
On Solving Rectangle Bin Packing Problems
Using Genetic Algorithms

Shim-Miin Hwang, Cheng-Yan Kao*, Jomg-Tzong Homg
Dept. of Computer Science and Information Engineering

National Taiwan University,Taipei, Taiwan
*All correspondence should be sent to the second author

Abstract This paper presents an application of
genetic algorithms in solving rectangle bin packing
problems which belong to the class of NP-Hard
optimization problems. There are three versions of
rectangle bin packing problems to be discussed in
this paper: the first version is to minimize the
packing area, the second version is to minimize the
height of a strip packing, and the final version is to
minimize the number of bins used to pack the given
items. Different versions of genetic algorithms are
developed to solve the three versions of problems.
Among these versions of genetic algorithms, we
have demonstrated two ways of applying the genetic
algorithms, either to solve the problem directly or
to tune an existing heuristic algorithm so that the
performance is improved. Experimental results are
compared to well-known packing heuristics FFDH
and HFF. From these results, we know that both
methods can be useful in practice.

I. INTRODUCTION . The obvious industrial applications of stock cutting
have been an important stimulus to the research of
two dimensional packing. Further motivation has
been driven by the advances in VISI technology in
which layouts on chips pose a number of important
combinatorial packing problems.
. It is well known that an efficient algorithm for
finding optimal solutions for bin packing problems
has proved to be quite difficult to find. In fact, the
decision version of the bin-packing problem "Given
C, L, and an integer bound K, can L be packed into K
or fewer bins of capacity C?" is NP-complete, this
means that it is unlikely that efficient optimization
algorithms can be found for these problems. Thus
researchers have turned to the s tudy of
approximation algorithms, that is, algorithms which,
although not guaranteed to find an optimal solution
for every instance, usually find near-optimal
solutions for most cases.
. Genetic Algorithms(GAs) [3], [4], [5], [6] developed
by John Holland in 1975 a r e techniques for
optimization and machine learning. A GA is
composed of a reproductive plan which provides an
organizational framework for representing the
pool of genotypes of a generation. After the
successful genotypes are selected from the last

generation, a set of genetic operators are used in
creating the offsprings of the next generation.
Whenever some individuals exhibit better then
average performance, the genetic information of
these individuals will be reproduced more often.
GAS work with a rich database of population and
simultaneously climb many peaks in parallel during
the search so that the probability of trapping into a
local minimum is reduced significantly.

Procedure Genetic-Algori thm
begin

t = O
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin

t = t + l
select P(t) from P(t-1)
recombine P(t)
evaluate P(t)

end
end
Fig. 1 A simple genetic algorithm

The structure of a simple GA is shown in Fig. 1.
The GA simulates a n evolutionary process with n
individuals which represent n points in a large
search space. From the engineering point of view ,
GAS are a n iterative process where each iteration
has two steps, evaluation and generation. In the
evaluation step, domain knowledge is used to
determine the fitness of a candidate, a measure of
its quality. Then an evaluation function maps a
candidate solution into the nonnegative real
numbers. The generation step includes a selection
operator and several modification operators. The
selection operator chooses individuals with a
probability that corresponds to the relative fitness.
Two chosen individuals, called the parents, produce
children using the genetic operator crossover. The
crossover operator exchanges substring of the codes
of the parents a t the same randomly determined
point or points; however, it does not create any
new genetic material in the knowledge base. The
mutation operator, on the other hand, randomly
changes a component in the structure introducing a

0-7803-2129-4/94 $3.00 0 1994 IEEE

new material into the knowledge base. From
another point of view, the mutation operator acts as
a local search close to the current point in the
search space while the crossover operator causes
larger jumps in the search space. Finally, the
descendants replace some individuals in the
population after the generation step is done.

following components:
(1) a genetic representation for potential solutions
to the problem,
(2) a way to create an initial population of potential
solutions,
(3) an evaluation function that plays the role of the
environment, rating solutions in terms of their
fitness,
(4) genetic operators that alter the composition of
children during reproduction,
(5) values for various parameters that the genetic
algorithm uses (population size, probabilities of
applying genetic operators, etc.)
. In this paper we will try to solve the three versions
of rectangle bin-packing problems, with slightly
differences o n their goals, by using GAS. We will
denote the version to minimize the packing area as
RBP1, denote the strip packing problems as RBP2,
and denote the version to minimize the number of
bins used as RBP3.

