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摘要—本論文提出一個新方法建構半徑式基底函數網路分類器。我

們的貢獻可分為兩個部分：其一是開發漸進式階層分群演算法於建

構網路中的隱藏層，其二則是提升用於計算網路中隱藏層與輸出層

之間權重的最小平方錯誤方法之品質。這篇論文討論使用漸進式階

層分群演算法在建構 RBF 網路最佳化於資料分類的問題上所產生

的影響。其資料群的形成是由訓練資料的所屬類別所控制，因此所

產生的分群結果得以適當地描述訓練子集於各個區域空間的分

布。除此之外，此漸進式的架構大大地減少處理大量資料時記憶體

空間的需求。針對網路中權重參數的決定，我們使用迴歸理論來解

決於尋找最佳權重時常常面臨的奇異矩陣的問題。實驗結果顯示我

們所建構的分類器可以提供與支持向量機器分類器(SVM)或是我

們最近提出的以核心密度推估方法為基礎的分類器一樣好的分類

準確度，且同時提供高效能於處理那些有高度重複特性的資料集。

Abstract—This paper proposes a novel method to construct a 
radial basis function network (RBFN) classifier. Our contribution 
consists of two parts. The first one is an incremental hierarchical 
clustering algorithm for constructing the hidden layer, and the 
second one is to improve the least mean square error method that 
calculates the weights between the hidden and the output layers of 
an RBFN. This paper discusses the effects of incorporating an 
incremental hierarchical clustering algorithm for constructing an 
RBFN optimized for data classification applications. The formation 
of clusters is controlled by the class labels of training samples and 
therefore the clusters identified are well adapted to the local 
distributions of training instances. In addition, the incremental 
framework largely reduces the requirement of memory space when 
the training data set is large. In regard to the calculation of 
weights, we employ the regularization theory to solve the singular 
matrix problem that might happen in determining the optimal 
weights. Experimental results show that the data classifier 
constructed is capable of delivering comparable classification 
accuracy as the support vector machine (SVM) and the kernel 
density estimation based classifier that we have recently proposed, 
while enjoying significant execution efficiency in handling data sets 
that contains a high percentage of redundant training instances. 

I. INTRODUCTION 
The radial basis function network (RBFN) is a special type of neural 

networks with several distinctive features [1], [2], [3], [4], [5], [6]. 
Since its first proposal, the RBFN has attracted a high degree of interest 
in research communities. An RBFN consists of three layers, namely the 
input layer, the hidden layer, and the output layer. The input layer 
broadcasts the coordinates of the input vector to each of the nodes in 
the hidden layer. Each node in the hidden layer then produces an 
activation based on the associated radial basis function. Finally, each 
node in the output layer computes a linear combination of the 
activations of the hidden nodes. How an RBFN reacts to a given input 
stimulus is completely determined by the activation functions 
associated with the hidden nodes and the weights associated with the 
links between the hidden layer and the output layer. The general 
mathematical form of the output nodes in an RBFN is as follows: 
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where cj(x) is the function corresponding to the j-th output unit (class-j) 
and is a linear combination of k radial basis functions φ() with center μi 
and bandwidth σi. Also, wj is the weight vector of class-j and wji is the 
weight corresponding to the j-th class and i-th center. The general 
architecture of RBFN is shown in Fig 1.  

