
IEEE TENCON'93 / Bclbx

DESIGN AND IMPLEMENTATION OF A
RELATIONAL QUERY LANGUAGE WITH TEAMS

Jomg-Tzong Homg', Gwo-Dong Chen", Baw-Jhiune Liu"

'Depmrnent of Computer Science & Information Engineering
National Taiwan University, Taipei, Taiwan, China

Department of Electrical Engineering, National Central
University, Chungli, Taiwan, bjliu@ncuee.ncu.edu.tw

t l

ABSTRACT

In this paper, we introduce the concept "team" and
incorporate the team query into data language SQL.
Existing relational query languages use tuple variables of
tables to specify required data. Queries that are expressed
by these languages are used to get all the data which
satisfy the specified conditions. While a team variable
represents a subset of a table, a team query is to retrieve
all the teams that meet certain constraints.

We introduce team qualifications and briefly describe
team query processing. The search space of a team query
may be very large. Therefore, instead of using
conventional breadth-first search method, we adopt a
depth-first search method for query processing. Thus,
users can always get results, if one exists.

INTRODUCTION

Relational database systems are being used in data
processing community. Relational database systems
(DBMSs) provide nonprocedural query languages such as
SQL[7. 8 . 201 and set-at-a-time operators. Thus, the
application programmers or users need only specify what
he wants without regarding how the results are retrieved.
This p a t l y reduce application development time.

However, relational query languages can not be used
to express r e m that meet certain team constraints. Let us
take a simple team example, a baseball team coach is
looking for a team of nine players from the database of a
baseball team to play a baseball game. The constraints of
this team are (1) there are. nine players in each team, (2)
there should be exactly one player for each defense
position. The result of this query may have many teams.
This query is different from the queries like "get all the
players who can play the pitcher position.'' Each player in
the result of the query meets the constraint "the player
who can play the pitcher position." An application
programmer or user needs to wriie procedural programs
to solve such team problrms.

Obviously, a team c,ucry is different from a query of
relational database query languages such as SQL. SQL
finds a set of individuals and all individuals in the set
satisfy the condition which is specified in thz query. An
element of a set meets all the constraints, while an

'This work was partially supported by the National
Science Council under grant NSCX20408E008007.

element of a team may only meet some constraint(s) of
the team constraints.

A SQL query and a team query have IWO different
aspects. The first difference is the numher of results. The
result of a SQL query is a set of tuples. if one e
However, the result of a team queiy is a set of teams. The
second difference is in the team constraints. A SQL query
does not specify the set of team cmstraints while a team
query must specify the set of team constrants. Conditions
that are used in SQL are not erhough to express team
criteria.

Teams are common and well understood in modern
society. For example, in a company, a manager needs to
organize teams to perform certain jobs; in an exercise, a
coach has to assign a team of players to play games; a
foreign needs to assign a team to negotiate with other
countries; and so on. Teams exist everywhere in the real-
world. However, so far we did not find any relational
database languages that address the team query in the
research literature. We extend SQL to be able to express
and process teams that meet certain consuaints. Hence,
users with knowledge of SQL can easily take advantage
of the team retrieval capabilities without leaming a new
language.

Team queries have two categories: (I) to select an
optimal team, (2) to select all possible teams. The
selection of a project team with minimal cost is of the
first category. Queries of this category wish to find a
team which has a maximum or minimum value of a given
expression such as the sum of the salaries in the whole
prospective teams. The selection of all possible teams of
nine players from a baseball team is of the second
category.

In some cases, finding teams with extreme values like
minimum or maximum is NP-complete or NP-hard. It
may take a very long time to find an optimum solution.
The processing of team queries is quite different from
that of the conventional database queries. Conventional
database query processing uses a tuple-by-tuple
evaluation strategy, while team query processing uses a
set-by-set evaluation strategy. The search space of a team
query is all subsets of the set of tuples of a relation. The
search space of a team query may be large. Therefore,
instead of using conventional breadth-first search method,
we adopt a depth-first search inethod for query
processing. Thus, users can always get results, if one
exists.

-339-

1. Related Research

Sets and set manipulation occur naturally in many
applications. Database query languages that attempt to
incorporate sets and set operators have been defined in
recent years by Abiteboul and Grmback [21, Kuper [171,
Bem et al. [3,4], Chen [61, and Gavish and Segev [lOl .