A GA for a particular problem must have the

11. Literature Review
. So far, we have found two papers that solve the
rectangle bin packing problems by using CAS. The
first work is done by D. Smith [8] . The goal of his
CA is to put as many blocks into a single rectangular
region as possible. Experimental results have shown
that this CA can produce the same packing density
300 times faster than their previously developed
deterministic bin packing algorithm which used
some heuristics a n d dynamic programming
techniques. However, the genetic encoding does not
allow for the recognization of characteristic features
of packing schemes in their encoding, as most of
these characteristics are hidden in an algorithm to
place a sequence of rectangles. Thus this approach
cannot support the inheritance of certain features
by the offsprings.
. The second paper we have found is by B. Kroger, P.
Schwendering and 0. Vornberger [l]. They try to
solve the strip bin packing problems (RBPZ in this
paper) by using GAS. Their representation is much
more complex than that of Smith. They also devise
a special c rossover o p e r a t o r for the i r
representation. This representation of packing is
better than the list representation because the
features of the parents are specified more explicitly
in the chromosome, a n d thus the offsprings can
inherit features from their parents so that the
building block hypothesis can be satisfied. They
implement their CA o n a parallel machine
transputer. Experimental results show that this CA
is able to solve large bin packing problems in
reasonable time and that smaller instances are likely
to be solved optimally. However, the complexity of

the representation makes the design of the genetic
operators more difficult and the time complexity of
evaluating a chromosome is still too high. Also, the
cost of applying the associated genetic operators to
this representation is much more than the
associated genetic operators for list representation.

111. On Solving RBP1: Minimizing the
Packing Area

rectangles, we wish to pack them into a rectangular
area, so that no two items overlap and so that the
packing area is minimized. For all items, rotation
by 90 degree is allowed. Square packing is
preferred.

The problem is stated below: Given a set of

We will denote our GA for solving RBPl as GA1.

A. The Representation
. For CA1, we conceptually use a slicing tree (See
Fig. 2) to represent a solution. A slicing tree is a n
oriented rooted binary tree. Each internal node of
the tree is labeled either * or +, corresponding to
either a vertical o r a horizontal cut, respectively.
Each leaf corresponds to a basic rectangle or item
and is labeled by a identification number between 1
and n, where n is the problem size. A slicing tree
can be viewed either from top down or from bottom
u p fashion. From a top down point of view, a slicing
tree specifies how a given rectangle is cut into
smaller rectangles by horizontal and vertical cuts.
From a bottom u p point of view, a slicing tree
describes how smaller rectangles are combined. The
operator * and + are no more than left-right and
top-down relations for two adjacent rectangles,
respectively. Corresponding to each slicing tree,
there exists a polish expression to describe it. The
polish expression can be easily obtained through
post-order traversal of the slicing tree. Thus, in the
implementation of GA1, we actually use the polish
expression as our internal representation of a
packing. Althugh there are certain packing that
cannot be described by slicing trees (see Fig. 3), we
still believe that the slicing tree can represent most
good and near optimal packings.

A

t
1 1 * 3 + 5 2 + *

Fig. 2. A slicing tree and its corresponding packing
and polish expression

1584

Fig. 3. A packing that can't
slicing tree

be represented by a

. A polish expression can be easily converted to an
actual packing by using a stack of rectangles. A
rectangle is specified by its width and height. We
evaluate a polish expression by scanning it from left
to right, if an operand (a number to index the item)
is encountered, push the corresponding rectangle to
the top of the stack; if an operator is encountered,
pop two rectangles from the stack as it's operands
a n d apply the operator, then push the newly
generated rectangle (the bounding rectangle of its
two operands) back to the stack. When the
scanning process is over, the rectangle left on the
stack is the bounding rectangle. The application of
operator * and + is shown in Pig. 4. They are n o
more than a sum or m m operation. Eventually, all
of the operation can be finished in O(n) time.