In this paper, we select the spherical (or symmetrical) Gaussian 
function as our basis function of RBFN, so the Eq.1 becomes:  
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From Eq.2, we can see that constructing an RBFN involves 
determining the number of centers, k, the center locations, μi, the 
bandwidth of each center, σi, and the weights, wji. That is, training an 
RBFN involves determining the values of three sets of parameters: the 
centers (μi), the bandwidths (σi), and the weights (wji), in order to 
minimize a suitable cost function.  
Basically, there are two categories of learning algorithms proposed for 
RBFNs [5], [7]. The first category of learning algorithms simply places 
one radial basis function at each sample [8], [9]. On the other hand, the 
second category of learning algorithms attempt to reduce the number of 
hidden nodes in the network, or equivalently the number of radial basis 
functions in the linear function above [10], [11], [12], [13], [14]. One 
primary motivation behind the design of the second category of 
algorithms is to reduce the complexity of the network constructed. The 
typical procedure incorporated in the second category of learning 
algorithms conducts a clustering analysis on the training instances and 
then allocates one hidden node for each cluster of instances. In this 
regard, the effects of a wide variety of clustering algorithms have been 
investigated [4], [15]. Nevertheless, both the conventional 
agglomerative hierarchical clustering algorithm and the conventional 
partitional algorithm suffer some kinds of deficiencies. The main 
problem with the conventional agglomerative hierarchical clustering 
algorithm is its space complexity of O(n2), where n is the number of 
training instances, due to the need to store pairwise distances or 
similarity scores between the training instances. The main problem 
with the conventional partitional clustering algorithm is that the user 
needs to figure  

 



 

out how many clusters are appropriate for the given training data set. 

 In 1997, Hwang et al. [12] proposed an incremental clustering based 

approach for determining the locations of hidden nodes in the RBFN to 

be constructed. The incremental approach enjoys several advantages. 

First, it does not need to compute all the pairwise distances or similarity 

scores between training instances. The key issue in this regard is that the 

space complexity for storing the pairwise distances or similarity scores 

is greatly reduced, in addition to lower time complexity. Second, it 

figures out the number of clusters automatically based on a 

user-specified parameter. Third, it executes more efficiently than the 

conventional agglomerative   hierarchical clustering algorithm and the 

conventional partitional clustering algorithm. Nevertheless, the 

incremental clustering algorithm proposed by Hwang employs a fixed 

threshold of radius to control the formation of clusters. As a result, the 

clusters identified may not be well adapted to the local distributions of 

training instances. For example, in a region with a low local density of 

training instances, the threshold of radius for controlling the formation 

of clusters should be set to a large value. On the other hand, in a region 

with a high local density of training instances, the threshold of radius 

should be set to a small value.  

This paper proposes a novel method to construct an RBFN classifier 

by using an incremental hierarchical clustering algorithm for 

constructing an RBFN optimized for data classification applications. 

Our contribution consists of two parts. The first one is an incremental 

hierarchical clustering algorithm that constructs the hidden layer 

effectively and efficiently. Since the clustering algorithm is hierarchical, 

the formation of clusters is controlled by the class labels of training 

samples instead of a fixed threshold and therefore the clusters identified 

are well adapted to the local distributions of training instances. In 

addition, because the clustering algorithm is incremental, it does not 

need to compute all the pairwise distances or similarity scores between 

training instances. The second part is  

an improved least mean square error method that calculates the 
weights between the hidden and the output layers of an RBFN. In [12], 
authors proposed an improved method which uses a smaller matrix to 
compute the weights. The method proposed by [12] is more efficient 
and practical than the traditional one, but it may suffer the singular 
matrix problem and fails to build the classifier in such case. We solve 
the singular matrix problem by using the regularization theory in this 
paper, and then propose a method that can obtain the optimal weights 
analytically and efficiently. 

Experimental results show that the data classifier constructed is 
capable of delivering comparable classification accuracy as the SVM 
[16] and the novel kernel density estimation (KDE) based classifier 
that we have recently proposed [8], while enjoying significant 
execution efficiency in handling data sets that contains a high 
percentage of redundant training instances. For example, in the 
experiment with the shuttle data set in the UCI repository [17], the 
mechanism proposed in this paper enjoys 1231 times and 259 times 
speedup over the SVM and the KDE based classifier that we have 
recently proposed, respectively, for constructing a data classifier. In 
addition, the mechanism proposed in this paper delivers comparable 
execution efficiency as the SVM in the prediction phase and enjoys 
481 times speedup over the KDE based classifier in this regard. 
Experimental results also reveal that the approaches that have been 
proposed in recent years for solving the efficiency issues of the SVM 
and the KDE based classifier all lead to slight degradation of 
classification accuracy.  