COL [2] is a logic-based language for complex
objects. In addition to tuple and set constructs, the
language also provides so called "data functions". LDL
[3, 41 is an attempt to combine the benefits of logic
programming with those of relational query languages. In
LDL, sets and set operators are introduced into this
language. In HiLog [6], sets can be represented naturally
by parameterized predicates. The work [IO] addresses the
problem of optimizing queries that involve set operations
(set queries) in a distributed relational database system. A
set query is defined to be any query that can be
represented as a sequence of relational operations
followed by set operations between one set of tuples and
a group of sets of tuples.

Although, the above languages support sets and set
manipulation, however, they did not identify the concepts
of team.

2. Overview of This Paper

This paper is organized as follows. In Section 2 the
language is briefly described and a number of motivating
examples are given. Section 3 defined basic and special
team qualifications. In Section 4, we briefly describe
query processing techniques of basic team qualifications.
The last section is the conclusion.

TEAM-ORIENTED QUERIES

In this section we firs1 briefly describe the syntax of
team-oriented queries and then present a number of
motivating examples. For a detailed description of the
language, one is referred to the work 1131.

1. Query Specification in Team-Oriented Query

Let U = [R I , R2, . . , Rp) be the universal set of
relations, and W = [A] , A2,. . . ,An) be the universal set
of attributes. A team is a subset of the set of tuples over
the specified attributes of a relation that satisfies a set of
qualifications and a set of team qualifications. More
formally, a team can be defined as a 4-tuple:

TEAM =XR, A', 0 s , SOS),
where R E U, A'cW. 0 s is a set of qualifications, and
s 0 s is a set of team qualifications. The set of tuples over
the set of attributes A' of relation K constructs the.domain
of a team.

A qualification Os is made up of a number of clauses
of the form:

where,Atn E W, rel-op is normally one of the operators
(=, 2, S, +, <, >), and const-value is a constant value.
Clauses can be arbitrarily connected by the Boolean
operators AND, OR, and N O T to form a general
qualification. A qualification here corresponds to ;I
selection condition of the SELECI' operation.

A team qualification SOS is any qualificntion that

Language

Attr rel-op const-value

involves set operations between two sets. A team
qualification may be of the form :

tuple-set(Attr1, Attr2, ..., Attr,) se(-up tuple-set(Attr1.
Ata;?, ..., Amn), or
tuple-set(Attr1, Attr;?, ..., Attrn) set-up set-tuple-cocst-
value, or
aggregate-fun(tuple-set(Attr1, Attr2, ..., Attm)) rel-
opconst-value
where Attrl, Attr2, ..., Attr, E W, n 21, tuple-set(Attr1,
A t t r ~ , ..., At%) is a set of tuples over the specified
attributes AtEl, AtU2, - 1 Attrn, set-op is normally one of
the set operators (I, ==, C, S , 3, 21, set-tuple-Const-
value is a set of n-tuple constant values, and aggregate-
fun is normally one of the aggregate functions [SUM,
AVG, COUNT, MIN. MAX). An n-tuple constant value
is a tuple which is composed of n constant values. The
semantics of the well-known set operations such as c,
c, 2, 2, are the same in our definition. A bag is like a
set except that its elements can be duplicate. In our
definition, We PaRiCUlarly distinguish the difference
between the definitions of the set equality (I) and bag
equality (==). Set A is equal to set B if they both have the
same members. Bag A is equal to bag B if they both have
the same members and the numbers of the same member
in these two sets are equal.

2. Example Team Queries

We present two queries to illustrate various features of
the language. In the following queries, underlined
attributes are keys.

Query 1 . The query uses a Baseball Database with two
relations, which are given below.

PLAYERS-, year-of-birth, year-joined, batting-avg,
team-name)
PLAYER-POSITION- PQSiripn, #-of-times)

The relation PLAYERS gives the number, year-of-birth,
year-joined, batting average, team-name of each player.
The relation PLAYER-POSITION gives each player that
plays certain positions. The #-of-times is the number of
times of a position that a player Itad been played. Find a
team of nine players and their corresponding positions
that satisfies the following conditions.
(a). They were bom after 1960 and joined before 1990.
(b). The number of a position which was played by a

player must be greater than 50 times.
(c). One player plays only one position and one position

is played by only one player.
(d). The nine players are composed of 3 players, 2

players, 2 players, and 2 players. They belong to
teams Elephant, Dragon, Lion, and Tiger respectively.