Applying rhe '+' opnra:

1 rum(h1. U1

B. The Genetic Operators . Rased upon our polish expression representation,
we design a set of genetic operators, including a
crossover and several mutations, to manipulate it.
The crossover operator in GA1 is called hybrid
crossover. The hybrid crossover works as follows:
First, it decompose the polish expression into two
parts, the index part and the operator part. The
index part is an ordered list, just like a list of cities
to be visited in the traveling salesman problem.
Thus we apply the partially matched crossover
(pmx) [SI on the two selected parents to generate
their offsprings and use the implementation of pmx
by Lin [7]. The operator part specifies the type of
operators (+ or *) and their position in the polish
expression. If we have n items to be packed, then we
have n-1 operators because + and * are both binary
operators. The operator part a r e manipulated by
uniform crossover [31 . If we regard the relative
position of items as schemata, it is easy to see that
both the children inherit some portion of the
chromosome from each parent. If the parents are
good packings, then the children may be good ones,
too. See Fig. S and Fig. 6 for an example of hybrid
crossover.

Parent1 1 4 3 2 + 5 * + *
Parent2 5 1 * 4 + 3 2 +

=>
Index Part Operator Part

Parent 1 1 4 1 3 2 51 +4 *s +5 *5
Parent 2 5 114 3 21 *2 +3 *4 +5

template 1 1 0 0

Child 1 1 5 1 4 3 2 1 *2 +3 +5 *5
Child 2 4 113 2 SI +4 *5 *4 +5

Child1 1 5 * 4 + 3 2 + *
Child2 4 1 3 2 + * 5 * +

0 (pmx) ux)

=>

Fig. 5 An example of hybrid crossover

Fig. 4 applying the + and * operators lo generate
the bounding rectangle.

Fig. 6

1. I r l

. The ccjrrespmding packings of Fig. 5.

1585

We have proposed four different mutation
operators:

Mutl: rotate an item
Mut2: randomly exchange two items
Mut3: move an operator
Mut4 complement an operator

Mutation 1 is to randomly choose a n item and
rotate it by 90 degrees. Mutation 2 is to randomly
choose two items and exchange them. Mutation 3 is
to move a randomly chosen operator to a new
position. Mutation 4 is to replace a randomly
chosen operator by the complement operator (the
complement of + is * and vice versa). All of these
mutation operators are applied with a given
probability. See Fig. 7 for examples of mutation
operators.

.Hull

/1

1 2 - 4 + 3 5 + *

Fig. 7 Illustrations of four mutations

. However, Applying the hybrid crossover and Mut3
operator may cause illegal offspring. To solve this
problem, we propose a n algorithm to adjust the
positions of operators to make the illegal polish
expression legal. The idea of this algorithm is
simply to count the operands(indices) a n d
operators(+ or *). Since both the operators + and *
are binary operators, the application of + or *
consumes two operands and will produce a new
operand. Thus, when scanning the polish

1586

expression from left to right, the accumulated
number of opera tors cannot exceed t h e
accumulated number of operands minus one a t any
point of the polish expression. See Fig. 8 for an
example of applying the adjustment algorithm.

beforeadjustment 2 3 + * 4 5 1 + *
count 1 2 1 x invalid

afteradjustment 2 3 + 4 * 5 1 + *
count 1 2 1 2 1 2 3 2 lva l id
Fig. 8.
algorithm

C. The Evaluation Function
. We first apply the packing algorithm to a polish
expression to obtain its bounding rectangle and
then use this information to evaluate the
corresponding packing. However, this information
may not be enough to reveal the preference that the
square packing is preferred. To meet this
preference we a d d a penalty function. if the
bounding rectangle is square or near square, the
penalty is zero. When the difference between the
width and height of the bounding rectangle
becomes larger, the penalty grows larger, too. For
example, given an previously specified allowable
aspect ratio (e.g. AAR = 1.2), we may define the
penalty as follows.

if((width/height)>AARor(width/height)<l/AAR)
penalty = (width - height) * (width - height);

el se
penalty = 0;

An example of applying the adjustment

Thus the fitness function is:

fitness= l / (a r e a of the bounding rectangle, +
penalty).

D. Initialization . The initialization should generate the initial
population to represent the entire solution space
statistically. To initialize t h e population, we
randomly generate a n polish expression with n
operands and (n-1) operators. The n operands are
just a random permutation of 1, 2, 3, ..., n, and for
each of the n-1 operators, we randomly generate its
type (* o r +) and its position in the polish
expression. Of course, the randomly generated
expression may not be a legal polish expression,
therefore we need to apply the adjustment
algorithm to make it legal.