This paper is organized as follows. In next section, we introduce an 
incremental clustering method. In Section III and IV, we detail how to 
calculate the bandwidths and weights of 
the radial basis functions which are employed in constructing the 
RBFN. Next, numerical experiments are shown in Section V. Finally, 
we have some discussions and conclusions in Section VI. 

II. DETERMINING THE CENTERS 
In the proposed hierarchical approach, a hierarchical agglomerative 

clustering (HAC) algorithm [18], [19] is invoked to cluster all the 
instances in training data set. After hierarchical clustering terminates, 
the class labels are applied to the dendrogram to derive target clusters. 
Each node in the clustering dendrogram corresponds to a cluster of 
data instances. A node in the dendrogram is identified as a target 
cluster if it contains only data instances from a single class and its 
parent does not satisfy the criterion. The centroids of the target 
clusters are used as the centers in constructing the hidden layer of 
RBFN. In this paper, the completelink algorithm [19] is employed. 
The reason of employing the complete-link algorithm is its tendency 
to find spherical clusters. Since the hierarchical clustering algorithms 
suffer higher time complexity, an incremental clustering framework 
for expediting the hierarchical clustering process is introduced as 
follows. 

A. Incremental framework  
We adopt the incremental framework proposed in our previous work 

[20]. This section describes how the incremental algorithm works. The 
incremental algorithm operates in two phases, initial phase and 
incremental phase. In both phases, it invokes the complete-link 
algorithm to construct a clustering dendrogram. 

 1) Initial phase: In the incremental algorithm, it is assumed that all 
the incoming data instances are first buffered in an incoming data pool. 
In the first phase of the algorithm, a number of data instances are taken 
from the incoming data pool and the complete-link algorithm is 
invoked to cluster these instances build a tentative dendrogram. We can 
assume that these data instances are selected sequentially according to 
the order of input sequence. As demonstrated in our previous work 
[20], the proposed incremental framework employs two operations, 
split and merge, to reduce the influence from input ordering. When the 

criterion invoked in the first phase are invoked again to find the target 
clusters from the new tentative dendrogram. During the reconstruction 
process, two original target clusters will have chance to form a new 
bigger target cluster. This is regarded as the so-called merge operation. 

The incremental phase repeats until there is no data instances left in 
the incoming data pool. After the clustering process terminates, the 
centroids of all the target clusters are collected as the centers of RBFN 
when constructing the classifier in the following sections.  

III. CALCULATION OF THE BANDWIDTHS 
For the hidden layer of the RBFN classifier, we use the proposed 

hierarchical approach to determine the number of the nodes and their 
center locations. Another parameter to be decided for each node in the 
hidden layer is the bandwidth of its kernel function, σi. Here, we 
employ the method presented by Moody and Darken [21] to determine 
the bandwidth of each kernel function. The bandwidth of a kernel 
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Fig. 1. General Architecture of Radial Basis Function



complete-link algorithm terminates, target clusters are derived by the 
method described above, i.e. the class labels are used to identify the 
cluster boundaries in the clustering hierarchy.  

There are four pieces of information recorded for each target cluster: 
(1) the centroid, (2) the radius, (3) the class label and (4) the number of 
instances in the cluster. The radius of a cluster is defined to be the 
maximum distance between the centroid and the data instances in this 
cluster. 

2) Incremental phase: In the second phase of the incremental 
algorithm, the data instances remained in the incoming data pool are 
examined one by one. For each new data instance, the algorithm will 
find its nearest neighbor in the set of target clusters. If the distance 
between the new data instance and its nearest target cluster is smaller 
than the radius of the target cluster, the new data instance is inserted 
into the target cluster. If not, the data instance is currently an outlier to 
the set of target clusters and is therefore put into the tentative outlier 
buffer temporarily. The data instance, however, may form a target 
cluster with other data instances that are already in the tentative outlier 
buffer or that come in later. 

