig. 2. A slicing tree and its corresponding packing 
and polish expression 
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Fig. 3. A packing that can't 
slicing tree 

be represented by a 

. A polish expression can be easily converted to an 
actual packing by using a stack of rectangles. A 
rectangle is specified by its width and height. We 
evaluate a polish expression by scanning it from left 
to right, if an operand (a number to index the item) 
is encountered, push the corresponding rectangle to 
the top of the stack; if an operator is encountered, 
pop two rectangles from the stack as it's operands 
a n d  apply the operator, then push the newly 
generated rectangle ( the bounding rectangle of its 
two operands) back to  the stack. When the 
scanning process is over, the rectangle left on the 
stack is the bounding rectangle. The application of 
operator * and + is shown in Pig. 4. They are n o  
more than a sum or m m  operation. Eventually, all 
of the operation can be finished in O( n) time. 

Applying rhe '+' opnra: 

1 rum(h1. U1 

B. The Genetic Operators . Rased upon our polish expression representation, 
we design a set of genetic operators, including a 
crossover and several mutations, to manipulate it. 
The crossover operator in GA1 is called hybrid 
crossover. The hybrid crossover works as follows: 
First, it decompose the polish expression into two 
parts, the index part  and the operator part. The 
index part is an ordered list, just like a list of cities 
to be visited in the traveling salesman problem. 
Thus we apply the partially matched crossover 
(pmx) [SI on the two selected parents to generate 
their offsprings and use the implementation of pmx 
by Lin [7]. The operator part  specifies the type of 
operators (+ or *) and their position in the polish 
expression. If we have n items to be packed, then we 
have n-1 operators because + and * are both binary 
operators. The operator part  a r e  manipulated by 
uniform crossover [31 . If we regard the relative 
position of items as schemata, it is easy to see that 
both the children inherit some portion of the 
chromosome from each parent. If the parents are 
good packings, then the children may be good ones, 
too. See Fig. S and Fig. 6 for an example of hybrid 
crossover. 

Parent1 1 4  3 2 + 5 * + * 
Parent2 5 1 * 4 + 3 2 + 

=> 
Index Part Operator Part 

Parent 1 1 4 1 3  2 51 +4 *s +5 *5 
Parent 2 5 114  3 21 *2 +3 *4 +5 

template 1 1 0 0 

Child 1 1 5 1 4  3 2 1  *2 +3 +5 *5 
Child 2 4 113 2 SI +4 *5 *4 +5 

Child1 1 5  * 4 + 3 2 + * 
Child2 4 1 3  2 + * 5 * + 

0 (pmx) ux) 

=> 

Fig. 5 An example of hybrid crossover 

Fig. 4 applying the + and * operators lo generate 
the bounding rectangle. 

Fig. 6 

1. I r l  

. The ccjrrespmding packings of Fig. 5. 
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We have proposed four  different mutation 
operators: 

Mutl: rotate an  item 
Mut2: randomly exchange two items 
Mut3: move an  operator 
Mut4 complement an operator 

Mutation 1 is to randomly choose a n  item and  
rotate it by 90 degrees. Mutation 2 is to randomly 
choose two items and exchange them. Mutation 3 is 
to move a randomly chosen operator to a new 
position. Mutation 4 is to replace a randomly 
chosen operator by the complement operator ( the 
complement of + is  * and vice versa). All of these 
mutation operators are applied with a given 
probability. See Fig. 7 for examples of mutation 
operators. 

.Hull 

/1 

1 2 -  4 +  3 5 + *  

Fig. 7 Illustrations of four mutations 

. However, Applying the hybrid crossover and Mut3 
operator may cause illegal offspring. To solve this 
problem, we propose a n  algorithm to adjust the 
positions of operators to make the illegal polish 
expression legal. The idea of this algorithm is 
simply to  count  the  operands(indices) a n d  
operators(+ or *). Since both the operators + and * 
are  binary operators, the application of + or  * 
consumes two operands and will produce a new 
operand. Thus, when scanning the  polish 
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expression from left to right, the  accumulated 
number  of opera tors  cannot  exceed t h e  
accumulated number of operands minus one a t  any 
point of the polish expression. See Fig. 8 for an  
example of applying the adjustment algorithm. 

beforeadjustment 2 3 + * 4 5 1 + * 
count 1 2 1 x invalid 

afteradjustment 2 3 + 4 * 5 1 + * 
count 1 2 1 2 1 2 3 2 lva l id  
Fig. 8. 
algorithm 