(e). The total batting average of the team is greater than
0.28.

The team query can be expressed its follows:

SELECT <TP.player, TP.position> I N TEAM
<PP.player, PP.position> TEAM-PLAYERS TP

FROM PLAYERS P, PLAYER-POSITION PP-
WHERE P.player = PP.player and P.year-of-birth >

1960 and P.year-joined < 1990 and PP.#-of-
times > 50

-340-

and (SELECT position FROM I‘P) == { pitcher, catcher,
Ist, 2nd. 3rd. short, left, center, right)

and (SELECT TP.player, COURT(TP.position) FROM . .

TP GROUP BY TP.player) f ((*, I))
and (SELECT P.team-name, COUNT(P.player) FROM

P, TP WHERE P.player=TP.player GROUP BY
P.team-name) == ((Elephant, 3), (Dragon, 2). (Lion,

and AVG (SELECT P.batting-avg FROM P, TP

Query 2. The query uses a Orchestra Database with six
relations which are given below.

INSTRUMENT(-, first-player)
MUSICIAN(”s, sex)
SYMPHONYkname. time)

2). (Tiger, 2))

WHERE P.player=TP.player) > 0.28

O R C H E S T R A s e . iname. mname)
TOUR(&, ~ J W J
.PLAYS(mname. iname, #-of-times)

The relation INSTRUMENT gives the name of the first
player of each instrument. MUSICIAN contains
information about players. The relation SYMPHONY
gives the duration in minutes of each symphony. The
relation ORCHESTRA gives the set of players that
execute each instrument in each symphony. TOURS
contains the set of symphony names to be played in each
city. The relation PLAYS gives each player that plays
certain instruments. The #-of-times is the number of
times of an instrument that a player had been played.
Now we want to find a group of ten players to play
symphonies. It satisfies the following conditions.
(a). The ten players consist of 3 players for violin, I

player for conductor, 2 players for cello, 2 players for
vola, and 2 players for bass drum.

(b). Each player in the group must have been acted the
first player of some instrument.

(c). The ten ‘players are composed of 6 male musicians
and 4 female musicians.

(d). The #-of-times of an instrument which was played by
a musician must be greater than 300 times.

(e). Each player must have been played the/ symphony
“Tchaikovsky” in the city New York.‘

The team query can be expressed lis follows:

SELECT <OT.mname, OT.iname> IN TEAM

FROM INSTRUMENT IN, MUSICIAN MU,

WHERE PL.mname = 0RCH.mname and TOUR.sname
= 0RCH.sname and PL.#-of-times > 300 and
TOUR.city = “New York” and TOUR.snanie =
“Tchaikovsky” and PL.mname = IN.first-player

and (SELECT iname, COUNT(mname) FROM OT
GROUP BY iname) = ((conductor, I) , (violin, 3),
(cello, 2). (viola, 2). (bass drum, 2);

and (SELECT mname. COUNT’(iname) FROM OT
GROUP BY mname) P (P . 1 1 1

cPL.mname, PL.iname> ORCH-TEAM OT

ORCHESTRA ORCH, TOUR, PLAYS PL

and (SELECT MU.sex’, COUNTiMU.mnanie) FROM
MU, OT WHERE 0T.mname = MU.mname GROUP
BY MU.sex) = ((F, 4). (M, h i)

BASIC TEAM QUALLFICATIOYS

In this section, we turn our atteihon to a c.ollection of
team qualifications. The team qualifications arc usually
divided into two groups. One group includes team
qualifications from mathematical theory, which are
applicable because each operand is defined to ht. i~ set of
tuples. These team qualifications include BTQl, BTQ2,
BTQ3, and BTQ4. The orher group consists of special
team operations which are specifically defined for query
optimization. These operations incluik STOl and ST02,
ST03, ST04, STOS. and STOti. Bzfore starting our
definition, we use the following notations:
(a) sf(;) = SELECT <attribute-list> FROM

(b) sqlf(i, 1 1 , ..., tn) = SELECT <attribute-list> FROM
(WHERE <search-condition> 1:

I , tl, ..., tn WHERE <search-conditiori>:

<search-condition> GROUP BY<attrihute-
name>(,<attribute-name> I :