If a data instance is successfully inserted into an existing target 
cluster, we should check if the new data instance possesses the same 
class label with the other data instances in the target cluster. If not, an 
additional operation called split should be invoked to identify new 
target clusters in this local area. In the split operation, we apply the 
complete-link algorithm only to the data instances in this target cluster, 
and identify new target clusters with pure property as we did in the first 
phase. After the split operation finishes, the number of target clusters 
will increase at least by one.  

Once the number of data instances in the tentative outlier buffer 
exceeds a threshold, the complete-link algorithm is invoked again to 
construct a new tentative dendrogram. In this reconstruction process, 
the primitive objects are the target clusters and the data instances in the 
tentative outlier buffer. In this case, each target cluster is represented 
by its centroid and regarded as a single data instance. When a new 
tentative dendrogram has been generated, the same procedure and 

 

function is set as βdenemy, where denemy is the distance to the center 
of the nearest cluster which belong to a different class and β is a 
constant. In this paper, we follow the heuristic setting suggested by 
[12], i.e. β = 5. 

IV. CALCULATION OF THE WEIGHTS 
After the centers and bandwidths of the kernel functions in hidden 

layer have been determined, the transformation between the inputs and 
the corresponding outputs of the hidden units is now fixed. The 
network can thus be viewed as an equivalent single-layer network with 
linear output units. Then, we use the least mean square error method to 
determine the weights associated with the links between the hidden 
layer and the output layer.  

In this section, we will show how the least mean square error 
method have been used in data classification field, and then propose a 
method which has a better theoretical foundation and practical use.  

Assume h is the output of the hidden layer. 

,)](...)(2)([ 1
T

k xxxh φφφ=   ( 3 )

where k is the number of centers, φ1(x) is the output value of first 
kernel function with input x. Then, the discriminant function cj(x) of 
class-j can be expressed by the following:  

,)( hxc T
jj ω=  j  =  1 ,  2 ,  .  .  .  ,  m             ( 4 )

where m is the number of class, and wj is the weight vector 
of class-j. We can show wj as: 

T
jkjjj ]...[ 21 ωωωω = .  ( 5 )

After calculating the discriminant function value of each class, we 
choose the class with the biggest discriminant function value as the 
classification result. We will discuss how to get the weight vectors by 
using least mean square error method in the following subsections. 

 
 
A. Traditional Least Mean Square Error Method 

The traditional least mean square error method was proposed by 
Broomhead and Lowe [22]. This method is originally proposed for 
function approximation, and is the most popular supervised learning 
method of constructing the weights of RBFN [2], [3], [5], [23]. In this 
method, the objective function of class-j can be shown as: 
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This system is overconstrained, being composed of n equations with 
k unknown weights, then the optimal solution of wj can be written as  

jyj
+Φ=∗ω ,               (8)

where yj = [ vj(x1) vj(x2) . . . vj(xn) ]T , Φli = φi(xl) and Φ+ is the 
pseudoinverse of Φ. The matrix Φ is rectangular (n×k) and its 
pseudoinverse can be computed as 

Φ+ = (ΦT Φ)−1ΦT , 

provided that (ΦT Φ)−1 exists. The matrix (ΦT Φ) is square and its 
dimensionality is k, so that it can be inverted in time proportional to k3. 

Although in theory the quantity of (ΦT Φ)−1 exists, the cost of 
computing Φ+ is very high. First, we need to store Φ of size (n×k) in the 

To find the optimal W that minimizes J, we set the gradient of 
J(W ) to be zero: 
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where [0] is a k × m null matrix.  
Let Ki denote the class-conditional matrix of the secondorder 

moments of h, i.e. 