E. The Parameters
. The population size is empirically set to 2 times
the size of the problem (i.e. number of items to be
packed). The steady-state reproduction strategy is
used with 20 percent of the population updated in
each generation. The newly generated offsprings
are put back into the generation by deleting the
least-fit chromosomes. N o duplication of
chromosome is allowed to maximize the diversity.

The rate for crossover is set to be 0.3 and the rate
for all four mutations is set to be 0.7. The four
mutations are selected with equal probability.

F. Experimental Results and Discussions
. The test problems are randomly generated as
follows: a rectangle is specified by (area, ar), where
area is the area of the rectangle and is generated
randomly from 1 to 100, and ar is the aspect ratio
of the rectangle with value randomly generated
from 1 to 4. We test G A 1 for six problems with size
ranging from 10 to 60 on a 80286-based PC-AT.
Each problem is run for 10 times . The
experimental results a re listed in Fig. 9. The
average packing density is around 88%. The
solution quality can be improved as the running
time increased. For example, Fig. 10 shows an
sample packing of 30 items with packing density of
95.6% full. This packing was obtained in 40
minutes running time of GAL

problem size
P l 10 92.74 3 mins
P2 20 89.16 5 mins
P3 30 90.62 10 mins
p4 40 87.69 18 mins

50 85.20 30 mins P5
p6 60 85.99 57 mins

packing density time elapsed

Fig. 9 Experimental results of GA1

;5.;;;

Fig. 10 A sample packing of 30 rectangular items

. For most problems, the mutation rate of traditional
CAS is supposed to be very low, e.g. 0.5%, and the
GA leaves most of the works of searching to the
crossover operator. However, in the domain of bin
packing this is not true because it is very difficult to
combine the good features of two good packings.
Thus, we take another point of view and use the
high mutation rate instead. Conceptually, the
crossover operator causes a larger jumps in the
search space and the mutation operator acts as a
local search close to the current approximate
solution in the search space.

IV. On Solv ing RBPS: Minimizing t h e
Number of Bins Used

. In this section, we demonstrate another way to use
GAS. The two GAS developed in this chapter are
called GA3 and GA4, respectively. They do not try
to solve the problem directly, but to solve it from
the point of view of an existing heuristic packing
algorithm. In this case, GA acts like a heuristic
improver more than a problem solver. The idea of
our heuristic packing algorithm is from algorithm
Hybrid First Fit (HFF) [2]. Empirical results of CA3
a n d GA4 a r e compared with tha t of HFF.
Experiences tell us that this is a simple and efficient
way to improve the performance of a heuristic
algorithm.
. The problem is stated as below: Let L = { r l , r2, ...,
rn] be a set of rectangular items, each item r have
height h(r) and width w(r). A packing P of L into a
collection jB1, B2, ..., Bm) of H * W rectangular bins
is an assignment of each items to a bin and a
position within that bin, such that (i) each rectangle
is contained entirely within its bin, with its sides
parallel to the sides of the bin, (ii) no two items in a
bin overlap, and (iii) the number of bins used is
minimized. For all items, rotation by 90 degrees is
allowed.

A. HFF Heuristic
. The algorithm HFF is proposed by F.R Chung, M.R
Garey and D.S. Johnson [2). A more comprehensive
name for the algorithm is FFDH * FFD since it is a
combination of these two algorithms. It works as
follows: First create a strip packing for L using FFDH
and strip width W, thereby obtaining a collection
j b l , b2, ..., bk) of blocks of nonincreasing heights
h l 2 h2 2 ... 2 hk, each containing a subset of the
rectangular items. If we view these blocks as a new
collection of rectangles L' = (b l , b2, ..., bk) with
h(bi) = hi a n d w(bi) = W, 1 < i < k, we have a n
instance of the one-dimensional problem and can
apply FFD to pack the blocks (and hence the
rectangles they contain) into H * W bins. See Fig. 11
for an example of HFF.

