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ABSTRACT

We consider the problem of finding an optimal assignment
of task modules with precedence relationship in a distributed
computing system. The objective of task assignment is to
minimize the task turnaround time. This problem is known to be
NP-complete for more than three processors. To solve the
problem, a well-known state space reduction technique,
branch-and-bound-with-underestimates, is applied and two
underestimate functions are defined. Through experiments, their
effectiveness is shown by comparing the proposed algorithm
with both Wang and Tsai's algorithm and A algorithm with
h(x)=0.

C.R. Categories: D.4.1,1.2.8.

Index Terms: Task assignment, branch-and-bound-with-under-
estimates, distributed processing, state-space
search, precedence relationship, minimax
criterion, task turnaround time.

1. Introduction

The rapid progress of microprocessor technology has made
the distributed computing systems economically attractive for
many computer applications. In a distributed computing system,
a task (program) may be distributed among processors to
speedup the execution by taking advantage of system
computation abilities and resources. However, the overall
system performance is dependent on many factors; among them,
the most crucial one is the assignment of, task modules to
processors. In general, a task can be suitably divided into a set
of interdependent task modules (modules, for short) that can be
executed on the processors of the distributed computing system.

graph-theoretic approaches (1. (15). (16) integer 0-1
programming approaches () (12 (13). (19), heuristic approaches
(6.3, and simulated annealing approaches (18).

Wang and Tsai (19 formulated the task assignment problem
as a graph maiching problem and then presented an A™ algorithm
(19) 1o search for an optimal assignment. In this paper we
propose a new algorithm for the task assignment problem that
behaves very well in that case. In the proposed algorithm, a
well-known state space reduction technique, branch-and-bound-
with-underestimates (BBU), is applied and two underestimate
functions, fyery and fy7y, are defined. To show the effective-
ness of the proposed algorithm, the execution time are measureg
for the proposed algorithm, Wang and Tsai's al gorithm, and A
algorithm with h(x)=0 through experiments. Parameters
considered in the experiments include the number of modules,
the shapes of task graphs, and the ratio of average intermodule
communication time to average module execution time.

The remainder of this paper is organized as follows. In
Section 2, system assumptions are stated and the task
assignment problem is formulated. In Section 3, two
underestimate functions, fypry and fyry, are defined and a
BBU algorithm is proposed. Experimental results are shown in
Section 4. Finally, concluding remarks are given in Section 5.

2. Assumptions and Problem Statement

2.1 Assumptions

The task assignment problem we consider in this paper has
the same assumptions as Wang and Tsai have made in ref. 19.
(1) The processors in the distributed computing system are
heterogeneous.

The cost of executing a module may vary from processor to (2) Al processors can communicate with each other through the
processor. During task execution, some control messages and communication subnetwork. ) .
intermediate data are required to be transmitted among modules. (3) All communication links are symmetric. That is,
Two communicating modules that are executed on different transmission on both directions of a communication link
Processors consume system's communication resources and takes the same time. But, transmission on different
thus incur a communication cost. Here cost values are defined in communication links may take different times. .
terms of a single unit, time. Hence, the total time, called the rask (4) Synchronization between two communicating processors is
turnaround time, required to finish the execution of the entire ?i;iisgagyufncsﬁgzsi?srg}dg nr:(l)‘:isuslig:xgcﬁisgySCS;I‘]’HH(E:'%;
task is composed of module execution time (MET), intermodule ; icati
comuicaion e (CT). s rocssor e (P e S b e St o oA

Our attention for the task assignment is focused on finding % £ hp : dditional idle ti ’
an optimal assignment that minimizes the task turnaround time. ut one of them may :incura ] on hl © ume. odules.
To achieve this objective, we need to balance the computation ® There exists a precedence relationship amon;g md lu CSN t
loads of the processors and at the same time to minimize the specifies the feasible execution sequences of modu els. 0
intermodule communication overheads. The task assignment cyclic precedence relationship is allowed among modules.
problem for more than three processors is known to be 2.2 Problem Statement

NP-complete (). Solution methods already suggested for the
problem can be roughly classified into four categories:

CH2878-7/90/0000/0494$01.00 © 1990 IEEE
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There are m modules M,, M,, ..., M,, contained in a given



task. The task can be conveniently represented by an acyclic
directed graph, called the task graph, as follows. Each module
of the task is uniquely represented by a vertex of the task graph
and there is an arc from M; to M; if and only if message
transmission is needed from M; to M; (i.e., M; precedes M)
during the task execution.