Ki = Ei {hhT }. (12) 

If K denotes the matrix of the second-order moments under the 
mixture distribution, we have 
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Then Eq. 11 becomes  

KW = M, (14) 

where  
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If K is nonsingular, the optimal W can be calculated by 

W∗ = K−1M. (16) 

When compared to the traditional method, the size of K, k × k, is 
much smaller than the Φ matrix of size (n × k) described in the 
previous subsection. Therefore, the improved method requires less 
memory space for storing the matrix, as well as consumes much less 



memory. The value of n in some classification problems is very large, 
such that it may be impractical to have such large amounts of memory 
space for storage. Also, the process of calculating (ΦT Φ)−1 for large Φ is 
computationally expensive. In addition, this method needs a lot of 
computations for matrix multiplication and inversion. Therefore, this 
method may not be suitable for the use of classification problem.  
B. Improved Least Mean Square Error Method 

The improved least mean square error method for data classification 
was proposed by Devijver et. al.[24] and has been employed by Hwang 
et. al. in [12]. This method aims to calculate wj for m classes at the same 
time. We detail the procedures as follows.  

For a classification problem with m classes, let Vi designate the i-th 
column vector of an m × m identity matrix and W be an k × m matrix of 
weights: 

]...[ 21 mωωωω =  

Then the objective function to be minimized is  
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where Pj and Ej{} are the a priori probability and the expected value of 
class-j, respectively. 
 

computation time for matrix multiplication. It is apparent that the 
improved method is more efficient than the traditional one.  

However, there is a critical drawback of the improved method. 
That is, K may be singular and this will crash the whole procedure. 
By observing the matrix hhT, we are aware of that the matrix hhT is 
symmetric positive semi-definite (PSD) matrix with rank = 1. Since 
K is the summation of hhT for each training instance, K is also a PSD 
matrix with rank ≤ n. When k → n, it is highly possible to have K 
be singular. From our experiences, if all the training instances are 
chosen as centers, this method is not going to work eventually. Thus, 
we solved this problem in the following subsection. 
C. Proposed Least Mean Square Method 

A very simple solution to solve the singular problem has been 

shown in the context of regularization theory [25]. It consists in 

replacing the the objective function as follows: 
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where λ is the regularization parameter. Then the Eq. 14 becomes 

(K + λI)W = M. (18) 

TABLE I 
THE BENCHMARK DATA SETS USED IN THE EXPERIMENTS 

If we set λ 
> 0, (K + 
λI) will be 
a positive 

definite 
(PD) 

matrix 
and 

therefore 
is 

nonsingul
ar. The 

optimal 
W ∗  can 

be 
calculated 
by 

W∗ = (K 

+ λI)−1M.     (19) 

Finally, we can get the optimal 
*
jW for class-j from W∗, and then 

the optimal discriminant function cj(x) for class-j is derived. By using 
the regularization theory, the optimal weights can be obtained 
analytically and efficiently.  

V. EXPERIMENTS IN THE PROBLEM OF DATA 
CLASSIFICATION 

The experiments in this section are conducted to evaluate the 
performance of the proposed RBFN classifier against other famous 
classifiers, the KDE based classifier [8], SVM [16], and KNN. Also, the 
incremental hierarchical clustering algorithm is compared with the 
APC-III clustering algorithm employed in [12]. Our proposed RBFN 
classifier and the APCIII based classifier share the same procedures of 
determining bandwidths and weights in constructing the RBFN. The 
discussions of the experiments will focus on the following two issues: 
classification accuracy and execution efficiency.  