Fig. 11 An example of HFF

. From the descriptions of HFF above, we know that
HFF is an off-line algorithm since it reorders the
items in non-increasing height before it packs them.
The arrangement of non-increasing height ordering
of items is also a heuristics embedded in HFF. Thus,
we decompose HFF into two parts: the first part is to

1587

V. On Solving RBPZ: Minimizing t h e Height
of A Strip Packing
. In this section, we continue the idea from the
previous sections, and develop 3 GAS to solve the
strip packing problems RBP2. We denote them as
CA2, GAS and CA6. The GA2 is modified from GA1
by using a different evaluation function. GA5 and
GA6 are modified from GA3 and GA4 with different
embedded packing heuristics and evaluation
function. kperimental results are compared with
the classical deterministic strip packing algorithm
FFDH. . The strip packing problems is stated below: Given
a set of rectangles pi, with height hi and width wi,
the goal is to pack them into a vertical strip of width
C. so as to minimize the total height of the strip
needed. For all items, rotation by 90 degrees is
allowed.

A. Modification of CA1
. The RBPZ can be viewed as a more constrained
version of RBPl with the constraint of keeping the
bin width fixed. There a r e two obvious ways of
handling the constraints in a GA: either (1)
requiring that they are satisfied for every solution
generated or (2) allowing constraint violation for
the intermediate solutions a t the expense of some
penalty. Kroger, Schwendering and Vornberger [1 J
have proposed a GA to solve the strip packing
problems with the BOlTOM-LEFT scheme embedded
in the genetic operators to meet the bin width
constraint and to generate good packings. Here, we
try to modify the G A l developed in previous
chapter to accommodate the bin width constraint by
adding an penalty function term.

. Since RBPZ is nothing more than a special case of
RBPl with the packing width not exceeding a
constant C. If we meet this constraint when
minimizing the total packing area, we minimize the
height of the strip. Thus the idea from G A 1 can be
directly used here. The only modification is to
embed the packing width constraint in the
evaluation function, a n d the goal can be still to
minimize the total packing area as it was before.
To minimize the area, we have

fitness = 1 / (area of packing)

To meet the constraint, we add a penalty function
term as follows:
if (width of packing I C)

penalty = 0;
else
. penalty = (width of packing - C) * height of
packing:

The resulting evaluation function is:
fitness = 1 / (area of packing + penalty).

The other parts of CA1 are left unchanged.

B. Modifications of GA3 and CA4

. We apply the concepts used in GA3 and GA4 to
solve RBPZ. GA5 is modified from GA3 and is a
combination of GA and First-Fit packing algorithm.
GA6 is modified from GA4 and is a combination of
GA and Best-Fit packing algorithm. Because what we
care in RBP2 is the height of the strip packing, the
fitness function can be expressed as below :
. fitness = 1 / (height of the strip packing)

C. Experimental results 8c Discussions
. The test problems are the same as described in
previous chapter. Ten problems with different sizes
are tested by the three GAS. The running time of
GA2 is roughly equal to the running time of CA1
for the same problem size, and the running time of
CAS and GA6 are comparable to GA3 and GA4. The
results are compared with those obtained by FFDH
and shown below:

Problem size FFDH GA2 GA5 GA6
17 17 15 P l 10 25

20 37 31 31 31
P3 30 51 46 46 46
p4 40 62 57 56 56
P5 50 71 68 66 64
p6 60 79 80 73 73
P7 70 97 ? 90 93

80 110 ? 106 104 P8
p9 90 127 ? 120 122
p10 100 139 ? 133 133
* the notation ? denotes that the results a re not
good and thus need further improvement
Fig. 13 Experimental results of GA2, GAS and GA6

From the results above, we recognized that the
solution quality of CA2 decrease the problem size
sets larger. The results are not good. We guess that
this may be because of that the bin width constraint
was dealt with as a penalty function, which prunes
the solution space too much and thus limits the CA2
to d o the search efficiently. That is to say, to deal
with the bin width constraint as a penalty may not
work for this problem. To make GA solve the strip
packing more efficient, we may need to incorporate
the constraint in the representation a n d genetic
operators so that every offspring meets the
constraints. The paper by Kroger, Schwendering
and Vornberger [l] demonstrate this idea. The
other possible reason is the weight for the penalty
function term is too small. This may be tested by
increasing the weight of the penalty function term.
. Although the results of GA2 does not beat FFDH for
every instance, the GA2 still have an advantage over
FFDH in that the performance of FFDH is more
stable than that of FFDH. For some problem
instances, FFDH may obtain a worst case quality
solution, but GA2 is expected to adapt itself to have
a steady performance.
. For the results of GAS and GA6, they beats that of
FFDH for every cases. This is consistent with our
discussions in previous chapter. Because GAS and
GA6 acts as tuners, their results can not worse than
that of FFDH.