If there exists a path from M; to M; in the task graph, then M;
is called a predecessor of M, i and M] is called a successor of M;.
If there exists an arc from M; to M;, then M; is called an
immediate predecessor of M, and M; is called an immediate
successor of M;. A module without any successor (predecessor)
is called a sink module(source module). A module is not allowed
to start execution until all its immediate predecessors have
finished execution.

There are n processors Py, Py, ..., P, in the distributed
computing system. Let MET(i, j) denote the module execution
time required for executing M; on Pj and ICT(a, b, i, j) denote
the intermodule communication time required for the pair of
modules M, and M, when they are assigned to P; and P;
respectively. ICT(a, b, i, j) =0 if i = .

Let PT(i) denote the processor turnaround time of P;, which
is the total time consumed on P; The maximal processor
turnaround time, {PT(i)}, is the task turnaround time.

=1,..,n

The task assignment problem is to find a mapping from the task
graph to the distributed computing system, subject to the
precedence constraint, which minimizes the task turnaround
time. Since the task turnaround time can be viewed as the latest
finish time of all sink modules, minimizing the task turnaround
time is equivalent to minimizing the maximal finish time of all
sink modules.

Suppose that an unassigned module M, has k immediate
predecessors Mmy, Mma, ..., Mmy, if we decide to assign
module M, to processor P,, then the processor turnaround times
of those processors where M, and its predecessors are resident
should be updated. The detailed procedure for updating
processor turnaround times can be found in ref. 20.

3. State Space Search Reduction

In this section, a branch-and-bound-with-underestimates
(BBU) algorithm is presented to find an optimal solution for the
task assignment problem. The state space graph of a BBU
algorithm is a search tree whose nodes each, except the root
node, corresponds to an assignment of a module to a processor.
Associated with each node x in the search tree is a partial
assignment A, that consists of all the module-to-processor
assignments of the nodes along the path from the root to x.
Associated with each node x is also an underestimation fx) =
g(x) + h(x) of the minimal task turnaround time caused by the
complete assignments that include A, as a part. The value g(x) is
the maximal processor turnaround time caused by A, and A(x) is
an underestimation of the minimal processor turnaround time
that will be incurred from node x to a goal node. A goal node is
a node that represents a complete assignment. The accuracy of
h(x) greatly affects the efficiency of a BBU algorithm.
Moreover, an upper bound cost (UC) is along with a BBU
algorithm and it represents an upper bound on the minimal task
turnaround time.

A list, called unexpanded list, is necessary for a BBU
algorithm to store all unexpanded search nodes from which to
find an optimal assignment is still possible. Initially, the
unexpanded list is empty. The BBU algorithm begins with
placing the root node into the unexpanded list. The root node
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null state (no module assigned). During the
state space search, a search node x with minimal underestimation
f(x) is always selected from the unexpanded list to be expanded
next. Let those unassigned modules whose predecessors have all
been assigned be referred to as ready modules. If x is not a goal
node, n possible assignments: M; to P; , j = 1, ..., n, for each
ready module M; are checked for their feasibilities and a child
node is generated for each of the feasible assignments. Then, for
each generated child node y, the underestimation f(y) is
computed. If f{y) < UC, node y is inserted into the unexpanded
list, Otherwise, node y is fathomed. If the selected node x is a
goal node, the algorithm terminates.

In the rest of this section, we first briefly review Wang and
Tsai's algorithm (19) and then introduce two underestimate

functions fMETU and fATU'

corresponds to the

3.1 A Brief Review of Wang and Tsai's Algorithm

The essence of Wang and Tsai's algorithm (1) is to
underestimate the minimal task turnaround time from the
viewpoint of bottleneck processor.