Table I lists main characteristics of the nine benchmark data sets used 
in the experiments. All these data sets are from the 
UCI repository [17]. Among the nine data sets, three of them are 
considered as the larger ones, as each contains more than 5000 samples 
with separate training and testing subsets. The remaining six data sets 
are considered as the smaller ones and there are no separate training and 
testing subsets in these six smaller data sets. Accordingly, different 
evaluation practices have been employed for the smaller data sets and 
for the larger 
data sets. For the three larger data sets, 10-fold cross validation has been 
conducted on the training set to determine the optimal parameter values 

 # of training 
samples 

# of testing 
samples 

satimage 4435 2000 

letter 15000 5000 

shuttle 43500 14500 

iris 150 N/A 

wine 178 N/A 

vowel 528 N/A 

segment 2310 N/A 

glass 214 N/A 

vehicle 846 N/A 

TABLE II 
COMPARISON OF CLASSIFICATION ACCURACY WITH THE 

THREE LARGER 

DATA SETS 
TABLE III 

COMPARISON OF CLASSIFICATION ACCURACY WITH THE 
SIX SMALLER 

DATA SETS 
 KDE SVM 1NN 3NN APC-III Proposed 

iris 97.33 97.33 96.00 95.33 95.33 96.00 

wine 99.44 99.44 95.52 96.07 98.89 97.78 

vowel 99.62 99.05 99.62 97.35 93.37 98.48 

segment 97.27 97.40 97.27 96.14 94.98 97.53 

glass 75.74 71.50 72.01 92.01 69.16 72.86 

vehicle 73.53 86.64 69.73 71.39 78.25 79.19 

Average 90.49 91.89 88.36 88.05 88.33 90.31 

the size of training data set is larger than 20000. In regard to the 
parameter settings of other classifiers for comparison, we adopted the 
parameter settings suggested by the authors in their original papers.  

Table II compares the accuracy delivered by alternative 
classification algorithms with the three larger benchmark data sets. As 
Table II shows, the proposed method basically deliver the same level 
of accuracy with other famous classifiers, SVM and KDE, while the 
KNN and APC-III based classifier do not produce comparable 
generation results. Table III lists the experimental results with the six 
smaller data sets. Table III shows that the proposed method basically 
deliver the same level of accuracy for these six data sets. The 
experimental results presented in Table III also show that the proposed 
method, KDE based classifier and the SVM generally deliver a higher 
level of accuracy than the KNN and APC-III based classifier. 

Table IV compares the execution time of the KDE based classifier, 
the SVM, the APC-III based classifier and the proposed method with 
the three larger data sets presented in Table I. In Table IV, the total 

 KDE SVM 1NN 3NN APC-III Proposedd 

satimage 92.30  91.30 88.80 90.65 90.25 92.00 

letter 97.12 97.98 95.68 95.16 91.16 97.48 

shuttle 99.94 99.92 99.94 99.91 97.34 99.82 

Average 96.45 96.40 94.84 95.24 92.92 96.43 



to be used in the testing phase. On the other hand, for the six smaller 
data sets, 10-fold cross validation has been conducted on the entire data 
set and the average result is reported. 

Our incremental algorithm has two key parameters, the size of initial 
data samples and the size of the tentative outlier buffer. In our 
experiments, both of the size of initial data instances and the size of 
tentative outlier buffer are set to 1000. We observed that these two 
buffers do not affect the quality of the classifier much but do influence 
the execution time. The larger the buffer size, the longer the 
reconstructing process. In the experiments, the incremental mechanism 
is turned on when  

time taken to construct classifiers based on the given training data sets 
are listed in the rows marked by "Make classifier". The time listed in 
"Make classifier" row are the time of cross validation for KDE based 
classifier and the time of model selection for SVM. On the other hand, 
for both the APC-III based classifier and the proposed algorithm, the 
reported time include the time of clustering process and the time of 
calculting bandwidths and weights. In addition, the time taken by 
alternative classifiers to predict the classes of the testing instances are 
listed in the rows marked by "Prediction".  