P2

1588

decide the packing order (non-increasing height
order) and the second part is to packing the items
according to the order presented to it. Obviously,
the second part of HFF is an on-line algorithm and
can be embedded in CA3 as part of the evaluation
function. Then the work of CA3 is to find the
optimal sequence of items for t h e packing
algorithm. GA4 is modified from CA3 with slight
differences in their embedded packing algorithm.
What is in GA4 is a best-fit packing algorithm
instead of first-fit algorithm in GA3.

B. The Representation . Since most of the packing work is done by the
packing algorithm, the only thing we can change is
the order of items presented to it. That is, if we
change the order of items presented to the packing
algorithm, the solution quality may be improved.
Thus, we represent a solution as an ordered list of
items. With this representation, the solution of HFF
is included in the solution space because if we let
the order of items b e non-increasing height, it
would produce the same solution as that of HFF.
Further, rotation of items by 90 degrees is allowed,
so the representation is extended by added a
rotation bit to each item in the solution vector to
indicate their orientations. This extension of the
representation not only provides an additional
possibility to find solution that is better than that of
HFF, but it also enlarge the solution space by the
scale of 2n and the size of the final solution space
becomes n! * 2n.

C. The Genetic Operators . We apply the partially matched crossover (pmx)
[5] on t h e extended list representation of
chromosome and use the algorithm developed by
Lin [7]. TWO mutation operators are proposed, the
first is random 2-swap mutation, which randomly
selects two components in a chromosome and
exchange them, and the second is the rotation
mutation, which rotate a randomly selected gene of
a chromosome by 90 degrees.

D. The Evaluation Function
. Before we evaluate a chromosome, we have to
construct the actual packing using the embedded
packing algorithm. The packing algorithm used in
CA3 is a level-oriented first-fit (LFF) algorithm,
inspired from algorithm HFF. Suppose the standard
bin has width W and height H. It first uses a two-
dimensional level-oriented first-fit algorithm to pack
the set of items into a strip of width W. Next,
decompose this packing into blocks corresponding
to the levels created by the algorithm. Each block
can be viewed as a rectangle of width W and height
the height of the level. Thus, packing these blocks
into rectangular bins of width \.V becomes a simple
one-dimensional bin packing problem, where the
size of an block is its height. Then we apply FFD to
this one-dimensional problem. The packing
algorithm used in CA4 is similar to that being used
in CA3. The only difference is that it searches for

the best fit area to pack the incoming item instead
of using the firstly found area.

. The evaluate function is defined as below:

fitness= 1 /(bin-used*bin,height+average-height).

The first term bin-used * bin-height is to
distinguish the packings by preferring a packing
that uses a smaller number of bins. The second
term average-height is to tell the difference
between packings that uses the same number of
bins and prefer the smaller average height of all
bins.

E Initialization
. This initial population is created by random
permuting the n items, where n is the number of
items to be packed. The orientation bit attached to
each item is also generated randomly, meaning
either no rotation or rotating by 90 degrees.

F. The Parameters . For CA3 and GA4, the population size is set to be
equal to the number of items to be packed
empirically. The rate for crossover operator is 0.7
and the rate for mutation operators is 0.3. The two
mutation operators, random 2-exchange mutation
and rotation mutation, a re selected with equal
probability. The generational reproduction strategy
is used for simplicity.

G. Experimental Results and Discussions . The test problems are generated randomly with
the width and the height of the items uniformed
distributed from 1 to the width of the bin. We have
run the algorithm for 10 problems, with problem
sizes ranging from 10 to 100. Each problem is
tested for 10 times. The results are summarized in
Fig. 12.

size min* HFF GA3bins saved GA4 bins saved
p l 1 0 2 2 2 0 2 0
p 2 2 0 3 3 3 0 3 0
p 3 3 0 6 7 6 1 6 1
p4 40 9 11 10 1 10 1
p5 50 12 15 14 1 14 1
p6 60 14 18 16 2 16 2
p7 70 16 22 19 3 19 3
p8 80 19 16 24 2 22 4
p9 90 22 29 27 2 25 4
p 1 0 1 0 0 2 4 31 28 3 28 3
*min=E(totaI area of items)/(capacity of a bin)
Fig. 12 Experimental results of CA3 and CA4

. From the results above, we see that the solution
quality is consistently better than that of HFF. The
idea of using a CA to improve a heuristic packing
algorithm is very simple, yet useful. It improve the
average performance of the heuristic algorithm and
have high probability to prevent the heuristic
algorithm being trapped in the worst case.