(d) bsqlf(t) =-SELECT <attrilitite-lisr> FROM t 1
WHERE <search-condition> j ;

(e) ag f l (t , 11. ..., tn) = Aggregate-fun(sqlf(f, 1 1 , ._., t n) or
i) IS MAXIMUM;

(c) sgf(i) = SELECT <attriixite-tist> FROM i WHERE

(g) agf3(i, t i, tn) = Aggregate.fun(sqlf(i, r l , ..., tn)) <

(h) constant-set = {cl, ..., cm);
(i) tipIe-constant-set = ((si, n,), i = ~ , ..., p j .
Where t is a team name; t and ri. i=l , .._, n, are general
table names; si. i=l , ..., p are instances of some attribute
of a relation; ni, i = l , ..., p nrr positive integers. A
<search-condition> is a baolean expression. A cattrihute-
l i sp is a list of attributes. Aggregate-fun is normally one
of the aggregate functions (SUM AVG, COUNT, MIN.
MAX). A constant-value is a constant value. A coiistant-
set is a set of constant values. A tuple-constant-set is a set
of 2-tuple constant values.

Basic Team Qualifications

(BTQl) sf(t ^) E constaut-set or ~ q l f (r)
(BTQ2)
(BTQ3) sqlf(i, t i , ... ,tn) 0 constant-set or bsqlf(t), 0 E

(BTQ4) sgf(f) 0 tuple-constant-set , 0 E (B, 2)

Special Team Operations

(STOl) (constant-set or bsqlf(t)) match (constant-set or

(ST02) (constant-set or bsqlf(t)) m a x i n a t c h ~ (constant-

(ST03) (bsqlf(t)) mincoverA (constant-set or bsqlf(t))
(ST04) (bsqlf(t)) coverc (constant-set or bsqlf(r))
(STOS) (bsqlf(t)) minpartA (constant-ser or bsqlf(t))
(ST06) (bsqlf(t)) partc (constant-set or bsqlf(t))

Aggregate Function

constant-value

sf(t) == constant-set or bsqlf(t)

(z, == , c, c, 2,21

bsqlf(t))

set or bsqlf(t))

(AGFI) t l, In)

(AGF2) a g n (i , t i tn)

(AGF3) agf3(t , t i, tn)

-341 -

For more detailed description about bnsic team
qualifications and special team opcrations, one is referred
to the contents

QUERY PROCESSING

In this section we describe query processing techniques of
each team qualification.

Two important things must be considered in
processing a team query. One is the choice of a team
candidate, and the other is the evaluation of team
qualifications. In this paper, we f t rus on the former, that
is , how to reduce the search space. I n fact, many team
candidates can be avoided generating in query processing.
For example, consider the following team query :
SELECT <TEAM-SP.s#, TEAM-SP.p#> IN TEAM

<SP.S#. SP.&> TEAM-SP . .
FROM SP
WHERE (SELECT S# FROM T'EAM-SP) == f s l , s2,

s3; s4j
and (SELECT p#. COUNT(s#) FROM TEAM-SP

If the first team qualification is evaluated to True, then
the set of tuples over s# in TEAM-SP must contain one
SI, one s2, one s3, and one s4. If the set of tuples over s#
contain other values then the team qualification will be
evaluated to False. Thus we only have to consider the
team candidates that contain one SI, one s2, one s3, and
one s4 and ignore other candidates when we choose team
candidates. The technique of choosing team candidates
can greatly reduce the search space. In this case, the first
team qualification plays an important role in generating
team candidates. A team query i
of team qualifications. We
qualification in a sequence of team qualiticat~ons as a
team generator (TG), and other team qualifications as
team qualifications (T8s). A team generator uses the
information which is specified in the team qwlification to
generate team candidates. The team candidate is then
evaluated by team qualifications. If the team candidate is
evaluate to True, the team candidate becomes a team and
is returned.

In Section 3, we introduce four basic team
qualifications BTQl, BTQ2, BTQ3, and BTQ4. Each can
be used as a team generator. Different team generators
use different algorithms to generate team candidates.