C. The Evaluation Function 
. We first apply the packing algorithm to a polish 
expression to  obtain its bounding rectangle and  
then use this information to  evaluate the  
corresponding packing. However, this information 
may not be enough to reveal the preference that the 
square packing is preferred. To meet this 
preference we a d d  a penalty function. if the  
bounding rectangle is square or near square, the 
penalty is zero. When the difference between the 
width and  height of the bounding rectangle 
becomes larger, the penalty grows larger, too. For 
example, given an  previously specified allowable 
aspect ratio (e.g. AAR = 1.2), we may define the 
penalty as follows. 

if( (width/height)>AARor(width/height)<l/AAR) 
penalty = (width - height) * (width - height); 

el se 
penalty = 0; 

An example of applying the adjustment 

Thus the fitness function is: 

fitness= l / ( a r e a  of the bounding rectangle, + 
penalty). 

D. Initialization . The initialization should generate the initial 
population to represent the entire solution space 
statistically. To initialize t h e  population, we 
randomly generate a n  polish expression with n 
operands and (n-1) operators. The n operands are 
just a random permutation of 1, 2, 3, ..., n, and for 
each of the n-1 operators, we randomly generate its 
type (* o r  +) and its position in the polish 
expression. Of course, the randomly generated 
expression may not be a legal polish expression, 
therefore we need to apply the  adjustment 
algorithm to make it legal. 

E. The Parameters 
. The population size is empirically set to 2 times 
the size of the problem (i.e. number of items to be 
packed). The steady-state reproduction strategy is 
used with 20 percent of the population updated in 
each generation. The newly generated offsprings 
are  put back into the generation by deleting the 
least-fit chromosomes. N o  duplication of 
chromosome is allowed to maximize the diversity. 



The rate for crossover is set to be 0.3 and the rate 
for all four mutations is set to be 0.7. The four 
mutations are selected with equal probability. 

F. Experimental Results and Discussions 
. The test problems are  randomly generated as 
follows: a rectangle is specified by (area, ar), where 
area is the area of the rectangle and is generated 
randomly from 1 to 100, and ar is the aspect ratio 
of the rectangle with value randomly generated 
from 1 to 4. We test G A 1  for six problems with size 
ranging from 10 to 60 on a 80286-based PC-AT. 
Each problem is run  for  10 times . The 
experimental results a re  listed in Fig. 9. The 
average packing density is around 88%. The 
solution quality can be improved as the running 
time increased. For example, Fig. 10 shows an  
sample packing of 30 items with packing density of 
95.6% full. This packing was obtained in 40 
minutes running time of GAL 

problem size 
P l  10 92.74 3 mins 
P2 20 89.16 5 mins 
P3 30 90.62 10 mins 
p4 40 87.69 18 mins 

50 85.20 30 mins P5 
p6 60 85.99 57 mins 

packing density time elapsed 

Fig. 9 Experimental results of GA1 

;5.;;; 

Fig. 10 A sample packing of 30 rectangular items 

. For most problems, the mutation rate of traditional 
CAS is supposed to  be very low, e.g. 0.5%, and the 
GA leaves most of the works of searching to  the 
crossover operator. However, in the domain of bin 
packing this is not true because it is very difficult to 
combine the good features of two good packings. 
Thus, we take another point of view and use the 
high mutation rate  instead. Conceptually, the 
crossover operator causes a larger jumps in the 
search space and  the mutation operator acts as a 
local search close to  the current  approximate 
solution in the search space. 

IV. On Solv ing  RBPS: Minimizing t h e  
Number of Bins Used 

. In this section, we demonstrate another way to use 
GAS. The two GAS developed in this chapter are 
called GA3 and GA4, respectively. They do not try 
to solve the problem directly, but to solve it from 
the point of view of an  existing heuristic packing 
algorithm. In this case, GA acts like a heuristic 
improver more than a problem solver. The idea of 
our heuristic packing algorithm is from algorithm 
Hybrid First Fit (HFF) [2]. Empirical results of CA3 
a n d  GA4 a r e  compared with tha t  of HFF. 
Experiences tell us that this is a simple and efficient 
way to  improve the performance of a heuristic 
algorithm. 
. The problem is stated as below: Let L = { r l ,  r2, ..., 
rn]  be a set of rectangular items, each item r have 
height h(r) and width w(r). A packing P of L into a 
collection jB1, B2, ..., Bm) of H * W rectangular bins 
is an  assignment of each items to a bin and  a 
position within that bin, such that (i) each rectangle 
is contained entirely within its bin, with its sides 
parallel to the sides of the bin, (ii) no two items in a 
bin overlap, and (iii) the number of bins used is 
minimized. For all items, rotation by 90 degrees is 
allowed. 