1589

References
VL Conclusions and Future Works

. In this paper we demonstrated two different ways
of using GAS to solve bin packing problems, either
to solve the problem directly (as in CA1 and GA2)
or to use the CA to tune an existed heuristic
algorithm (as in GA3, GA4, GAS and GA6) so that
the performance of the heuristic algorithm is
improved. The slicing tree representation for a
packing in CA1 have the advantage of evaluation
efficiency and totally freedom to search without the
interference of a heuristic algorithm. And the CA2
shows that the method of adding the bin width
constraint as a penalty function may not work
alone. That is, we need different way to manipulate
the bin width constraint, for example, to embed this
constraint in the representation and the associated
genetic operators. The value of GA3, GA4, GAS and
CA6 are their simplicity. We can use this concept to
improve an algorithm without making too much
effort.
. Using genetic approach to solve the rectangle bin
packing problem has a monotone property. The
more running time, the better solution you find.
This is a practical advantage of this approach. Since
CA maintains a population of candidate solutions,
we can choose any good alternative solution from
the population as our final solution if the best one
(measured by combination of density and penalty
violation in GA1) is discarded for some reasons.
One disadvantage is that each time we run the
algorithm, we will end up with a different packing,
i.e. it is difficult to do reactive packing.
. The results of our CA approach to bin packing
problems can be used directly in cutting-stock
problems. And with appropriate modifications, CA 1
can be used in the floorplan design of VISI design
191. The modification should be easy by embedding
the flexible modules knowledge to the evaluation
function.
. The first direction of research is to incorporate
simulated annealing in to GAS so tha t the
performance is improved. The works by Lin[7] is a
good demonstration of this kind of work.
. Another direction of research is to develop a more
powerful representation so that CA1 can manipulate
the packings that can't be represented by our slicing
tree representation. If the representation is
modified, the corresponding genetic operators
should also be designed again. Besides, if we can
devise a more efficient crossover operator, then
both the quality of the solution and the running
time will be improved.
. Yet another direction of research is to investigate
different ways to manipulate the constraints in a
CA.
. Finally, using the idea of CA3 to improve the 1-D
bin packing algorithms a n d o ther heuristic
algorithms is useful in practice.

[11 Berthold Kroger, Peter Schwendering and Olive
Vornberger, "Parallel genet ic packings of
rectangles," proc. of the first workshop on Parallel
Problem Solving from Nature (P E N l) , Dortmund,

[2] Chung, F.RK., Carey, M.R and Johnson, D.J., "On
packing two-dimensional bins," SIAM J. Alg. Disc.
Meth., 3, 1982, pp.66-76.
[3] Davis, L. (Editor), Handbook of Genetic
Algorithms, Van Nostrand Reinhold, Reading Mass,
1991.
[4] DeJong, K.A., "Genetic Algorithms: A 10 Year
Perspective," Proceedings of the First International
conference on Genetic Algorithms, 1985, pp. 169-
177.
[5] Goldberg, D.E, Genetic algorithms: In search,
Optimization a n d Machine Learning, Addison-
Wesley Publishing Company, Reading Mass, 1989.
[6] Holland, J.H., Adaptation in Natural and
Artificial Systems, the university of Michigan Press,
Ann Arbor, 1975.
[7] Lin, F.-T. and Kao, C.Y., Incorporating the
Genetic Approach to Simulated Annealing in Solving
Combinatorial Optimization Problems, Ph.D.
Dissertation, National Taiwan Univ., 1991.

Search," Proc. of an Intern. Conf. on Genetic
Algorithms and Their Application, Pittsburgh P.A.,

[9] Wong, D.F., Leong H.W., and Liu, C.L, Simulated
Annealing For VLSI Design, Kluwer Academic
Publishers, 1988.

FRG, Oct. 1-3, 1990, pp.160-164.

[8] Smith, Derek, "Binpacking with Adaptive

1985, pp. 202-206.

1590