For a partial assignment A,, let us define the following
notations:

the bottleneck processor;
the set of modules assigned to processor Pj;
the union of L;'s, ie., the set of all assigned

modules;

the set of all unassigned modules;

the set of modules in Q' that communicate with
modules in L.

Lales

MQ@

Wang and Tsai's algorithm computes A(x) as the summation
of H, for all M, in S, where

Hy = min{t, t'},
t =MET(q,b) + z ICT (r, q, A(r), b), and
re Q-Ly and
TSK(r, @) =1
t' = min{ T ICT(r,q,b,p)}.
p=l,.n rel, and
TSK(r,q) = 1

In essence, Wang and Tsai's algorithm computes h(x) from
the viewpoint of processors, which is the main reason of a poor
underestimation as the intermodule communication time is
relatively small (compared with the module execution time).

3.2 Minimal Execution Time Underestimate (METU)

Given a task graph, the task starts execution from source
modules and terminates after all sink modules are finished. A
directed path from a module M; to a sink module M; is called an

execution path. Moreover, if M; is a source module, then it is

called a complete execution path. The execution time of an
execution path from M; to M; is defined to be the time length
from the time when M; starts execution to the time when M;
finishes execution. The execution time of an execution path
contains the module execution time, the intermodule
communication time, and the processor idle time. With respect to
a mapping from the task graph to the set of processors, we
define the critical complete execution paths as those complete
execution paths whose execution times are equal to the task
turnaround time. In Figure 1, an example is shown where the
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() A task graph and the intermodule
communication times.

P, P, P, @ @ @
I S I
2| 16 89 92
Myl 71 88 84 @ @ @
My} 86 98 24
Ms| 63 16 38 @ @ @

(b) Module execution times (c) Three complete execution paths
Figure 1. An illustrative example.

given task graph contains three complete execution paths: (M,
My, Ms), (M), M3, Ms), and (M4, M4, Ms). Also, note that
uniform intermodule communication times are assumed in
Figure 1. That is, for two communicating modules M, and M,
ICT(a, b, i, j)'s are the same for any i#f.

Based on the concept of execution paths, two underestimate
functions, fyzry and f47y, are therefore proposed.

For an arbitrary execution path (Miy, Mis, ..., Mi) extended

k
from Miy, the summation £ min { MET(i;, p) } is an under-
I=1 p=1,..,n

estimation of the execution time for the execution path. For each
module M;, we define MAXET (i) to be the maximum of the
underestimated execution times for all the execution paths that
are extended from the immediate successors of M;. Clearly, if M;
is a sink module, MAXET (i) = 0. Otherwise, MAXET(i) is
computed recursively as

{ MAXET() + min { MET(,p) } ).

p=l,...n

max
M; is an immediate
successor of M;

All the values MAXET(i)'s are determined prior to the
execution of the BBU algorithm. In Table I, we show the values
of MAXET(i)'s for the example of Figure 1.

Let us consider a partial assignment A, that is associated
with a search node x during the execution of the BBU al gorithm.
With respect to A,, also denote the set of all assigned modules
by @ and the set of all unassigned modules by Q. Since the
value MAXET(i) is an underestimation of the time required to
finish the execution of all successors of M » we can define an
underestimate function f‘yzry as follows:

max
M;is in Q and all
immediate successors of
M are in Q°

S mErox) = { PT(A (D)) + MAXET()) ).
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i 1 2 3 4 5

MAXET(i) 87 87 16 16 0

Table 1. The values of MAXET(i)'s for the example of Figure

In the above formula, PT(A,(i)) is the current processor
turnaround time of the processor where M; is resident. It also
represents the time when the execution of M; and all its
predecessors is finished. The computation of f ‘ypry(X) is to
underestimate the task turnaround time with respect to the partial
assignment A, by underestimating the time required to finish the
execution of all successors of M; as MAXET(i). Note that since
MAXET(i) is defined for all immediate successors of M;, they
must be unassigned in the computation of f ‘ypry(x).