A. HFF Heuristic 
. The algorithm HFF is proposed by F.R Chung, M.R 
Garey and D.S. Johnson [2). A more comprehensive 
name for the algorithm is FFDH * FFD since it is a 
combination of these two algorithms. It works as 
follows: First create a strip packing for L using FFDH 
and strip width W, thereby obtaining a collection 
j b l ,  b2, ..., bk) of blocks of nonincreasing heights 
h l  2 h2 2 ... 2 hk, each containing a subset of the 
rectangular items. If we view these blocks as a new 
collection of rectangles L' = ( b l ,  b2, ..., bk) with 
h(bi) = hi a n d  w(bi) = W, 1 < i < k, we have a n  
instance of the one-dimensional problem and can 
apply FFD to pack the blocks (and  hence the 
rectangles they contain) into H * W bins. See Fig. 11 
for an example of HFF. 

Fig. 11 An example of HFF 

. From the descriptions of HFF above, we know that 
HFF is an off-line algorithm since it reorders the 
items in non-increasing height before it packs them. 
The arrangement of non-increasing height ordering 
of items is also a heuristics embedded in HFF. Thus, 
we decompose HFF into two parts: the first part is to 
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V. On Solving RBPZ: Minimizing t h e  Height 
of A Strip Packing 
. In this section, we continue the idea from the 
previous sections, and develop 3 GAS to solve the 
strip packing problems RBP2. We denote them as 
CA2, GAS and CA6. The GA2 is modified from GA1 
by using a different evaluation function. GA5 and 
GA6 are modified from GA3 and  GA4 with different 
embedded packing heuristics and  evaluation 
function. kperimental results are compared with 
the classical deterministic strip packing algorithm 
FFDH. . The strip packing problems is stated below: Given 
a set of rectangles pi, with height hi and width wi, 
the goal is to pack them into a vertical strip of width 
C. so as to  minimize the total height of the strip 
needed. For all items, rotation by 90 degrees is 
allowed. 

A. Modification of CA1 
. The RBPZ can be viewed as a more constrained 
version of RBPl with the constraint of keeping the 
bin width fixed. There a r e  two obvious ways of 
handling the constraints in a GA: either (1) 
requiring that they are satisfied for every solution 
generated or (2)  allowing constraint violation for 
the intermediate solutions a t  the expense of some 
penalty. Kroger, Schwendering and Vornberger [ 1 J 
have proposed a GA to solve the strip packing 
problems with the BOlTOM-LEFT scheme embedded 
in the genetic operators to meet the bin width 
constraint and to generate good packings. Here, we 
try to  modify the G A l  developed in previous 
chapter to  accommodate the bin width constraint by 
adding an penalty function term. 

. Since RBPZ is nothing more than a special case of 
RBPl with the packing width not exceeding a 
constant C. If we meet this constraint when 
minimizing the total packing area, we minimize the 
height of the strip. Thus the idea from G A 1  can be 
directly used here. The only modification is to  
embed the packing width constraint in the 
evaluation function, a n d  the goal can be still to  
minimize the total packing area as it was before. 
To minimize the area, we have 

fitness = 1 / (area of packing) 

To meet the constraint, we add a penalty function 
term as follows: 
if (width of packing I C) 

penalty = 0; 
else 
. penalty = (width of packing - C) * height of 
packing: 

The resulting evaluation function is: 
fitness = 1 / (area of packing + penalty). 

The other parts of CA1 are left unchanged. 

B. Modifications of GA3 and CA4 

. We apply the concepts used in GA3 and GA4 to 
solve RBPZ. GA5 is modified from GA3 and  is a 
combination of GA and First-Fit packing algorithm. 
GA6 is modified from GA4 and is a combination of 
GA and Best-Fit packing algorithm. Because what we 
care in RBP2 is the height of the strip packing, the 
fitness function can be expressed as below : 
. fitness = 1 / (height of the strip packing) 

C. Experimental results 8c Discussions 
. The test problems are  the same as described in 
previous chapter. Ten problems with different sizes 
are tested by the three GAS. The running time of 
GA2 is roughly equal to the running time of CA1 
for the same problem size, and the running time of 
CAS and GA6 are  comparable to  GA3 and GA4. The 
results are  compared with those obtained by FFDH 
and shown below: 