As we can see in Table IV, the mechanism proposed in this paper is 
much more efficient than the SVM and the KDE based classifier for 
constructing a data classifier. In addition, the mechanism proposed in 
this paper delivers comparable execution efficiency as the SVM in the 
prediction phase and  

TABLE IV 
COMPARISON OF EXECUTION TIME IN SECONDS 

  KDE SVM APC-III Proposed 

satimage 676 64644 136 274 

letter 2842 387096 712 5244 

Make 

Classifier  

shuttle 98540 467955 2595 380 

satimage 21.30 11.53 0.63 7.06 

letter 128.60 94.91 2.15 28.06 

Prediction 

Time 

shuttle 996.10 2.13 0.48 2.07 

enjoys 30 times speedup over the KDE based classifier in this 
regard. 

VI. CONCLUSION 
In this paper we present an efficient method to construct an RBFN 

classifier whose performance was shown to be as good as the existing 
classification methods on the data sets used in this paper. Our 
contribution consists of two parts. First, we propose an incremental 
hierarchical clustering algorithm for constructing the hidden layer 
effectively and efficiently. Second, an improved least mean square error 
method that calculates the weights between the hidden and the output 
layers of an RBFN is introduced.  

In the proposed clustering approach, the formation of clusters is 
controlled by the class lables of training samples and therefore the 
clusters identified are well adapted to the local distributions of training 
instances. In addition, it does not need to compute all the pairwise 
distances or similarity scores between training instances. Experimental 
results show that the data classifier constructed is capable of delivering 
comparable classification accuracy as the SVM and the kernel density 
estimation based classifier that we have recently proposed, while 
enjoying significant execution efficiency in handling data sets that 
contains a high percentage of redundant training instances.  

Also, the proposed least mean square error method is efficient and 
with good theoretical foundations. The traditional least mean square 
method requires large memory to store the matrix and consumes a lot of 
execution time for the matrix multiplications and inversions. The 
improved method proposed by [12] is more efficient and practical than 
the traditional one, but it may suffer the singular matrix problem and 
fails to build the classifier in such case. In this paper, we solve the 
singular matrix problem by using the regularization theory, and this 
provides a good framework for constructing an RBFN in classification 
problems. 

Experimental results also reveal that the approaches that have been 
proposed in recent years for solving the efficiency issues of the SVM 
and the kernel density estimation based mechanism all lead to slight 
degradation of classification accuracy. Thus, how to improve the 
efficiency of learning algorithms without sacrificing classification 
accuracy still deserves further studies. 
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計畫成果自評：本計劃已達成原計劃內容所規劃之進度，將所開發漸進式階層分群演算法

應用於建構網路中的隱藏層，並提升用於計算網路中隱藏層與輸出層之間權重的最小平方

錯誤方法之品質。此漸進式的架構大大地減少處理大量資料時記憶體空間的需求。實驗結

果顯示我們所建構的分類器可以提供與支持向量機器分類器(SVM)或是我們最近提出的以

核心密度推估方法為基礎的分類器一樣好的分類準確度，且同時提供高效能於處理那些有

高度重複特性的資料集。執行期間已將階段性結果發表於國際會議。 
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報告內容： 

一、參加會議經過 
 計算系統生物資訊國際會議在美國 Stanford 大學舉辦，自 2004 年 8 月 17 日起至 19
日止，為期三天，該會議由 IEEE Computer Society 主辦，每年舉辦一次，今年是第三次

舉辦。由於意識到計算生物(Computational Biology)及生物資訊(Bioinformatics)的重要

性，這三年的會議都受到全世界各學術與研究單位高度的注視，也因次會議的水準相當

高。 
 

此次會議，分別規劃了 4 場 Keynote Speech，7 場 Invited Speech，並有約 30 篇論文

演講發表及 4 場 Poster Session，發表論文的國家總共含括五大洲 16 個國家。有來自世

界各地學者、學生與廠商與會。 
 
此次會議所涵蓋的層面非常廣，舉凡 whole genome analysis、gene expression 

analysis、protein motif analysis、pattern discovery、sequence search and alignment、protein 
family classification、protein structure and function prediction、molecular evolution and 
phylogeny、functional genomics 及 molecular biology databases and data mining 等主題都是