The computation of f pry(x) ignores the processor
synchronization and the intermodule communication time caused
by M; and its immediate successors. To obtain a more accurate
estimation of the task turnaround time, we have to take these two
factors into consideration. Hence, the assignment of the
immediate successors of M; should be considered. The resulting

underestimate function is fy;gry(x), defined as follows:

min {

max {
p=l,...n

M; is an immediate
successor of M; and
Mj— eQ’

max |
M;isin Q

Imery® =

max{ PT(A(i), PT(p) } + ICT(, j, A,(i), p)
+MET(, p) + MAXET() } } ).

In the above formula, the term max( PT(A, (D), PT(p) }
indicates the synchronization between the two communicating
processors where M; and M. ; are assigned respectively. The value

min { max{ PT(A, (D), PT(p) } +ICT(ij, A, (), p) + MET(j,
p=1,...n
p) + MAXET(j) } is an underestimation of the time required to
finish the execution of all predecessors of M .M. M f and all
successors of M;. The computation of fyrry(x) is performed
for each M; in O and each immediate successor M; of M; and then
takes the maximum as an underestimation of the task turnaround
time with respect to the partial assignment A,. If M ; is a sink
module, the value of the term max{ min{ max{ ... } + ... }}is
computed as PT(A,(i)).

3.3 Assignment Tree Underestimate (ATU)

The underestimate function fygry does not consider the

intermodule communication time that will be spent along an
execution path. We take this factor into consideration in the
underestimate function f, 7. In essence, £ determines how to
assign the modules along a complete execution path such that the
sum of module execution time and intermodule communication
time is minimized. Thus, finding an optimal assignment of
modules along each complete execution path forms the central
part of the f,7, function.

Before defining the firy function, we describe the
construction of execution trees from a task graph. There are the
same number of execution trees as sink modules. The execution
trees are rooted at sink modules and grow upward. Each node of
the execution trees represents (probably not uniquely) a module.



Module M; is an immediate predecessor of module M; in the task
graph if and only if a corresponding node of M; is a child node
of a corresponding node of M; in execution trees. Thus, each
path from a leaf node to a root node in the execution trees forms

a complete execution path. The execution tree for the example of
Figure 1 is shown in Figure 2.

ORI D
() G
()

Figure 2. The exection tree for the task graph of Figure 1.

Based on the execution trees, we can build assignment trees.
Each assignment tree is built from an execution tree by
considering the assignment of the corresponding modules of the
nodes in the execution tree. Each assignment tree is almost the
same as the assignment graph that has been described in @, Each
node of the assignment trees considers the n possible
assignments of its corresponding module (each node of the
assignment trees corresponds to a layer of the assignment
graph). Each edge in the execution trees is replaced by nx n
links in the assignment trees. These links represent all possible
assignments of two communicating modules. In Figure 3, a part
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Figure 3. Part of the assignment tree built from Figure 2.

(co;'responding to the complete execution path (1, 3, 5)) of the
assignment tree built from Figure 2 is shown, where the notation
"i - j" represents "assigning module M; to processor P;". For
example, the dashed line connecting node 7 and node 9 means
that M5 and Mj are assigned to P3 and P, respectively.

Associated with each node in the assignment trees are some
variables which are necessary in defining the underestimate
function fy7y. For the convenience of the description, we collect
these variables in a C-type data structure as follows.

My
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typedef struct node

int module;
int no_child,
unsigned exe_time[NO_PROC)NO_PROC];
unsigned min_exe_time[NO_PROCI;
struct node  *parent,
} NODE;

The identifier NO_PROC is a constant denoting the number
of processors in the distributed computing system. The identifier
module is a variable denoting the module represented by the
node. The module M, is considered a dummy module and a
node representing a dummy module is considered a dummy
node, e.g., node 1 in Figure 3. The dummy node is like the
source node of the assignment graph @ and acts as the head of a
complete execution path. The identifier no_child is a variable
giving the number of child nodes (equal to the number of
immediate predecessors of the associated module). The identifer
parent is a pointer to the parent node. A node representing a sink
module has its parent equal to NULL. The identifiers exe_time
and min_exe_time will be explained later.