Problem size FFDH GA2 GA5 GA6 
17 17 15 P l  10 25 

20 37 31 31 31 
P3 30 51 46 46 46 
p4 40 62 57 56 56 
P5 50 71 68 66 64 
p6 60 79 80 73 73 
P7 70 97 ? 90 93 

80 110 ? 106 104 P8 
p9 90 127 ? 120 122 
p10 100 139 ? 133 133 
* the notation ? denotes that the results a re  not 
good and thus need further improvement 
Fig. 13 Experimental results of GA2, GAS and GA6 

From the results above, we recognized that the 
solution quality of CA2 decrease the problem size 
sets larger. The results are not good. We guess that 
this may be because of that the bin width constraint 
was dealt with as a penalty function, which prunes 
the solution space too much and thus limits the CA2 
to d o  the search efficiently. That is to say, to deal 
with the bin width constraint as a penalty may not 
work for this problem. To make GA solve the strip 
packing more efficient, we may need to incorporate 
the constraint in the representation a n d  genetic 
operators so that  every offspring meets the 
constraints. The paper by Kroger, Schwendering 
and  Vornberger [ l ]  demonstrate this idea. The 
other possible reason is the weight for the penalty 
function term is too small. This may be tested by 
increasing the weight of the penalty function term. 
. Although the results of GA2 does not beat FFDH for 
every instance, the GA2 still have an advantage over 
FFDH in that the performance of FFDH is more 
stable than that of FFDH. For some problem 
instances, FFDH may obtain a worst case quality 
solution, but GA2 is expected to adapt itself to have 
a steady performance. 
. For the results of GAS and GA6, they beats that of 
FFDH for every cases. This is consistent with our  
discussions in previous chapter. Because GAS and 
GA6 acts as tuners, their results can not worse than 
that of FFDH. 

P2 
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decide the packing order (non-increasing height 
order) and the second part is to packing the items 
according to  the order presented to it. Obviously, 
the second part of HFF is an on-line algorithm and 
can be embedded in CA3 as part of the evaluation 
function. Then the work of CA3 is to  find the 
optimal sequence of items for  t h e  packing 
algorithm. GA4 is modified from CA3 with slight 
differences in their embedded packing algorithm. 
What is  in GA4 is a best-fit packing algorithm 
instead of first-fit algorithm in GA3. 

B. The Representation . Since most of the packing work is done by the 
packing algorithm, the only thing we can change is 
the order of items presented to it. That is, if we 
change the order of items presented to the packing 
algorithm, the solution quality may be  improved. 
Thus, we represent a solution as an  ordered list of 
items. With this representation, the solution of HFF 
is included in the solution space because if we let 
the order of items b e  non-increasing height, it 
would produce the same solution as that of HFF. 
Further, rotation of items by 90 degrees is allowed, 
so the representation is  extended by added a 
rotation bit to  each item in the solution vector to 
indicate their orientations. This extension of the 
representation not  only provides an additional 
possibility to find solution that is better than that of 
HFF, but it also enlarge the solution space by the 
scale of 2n and the size of the final solution space 
becomes n! * 2n. 

C. The Genetic Operators . We apply the partially matched crossover (pmx) 
[ 5 ]  on t h e  extended list representation of 
chromosome and  use the algorithm developed by 
Lin [7]. TWO mutation operators are proposed, the 
first is random 2-swap mutation, which randomly 
selects two components in a chromosome and  
exchange them, and  the second is the rotation 
mutation, which rotate a randomly selected gene of 
a chromosome by 90 degrees. 

D. The Evaluation Function 
. Before we evaluate a chromosome, we have to  
construct the actual packing using the embedded 
packing algorithm. The packing algorithm used in 
CA3 is a level-oriented first-fit (LFF) algorithm, 
inspired from algorithm HFF. Suppose the standard 
bin has width W and height H. It first uses a two- 
dimensional level-oriented first-fit algorithm to pack 
the set of items into a strip of width W. Next, 
decompose this packing into blocks corresponding 
to the levels created by the algorithm. Each block 
can be viewed as a rectangle of width W and height 
the height of the level. Thus, packing these blocks 
into rectangular bins of width \.V becomes a simple 
one-dimensional bin packing problem, where the 
size of an  block is its height. Then we apply FFD to 
this one-dimensional problem. The packing 
algorithm used in CA4 is similar to that being used 
in CA3. The only difference is that it searches for 

the best fit area to pack the incoming item instead 
of using the firstly found area. 

. The evaluate function is defined as below: 

fitness= 1 /( bin-used*bin,height+average-height). 