本次會議之重點。 
 
論文演講發表共分為 13 個議程，分別為「Structural Bioinformatics」、「Genomics,」、

「Transcriptomes」、「Evolution and Phylogeny」「Proteomics」、「Applied Bioinformatics」、
「Data Mining and Ontology」、「Fractals and Bioinformatics」、「Data Base and Ontology」、
「Pathways and Networks」、「Protein motif analysis and pattern discovery」、「Fuzzy 
computing in biomedical applications」、「Bioinspired systems」、「Advances in biocomputing」
及「Gene expression analysis」。這些議程的內容或從實務面、或從理論架構，都與「計

算生物及生物資訊」的主題相關。 
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二、與會心得 
在基因體學相關研究備受重視之此時，由於其相關資訊的不斷的累積，基因資料庫

之建置，及新的分析方法不斷的推出，學者專家、研究機構、藥廠及生物技術公司皆湧

入基因組織研究中。基因組研究毫無疑問將成為未來第二波工業革命—生物技術的基

石。意識到此一研究之重要性，資訊工程者亦須責旁貸的參與此一重要的研究計畫。資

訊工程者須研發先進的計算機工具及技能以協助生物學家辨識基因之基礎特徵，進而瞭

解其結構及功能；有系統化的應用計算機系統提供新的有效方式以協助生物學家觀測生

物的演化過程及更精確的描述生物系統；同時需能提供有效之儲存方法存放大量的基因

資訊，及有效之檢索方法以綜覽基因資訊進而分析之。「生物資訊學」由此而生。 
 
    本次大會即涵蓋了這些主題，對於如何分析及處理分子層次之生物資訊，及以計算

機、數學及統計模式分析分子生物現象，有相當多的主旨演講及論文發表。同時對於技

術層面之技巧亦有著墨，例如資料結構之設計、機器學習、演化計算、模糊邏輯、類神

經網路、訊息學及圖形識別。所以此次會議提對資訊工程與生物科學共同合作研究開發

提供了一個良好之基石及遠景。 
 
    人類基因組之研究從「結構基因學」，到現在熱門的「功能基因學」，以至於未來的

「演化基因學」，都讓我們對「生命」產生不同的認識，這是二十世紀科學上最重要的

里程碑。資訊處理 、數學模式、人工智慧、圖形識別、系統分析等都將成為未來生命

科學研究之主流，缺乏這方面之認知，我們就無法培養出能因應未來這種研究趨勢的科

學家。台灣的科學家已在全球的人類基因解讀計畫中缺席，我們應積極致力於培養未來

生命科學家，同時應掌握「國際合作」及「跨領域合作」之趨勢，摒棄門戶之見，大家

共同合作，並主動參與相關國際性事務，將有有助於我國生物資訊科技產業之精進。 
 
三、建議 

各國已投資相當多的經費於生物資訊的研發，我國則尚在起步階段，相關產業界在

此領域的投入相當有限，如何促進產業的投入並加強學術合作或產學合作，如何整合國

內各研究於生物資訊之研究都是值得進一步討論的課題。 
 
另外這是本人任教後第一次出國參加國際會議，令人印象深刻的是，國外的研究學

者與廠商都非常熱心的參與會議之研討，積極發問並全程參與。尤其是在生物資訊已有

盛名之學者都還全程參與至最後一場演講，其好學精神令人相當佩服。同時演講者提出

頗多深具創意的論點，讓本人深覺此行收穫良多。本人深覺此行收穫良多，對於國科會

贊助此行經費，深感謝意，並希望國科會能嘉惠更多的研究學者，尤其是莘莘學子。 
 

四、攜回資料 
1. 研討會論文集 
2. 大會議程手冊 

.  
 
 
 