From Figure 3, it is seen that the assignment trees consider
all possible assignments of modules along each complete
execution path. Therefore, a specific assignment of modules
along a complete execution path corresponds to a path from a
dummy node to a root node in the assignment trees. Like the
assignment graph, the links of the assignment trees are weighted
with intermodule communication times and the nodes of the
assignment trees are weighted with module execution times. All
links incident to a dummy node have their weights equal to zero.
Unlike the execution time of an execution path in the task graph,
let us define the execution time of a path from a node to a root
node in the assignment trees as the sum of the module execution
times and the intermodule communication times along that path,
excluding the module execution time of the starting node. For
example, in Figure 3, the execution time of the path (0-3,1-3,
3-3,5-2)is 0+ MET(1, 3) + 0 + MET(3, 3) +ICT(3, 5, 3,
2) + MET(5, 2) = 188. Note that the intermodule communication
time of two communicating modules is 0 if they are assigned to
the same processor.

Consequently, determining an optimal assignment of
modules along a complete execution path which minimizes the
sum of the module execution times and the intermodule
communication times is equivalent to determining a shortest path
from a dummy node to a root node in the assignment trees,
which can be done by the aid of the values min_exe_time[i]'s
and exe_time[i][j]'s that are stored in nodes of the assignment
trees.

For each node in Figure 3, the values in parentheses,
represented by variables exe_time[i][j], denote the execution
time of the shortest path from the node to the root node if its
associated module and the module associated with its parent
node are assigned to P;,; and Pj,, respectively (note that the
array index of C language starts from 0). And the values in
square brackets, represented by variables min_exe_timel(i],

denote the execution time of the shortest path from the node to
the root node if its associated module is assigned to P;,;.

Clearly, min_exe_timeli] = min {1exe7time[i][/] }. For
Jj=0,....n-

example, node 4 in Figure 3 considers the assignment of module
M, along the complete execution path (1, 3, 5). The value 136 in
the left parenthesis is the content of exe_time[0][1] and it
represents the execution time of the shortest path from node 4 to
the root node if M and its immediate successor M ; are assigned
to P, and P, respectively. The value 99 in the left bracket is the
content of min_exe_time[0] and it represents the execution time



of the shortest path from node 4 to the root node if M, is
assigned to P;.

The assignment trees are established before the BBU
algorithm starts execution. By applying Bokhari's shortest tree
algorithm (), the values min_exe_timel[i]'s and exe_time[i][j]'s
can be computed. These values can be used to find a shortest
path from an arbitrary node to a root node in the assignment
trees (equivalent to determining an optimal assignment of
modules along an execution path), which is the most essential
step in computing fyry(x).

Since the assignment trees are obtained from the execution
trees, they also retain the precedence relationship among
modules. Let us consider a complete execution path in the task
graph. Assigning modules along the complete execution path can
be regarded as traversing a path from a dummy node to a root
node in the assignment trees. A complete (partial) assignment
along the complete execution path corresponds to a travelling
tour that contains the entirety (a part) of the corresponding path
in the assignment trees. Moreover, a complete assignment can be
regarded as a tree embedded in the assignment tree. For
example, the bold lines in Figure 3 represent the assignment of
M to Py, M, to Py, My to Py, My 1o P,, and M5 to Ps.

Since any node x in the search tree represent a partial
assignment A,, we can associate an array of pointers, named
travel, with the node x to represent the travelling tours that
correspond to A,. In the proposed BBU algorithm, each pointer
in travel always points to the frontier of a travelling tour, that is,
the node (of the assignment trees) whose associated module was
assigned last along a dummy node to root node path. For
example, let us consider the example of Figure 1. If three
modules: M, M,, and M, have been assigned in the partial
assignment A,, then the pointers in travel of node x must point
to nodes 4, 5, 8 respectively in the assignment tree.