The first term bin-used * bin-height is  to  
distinguish the packings by preferring a packing 
that uses a smaller number of bins. The second 
term average-height is to  tell the  difference 
between packings that uses the same number of 
bins and prefer the smaller average height of all 
bins. 

E Initialization 
. This initial population is created by random 
permuting the n items, where n is the number of 
items to be packed. The orientation bit attached to 
each item is also generated randomly, meaning 
either no  rotation or  rotating by 90 degrees. 

F. The Parameters . For CA3 and GA4, the population size is set to be 
equal to  the number of items to  be  packed 
empirically. The rate for crossover operator is 0.7 
and the rate for mutation operators is 0.3. The two 
mutation operators, random 2-exchange mutation 
and  rotation mutation, a re  selected with equal 
probability. The generational reproduction strategy 
is used for simplicity. 

G. Experimental Results and Discussions . The test problems are generated randomly with 
the width and the height of the items uniformed 
distributed from 1 to the width of the bin. We have 
run the algorithm for 10 problems, with problem 
sizes ranging from 10 to 100. Each problem is 
tested for 10 times. The results are summarized in 
Fig. 12. 

size min* HFF GA3bins saved GA4 bins saved 
p l 1 0  2 2  2 0 2 0 
p 2 2 0  3 3  3 0 3 0 
p 3 3 0  6 7  6 1 6 1 
p4 40 9 11 10 1 10 1 
p5 50 12 15 14 1 14 1 
p6 60 14 18 16 2 16 2 
p7 70 16 22 19 3 19 3 
p8 80 19 16 24 2 22 4 
p9 90 22 29 27 2 25 4 
p 1 0 1 0 0 2 4  31 28 3 28 3 
*min=E(totaI area of items)/(capacity of a bin) 
Fig. 12 Experimental results of CA3 and CA4 

. From the results above, we see that the solution 
quality is consistently better than that of HFF. The 
idea of using a CA to improve a heuristic packing 
algorithm is very simple, yet useful. It improve the 
average performance of the heuristic algorithm and 
have high probability to  prevent the heuristic 
algorithm being trapped in the worst case. 
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VL Conclusions and Future Works 

. In this paper we demonstrated two different ways 
of using GAS to solve bin packing problems, either 
to solve the problem directly (as in CA1 and GA2) 
or to use the CA to  tune an  existed heuristic 
algorithm (as in GA3, GA4, GAS and GA6) so that 
the  performance of the heuristic algorithm is 
improved. The slicing tree representation for a 
packing in CA1 have the advantage of evaluation 
efficiency and totally freedom to search without the 
interference of a heuristic algorithm. And the CA2 
shows that the method of adding the bin width 
constraint as a penalty function may not work 
alone. That is, we need different way to manipulate 
the bin width constraint, for example, to embed this 
constraint in the representation and the associated 
genetic operators. The value of GA3, GA4, GAS and 
CA6 are their simplicity. We can use this concept to 
improve an  algorithm without making too much 
effort. 
. Using genetic approach to solve the rectangle bin 
packing problem has a monotone property. The 
more running time, the better solution you find. 
This is a practical advantage of this approach. Since 
CA maintains a population of candidate solutions, 
we  can choose any good alternative solution from 
the population as our final solution if the best one 
(measured by combination of density and penalty 
violation in GA1) is discarded for some reasons. 
One disadvantage is that each time we  run  the 
algorithm, we will end up  with a different packing, 
i.e. it is difficult to do reactive packing. 
. The results of our  CA approach to bin packing 
problems can be used directly in cutting-stock 
problems. And with appropriate modifications, CA 1 
can be used in the floorplan design of VISI design 
191. The modification should be easy by embedding 
the flexible modules knowledge to the evaluation 
function. 
. The first direction of research is to incorporate 
simulated annealing in to  GAS so tha t  the  
performance is improved. The works by Lin[7] is a 
good demonstration of this kind of work. 
. Another direction of research is to develop a more 
powerful representation so that CA1 can manipulate 
the packings that can't be represented by our slicing 
tree representation. If the representation is 
modified, the  corresponding genetic operators 
should also be designed again. Besides, if we can 
devise a more efficient crossover operator, then 
both the quality of the solution and the running 
time will be improved. 
. Yet another direction of research is to investigate 
different ways to manipulate the constraints in a 
CA. 
. Finally, using the idea of CA3 to improve the 1-D 
bin packing algorithms a n d  o ther  heuristic 
algorithms is useful in practice. 
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