CONCLUSIONS

Team query processing uses a set-by-set evaluation
strategy. The search space is all subsets of the set of
tuples of a relation. The search space of a team query may
be very large. Therefore, instead of using conventional
breadth-first search method, we adopt a depth-first search
method for query processing. Thus, users can always get
results, if one exists, in a predicate restricted amount of
time. In the selection of teams with extreme values, a
team query perhaps can not find such teams in a small
amount of time, however a team query can generate
teams with near-optimal values by incorporating genetic
algorithms or simulated annealing algorithms into query
?optimization algorithms.

Further research includes improving the
implementation of the evaluation algorithm- and the
incorporation of further optimization techniques.

GROUP BY p#) I ((*, I))

REFERENCES

[I] Balas, E. and Martin, C.H., "Pivot and Complement - A
Heuristic for 0- 1 Programming." Management Science
26(1). pp. 86-96, January 1980.

[2] Abiteboul. S. and Gmmbach, S., "A Rule-Based Language
with Functions and Sets," ACM Transaction on Database
Systems. March 1991.

[3] Been, C., Naqvi. S.. Ramakrishnan, R., Shmueli, O., and
Tsur, S.. "Sets and Negation in a Logic Programs."
Proceedings of 6th Principle of Database Systems. 1987.

141 Been, C.. Naqvi, S., Ramakrishnan, R., Shmueli, 0.. and
Tsur. S., Set Constructors in a Logic Database
Languages," MCC Technique Report.

[SI Bennett. K.. Ferris. M.C., and loannidis. Y.E.. "A Genetic
Algorithm for Database Query Optimization." Proceedings
of the Fifth International Conference on Genetic
Algorithms, 1991.

[6] Chen. W.D., Kifer, M.. and Warren, S.. "Hllog: A
foundation for Higher-Order Logic Programming." SUNY
at Stonv Brook Technical Reoon also in Proceedings of
Logic &gra"ing 1989. '

[7] Codd. E.F.. The Relational Model lor Database
Management, Version 2. Reading, MA: Addison-Wesley.

"

1Wn
[8] D&: C.J.. A. Guide to the SQL Standard.. Addison-

Wesley, Reading, Mass. (1987).
191 Garfinkel. R.S. and Nemhauser, G.L.. Integer

Programming. John Wiley & Sons. 1972.
(101 Gavish B. and Segev. A., "Set Query Optimization in

Distributed Database Systems," ACM Transaction on
Database Systems, Sept. 1986.

[I l l Goldberg. D.E., Genetic Algorithms in Search,
Optimization. and Machine Laming. Addison-Wesley,
1989.

[I21 Holland, J.H., Adaption in Natural and Anificial Systems.
Ann Arbor: The University of Michigan Press, 1975.

(131 Homg. J.T.. Chen, G.D.. and Liu. B.J.. "A Team-Oriented
Query Language." Department of Computer Science &
Information Engineering Technical Report, National
Taiwan University, Taiwan, 1992.

[141 Ioannidis Y.E. and Wong. E., "Query Optimizaiion by
Simulated Annealing," in Proc. of the 1987 ACM-
SIGMOD Conference on the Management of Data, San
Francisco, CA, May 1987. pp. 9-22.

1151 loannidis. YE. and Kang, Y.C., "Randomized Algorithms
for Optimizing large Join Queries," in Proc. of the 1987
ACM-SIGMOD Conference on the Management of Data.
Allantic City, NJ, May 1990. pp. 312-321.

[I61 Kirkpatrick. S.. Gelati, Jr. C.D., and Vecchi. M.P.,
"Optimization by Simulated Anncaling." Science 220.
4598 (May 1983). pp. 671-680.

1171 Kuper, G.. "Logic Programming with Sets," Proceedings
of 6th Principle of Database Systems, 1987.

I181 Liepins, G.E., Hilliard. M.R.. Richardson, J.. and Palmer,
M.. "Genetic Algorithms Applications to Set Covering
and Traveling, Salesman Problems," in Operations
Research and Artificial Intelligence: The Integration of
Problem-Solving Strategies. edited by D.E. Brown, C.
White, 111, Kluwer Academic Publishers, 1990.

Ll91 Lin. F.T.. Kao, C.Y., and Hsu, C.C.. "Applying the
Genetic Approach to Simulated Anncaling in Solving
Some NP-Hard Problems." To Appar in IEEE 'Trans. on
Systems, Man, Cybernetics. 23(;). May 1993.

[201 Database Language SQL. Docuinent ANSI X3.135-1986.
Also: ISOflC97/SC21/WG3 N143.

- 342 -