At the beginning of the BBU algorithm, the pointers in travel
of the root node point to the dummy nodes of the assignment
trees since all modules are unassigned. During the execution of
the BBU algorithm, whenever a search node x corresponding to,
for example, the assignment of module M, to processor Py, is
generated, the array rravel of node x is constructed as follows.
A pointer in travel is moved down to the next node (in the
assignment trees) toward the root node if the module associated
with the next node is M. If multiple pointers point to the same

node, only one of them is kept. For example, let us consider the
example of Figure 1 again. Suppose three modules: M;, M,, and
M have been assigned in the partial assignment A, and the
pointers in travel of node x point to nodes 4, 5, 8 respectively in
Figure 3. If a node y that corresponds to the assignment of M; is
generated as a child node of x during the execution of the BBU
algorithm, then the array travel of node y is constructed as
follows. Those two pointers to nodes 4 and 5 respectively are
moved down to node 7 since the module associated with node 7
is M. Further, since they both point to the same node after
movement, only one of them is kept. The pointer to node 8
remains unchanged.

A more detailed description about constructing the array
travel for a newly generated search node x is shown in
Algorithm 2.
Algorithm2: [* Construct the array travel for a newly
generated search node x. Assume that the node x
corresponds to the assignment of module M, to
processor Pj. The variable ¢ saves the number of
pointers in travel. The array no_pred is a global
variable and no_pred[i] denotes the number of
immediate predecessors of module M;. ¥/
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for (i =1,j =0;i <=t;i++)

next = travel[i]->parent ;
if (next != NULL && next ->module == a)
{

next ->no_child - - ;

/* Are there multiple pointers to node x 7 */
if (next ->no_child >= 1) continue ;
travelli] = next ;

/* Restore the value of no_child */
next->no_child = no_pred|next->modulel;

}
/* Pack the travel pointers */
travel[++j] = travelli] ;

t=j;

Based on the above discussion, we can define an
underestimate function f’s7y(x) for a partial assignment A, that
is represented by a search node x.

faru®) = max ( PT(A(travellil->module)) +
i=1,...¢

ravellil->min_exe_time
[A,(travell[il->module) - 1] }

In the above formula, the value ¢ denotes the number of
pointers in travel, and decreasing the index of min_exe_time by
1 is due to the array index of C language starting from 0. If

travell[i]->module is a dummy module, then PT(A,(travel[i]->
module)) is set 0 and A, (travel[il->module) can be any of 1, 2,
.., n. If travellil->module is not a dummy module, say M,,
then PT(A,(k)) is the time when M, and its immediate
successors can start message transmission (by the time the
execution of M, and all its predecessors is finished). The value
travelli]->min_exe_time[A,(k) - 1] is taken as an under-
estimation of the time required to finish the execution of all
successors of M, along the path from the node pointed by
travelli] to the root node. The computation of f 'y1(x) is to
underestimate the task turnaround time with respect to the partial
assignment A, by taking travel[il->min_exe_time[A,(k) - 1] as
an underestimation of the execution time of the path from the
node pointed by travel[i] to the root node. For example, let us
consider Figure 3 again. If only module M5 and all its
predecessors have been assigned, then there is a pointer, say
travel[i], to node 7. Now, PT(A (travel[i]->module)) =
PT(A,(3)) is the time when the execution of M5 and all its
predecessors is finished and travel[i]l->min_exe_time[A,(3) - 1]
is an underestimation of the time required to finish the execution
of Ms. Thus, PT(A,(3)) + travel[i]->min_exe_time[A,(3) - 1] is
an underestimation of the time required to finish the execution of
all predecessors of M3, M3, and Ms.

Note that the computation of f "s7¢(x) ignores the processor
synchronization and the intermodule communication time caused
by the module travel[i]->module and its immediate successor
travel[il->parent->module. To make a more accurate estimation
of the task turnaround time, we have to take these two factors
into consideration. Hence, the assignment of the module
travel(i]->parent->module should be considered. The resulting
underestimate function is fyszry/(x), defined as follows:

min {
p=1,..n
max{PT(A(travel[il->module)), PT(p) } +
travel[il->exe_time

[A(travelli]->module) - 1][p- 1] } }

max |

Jarux) =
i=1,..,t



In the above formula, P, is the processor where the module
travel[i]->parent->module is attempted to be assigned. The term
max{PT(A(travel[i]->module)), PT(p)} indicates the synchro-
nization between the two communicating processors where the
module travel[i]->module and the module travel[i]->parent->
module are resident. If travel[il->module is a dummy module,
then PT(A,(travelli]->module)) is set 0 and A, (travelli]->
module) can be any of 1, 2, ..., n. If travel[i]->module is a sink
module, then no immediate successor of the module
travel[il->module exists and PT(p) is set 0. The value
travelli]->exe_time[A,(travel[i]->module) - 1)][p - 1] is taken as
an underestimation of the time required to finish the execution of
all successors of the module travel[il->module along the path
from the node pointed by travel[i] to the root node.

3.4 AnInitial Solution

For a BBU algorithm, a good enough initial solution can
save much computation and memory by fathoming nodes at the
beginning of the state space search. For the task assignment
problem we consider, there is a trivial solution, i.e., assigning
all modules to the same processor. In fact, our experiments
show that the trivial solution is almost an optimal solution when
the intermodule communication time is much greater than the
module execution time. On the other hand, the trivial solution is
bad when the module execution time is greater than the
intermodule communication time. For the latter case, an
algorithm using the concept of f4ry is applied to find a good
enough initial solution. A similar algorithm using the concept of
fuery can also be derived easily. For the sake of the limit of
space, we do not describe them here, but the detailed desciption
can be found in ref. 20.

The proposed BBU algorithm using the underestimate
function f, 7 will select the better one of the trivial solution and
the solution obtained from our proposed algotiyhm as an initial
solution and set the task turnaround time of the initial solution as
the initial value of UC.

4. Experimental Results

In this section we compare the performance of the proposed
algorithm with that of Wang and Tsai's algorithm and A
algorithm with A(x)=0. The execution time of 200 tested
instances is measured for performance evaluation. In general,
the performance of the proposed algorithm is affected by many
factors. Among them, four factors: number of processors,
number of modules, the ratio of average intermodule
communication time to average module execution time (called
C:P ratio), and the shapes of task graphs are considered in the
experiments. The shapes of task graphs, which was neglected in
(19), reflect the precedence relationship among all modules, and
they will affect the accuracy of the estimation made by an
underestimate function. In order to investigate the effect of the
shapes of task graphs on the performance of the proposed
algorithm, instead of generating tested task graphs randomly, we
consider six types of task graphs in the experiments: linear,
convergence, X_type, tree, ladder, and mesh (see Figure 4).

A task graph is of linear type if it forms a linear chain. A task
whose execution consists of several serial phases has a
linear-typed task graph. A task graph is of convergence type if it
is a tree with the root at the bottom. A task has a
convergence-typed task graph if its modules can be partitioned
into several disjoint subsets Sy, Sy, ..., S, with IS;1 215,12 ... 2
IS, such that the precedence relationship only exists between S;
and S;,;, 1<i < r-1. The tree-typed task graph is similar to the
convergence-typed task graph except that the root of the tree is at
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Linear Convergence
m=4 m=5 m=6° m=7
m=3 m=4*m=5 m=6 m=1 m=8 m=9 m=8 m=9
Tree X_type
m=. m=4 m=5 m= m=5 m=6"* m=7
m=T7* m=8 m=9 m=8 m=9
Ladder Mesh
m=6 m=8" m=10 m=9
Figure 4. Six types of task graphs.
execution paths.

A task graph with a look similar to one of these six types of
task graphs is expected to have similar experimental results.

In our experiments Wang and Tsai's algorithm and A*
algorithm with h(x)=0 are provided with the trivial initial
solution. The intermodule communication times are assumed
uniform. Module execution times and intermodule communi-
cation times are generated randomly according to the given C:P
ratio. The C:P ratios considered in our experiments are from
0.01 to 100 (or from -2 to 2 with logarithmic values based 10).

In the rest of this section, experimental results about
execution time are shown. The experiments are carried out for
different numbers of modules, different C:P ratios, and different
types of task graphs. For each tested case, 200 randomly
generated instances are run, and the total execution times is
measured. The experimental results versus the number of
modules is given by taking the average with log;o(C:P) ranged

from -2 to 2.
4.1 Execution Time

General speaking, number of search nodes and maximal
queue length are two important criteria for evaluating the
performances of a BBU algorithm since they are machine
independent and program independent. However, they do not
take the computational complexity of the underestimate function
into consideration. A heavy computation of the underestimate on
each search node may offset the gains from reducing the search
space. Hence, execution time is the most reliable measure to
prove the effectiveness of a BBU algorithm. In our experiments
all the tested algorithms are programmed in C language to
measure their execution times. The experimental results are
shown in Figures 5-6.

Figure 5 shows the execution time of 200 randomly
generated instances as a function of log;o(C:P) for the proposed
algorithm, Wang and Tsai's algorithm, and A* algorithm with
h(x)=0. The curves labeled with "ATU" and "METU" represent



the results of the proposed algorithm using the underestimate algorithm and A* algorithm with h(x)=0 respectively.
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everywhere for the linear-typed task graph of m=5. Wang and
Tsai's algorithm has a bad performance, even worse than the A*
algorithm with A(x)=0, as log;o(C:P) < -0.8. This is due to the
potential weakness of their algorithm in estimating the minimal
task turnaround time for a "slim" and "long" task graph. Also
note that the curve labeled with "W&T" drops drastically as the
C:P ratio > -0.8, which is mainly due to the high accuracy of the
trivial initial solution as the C.P ratio is high, not Wang and
Tsai's algorithm itself.

Figure 5(b) shows experimental results for the convergence-
typed task graph of m=6. The curve labeled with "W&T" is
higher than the curve labeled with "h(x)=0" as logo(C:P) <-1.

The proposed algorithm performs better than the other two
algorithms as log;o(C:P) < 0.2. As log,o(C:P) > 0.5, Wang and
Tsai's algorithm has the best performance.

Figure 5(c) shows experimental results for the X_typed task
graph of m=6. The proposed algorithm performs worst for the
X_typed task graph among all six types of task graphs. Even so,
the ‘proposed algorithm has a satisfactory performance as
logo(C:P) <0.

Figures 5(d)-(f) show experimental results for tree-, mesh-,
and ladder-typed task graphs respectively. Because of strict
memory limitation in experiment environment, Figure 5(e)
shows only partial curves of "h(x)=0" and "W&T". The
proposed algorithm performs well for these three types of task
graphs. Moreover, it can be observed that for all six types of
task graphs but the X-type, the performance of the proposed
algorithm is stable in the range of C:P ratios.

Figure 6 shows the execution time of 200 test instances for
different numbers of modules. The proposed algorithm has the
best performance almost everywhere, except for the X-typed
task graph. Because of memory limitation, experimental results
for the mesh-typed task graph are not shown here.

4.2 Other performance criteria

In addition to the execution time, in the experiment, we also
consider the average number of search nodes and the maximal
queue length of the unexpanded list during state-space search
under different parameter combinations mentioned above.
Because of the limit of space, we do not give them here, but
describe in ref. 20. As was expected, the experimental results
have the similar trend to it with respect to the execution time
described in Section 4.1. Moreover, the deviation of the initial
solutions found by our proposed algorithms to the optimal
solution is also given in ref. 20.

5. Concluding Remarks

In this paper we have proposed a BBU algorithm for the task
assignment problem, which was solved by Wang and Tsai 19),
The essence of Wang and Tsai's algorithm is to underestimate
the minimal task turnaround time from the viewpoint of
bottleneck processor. This causes their algorithm a poor
underestimation as the C:P ratio is low. On the other hand, the
proposed algorithm underestimates the minimal task turnaround
time from the viewpoint of execution paths. Experimental results
provide us with a complete comparison among the proposed
algorithm, Wang and Tsai's algorithm, and A* algorithm with
h(x)=0. The proposed algorithm is stable in performance and
has the best performance in most tested cases. Wang and Tsai's
algorithm degenerates rapidly as the C.P ratio decreases and its
instability in performance makes it less attractive in practical
applications.

In order to investigate the effect of the shapes of task graphs
on the performance of the proposed algorithm, we consider six
types of task graphs: linear, convergence, X_type, tree, ladder,

and mesh in the experiments.
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