
行政院國家科學委員會專題研究計畫  期中進度報告 

 

 

子計畫一：極大型混合尺寸模組的平面規劃與擺置(1/3)

 

 
計畫類別：整合型計畫 

計畫編號：NSC92-2220-E-002-013- 

執行期間：92年11月01日至93年07月31日 

執行單位：國立臺灣大學資訊工程學系暨研究所 

 

 

 

 

計畫主持人：楊佳玲 

共同主持人：張耀文 

 

 

 

 

報告類型：完整報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 93年5月28日

 



 1

行政院國家科學委員會補助專題研究計畫成果報告 
※※※※※※※※※※※※※※※※※※※※※※※※※

※                                              ※     
※      極大型混和尺寸模組的平面規劃與擺置          ※     
※                                              ※ 
※※※※※※※※※※※※※※※※※※※※※※※※※ 

 
 
計畫類別：□個別型計畫  x整合型計畫 
計畫編號：NSC 93-2220-E-002 –001 - 
執行期間：  92年 11月 1 日至 93年 7 月31日 

 
計畫主持人：楊佳玲 
共同主持人：張耀文 
計畫參與人員： 
 
 
 
 
 
 
 
 
本成果報告包括以下應繳交之附件： 
□赴國外出差或研習心得報告一份 
□赴大陸地區出差或研習心得報告一份 
□出席國際學術會議心得報告及發表之論文各一份 
□國際合作研究計畫國外研究報告書一份 

 
 
 
執行單位：台灣大學資訓工程學系 
 
中 華 民 國 93 年 5 月 30日 

 

 



 2

 

行政院國家科學委員會專題研究計畫成果報告 
先進電子設計自動化技術研發  

子計畫一：極大型混和尺寸模組的平面規劃與擺置 (1/3) 

 
計畫編號：NSC 93-2220-E-002 –001 - 
執行期限：92年11月1日至93年7月31日 

計畫主持人：楊佳玲    台灣大學資訊工程系 

共同主持人：張耀文    台灣大學電子工程研究所 

e-mail: yangc@csie.ntu.edu.tw 

ywchang@cc.ee.ntu.edu.tw 

http://www.csie.ntu.edu.tw/~yangc 

http://cc.ee.ntu.edu.tw/~ywchang/ 

 
一、中文摘要 
由於奈米 IC 技術的持續進步，設計的複雜度

以驚人的速度在成長，IP模組被廣泛的重複利

用，且大量的緩衝區塊(buffer block)被用來

最佳化晶片的整體延遲。除此之外，競爭激烈

的 IC 市場需要迅速及有效的工具來處理超大

型的設計和對不同平面規劃的限制做最佳

化。這些趨勢都使得快速、有效、可處理超大

型混和大小模組的平面規劃工具成為必要。為

因應超大型混和大小模組的平面規劃，在今年

的計畫中，我們提出快速退火模擬法(fast 

simulated annealing)來處理大型的電路。我

們也利用快速退火模擬法來處理各種平面規

劃的限制，顯示出快速退火模擬法的優越性。 

關鍵詞：平面規劃，擺置，多層架構，奈米技

術 模擬退火法 
Abstract 

Design complexities are growing at a breathtaking 
speed with the continued improvement of the 
nanometer IC technologies. On one hand, designs with 
one billion transistors are even expected within this 
decade, IP modules are widely reused, and a large 
number of buffer blocks are used for delay 
optimization as well as noise reduction in nanometer 
interconnect-driven floorplanning/placement, which all 
drive the need of a tool to handle ultra large-scale 
mixed-size modules/cells. On the other hand, the 
highly competitive IC market requires faster 
design convergence, faster incremental design 
turnaround, and better silicon area utilization. Efficient 
and effective hierarchical design methodology and 
tools capable of placing and optimizing ultra 
large-scale mixed modules and cells are essential for 
such large designs.  In this year’s report, we proposed 
a fast simulated annealing (Fast-SA) to handle the ever 

growing circuit size.  We also use the Fast-SA to 
handle different modern floorplanning constraints to 
demonstrate the effectiveness and the efficiency of our 
Fast-SA method. 
Keyword: fixed-outline floorplanning, 
placement, multilevel framework, nanometer 
technology, simulated annealing 
二、Introduction & Objective  

In 1983, Kirpatrick, Gelatt, and Vecchi observed the 
analogy between a combinatorial optimization problem and 
the problem to determine the lowest-energy ground state of 
a physical system with many interacting atoms [10].  They 
generalized the basic approach by introducing a 
multi-temperature approach in which the temperature is 
lowered slowly in stages. At each temperature, the 
system is simulated by Metropolis' procedure until the 
system reaches equilibrium.  This is so-called simulated 
annealing.  Since then, the simulated annealing technique 
has been very successfully applied to many optimization 
problems.  For VLSI design automation, simulated 
annealing is widely used in floorplanning, placement, 
routing, etc.  Due to its popularity and usefulness, several 
variants of simulated annealing have been proposed in the 
literature.  For example, Otten and van Ginneken in [14,15] 
and Wong, Leong, and Liu in [17] studied the mechanism of 
simulated annealing in great depth by applying annealing to 
floorplan design.  However, the excessive running time is a 
significant drawback of the simulated annealing process.  
Some adaptive temperature schedule techniques are also 
introduced to simulated annealing process to save iterations 
[1,16].  Other possibility is using a better perturbation 
method to perform a better local search [4].  This kind of 
methods is confined by the given problem and is thus not 
general. Recently, Hentschke mixed random perturbations 
and greedy perturbations to improve simulated annealing 
based placement [7], but the greedy perturbation scheme is 
not popular for those applications.  In this report, we 
propose a fast simulated annealing scheme, called Fast-SA, 
to improve the annealing schedule for better solution 
convergence speed and stability.  It consists of three stages 
of temperature modification. The fist stage is like a random 



 3

search.  The second stage is a pseudo greedy local search.  
Finally, the third stage is a hill-climbing stage to avoid 
bogging in a local minimum in the second stage.  Based on 
the B*-tree floorplan representation [5], three types of 
modern floorplanning problems are examined to 
demonstrate the effectiveness and efficiency of Fast-SA: (1) 
classical floorplan design, (2) fixed-outline floorplanning, 
and (3) position constrained (e.g., bus-driven) floorplanning.  
For classical floorplan design, simulations show that 
Fast-SA achieves an average speedup of 17 times over 
classical SA.  To cope with fixed-outline floorplanning, we 
extend the Fast-SA to Adaptive Fast-SA to demonstrate the 
effectiveness of the new annealing scheme.  The Adaptive 
Fast-SA controls the parameters of the desired aspect ratio, 
area, and wirelength dynamically according to the success 
rate of fitting into the given floorplan outline for the 500 
most recent floorplan solutions.  Experimental results show 
that our method achieves an average success rate of 100% 
(99.7%) for fixed-outline floorplanning with a dead space of 
15% (10%) and various aspect ratios, compared to average 
success rates of 78% and 85% obtained by the recent works 
[2,3,4] and [11], respectively.  In particular, even though 
fixed-outline floorplanning is considered much harder than 
classical outline-free floorplanning, our B*-tree based 
Fast-SA for fixed-outline floorplanning achieves 
floorplanning quality of as good as classical outline-free 
floorplanning.  Floorplanning with position constraints are 
prevailing in modern floorplan design.  There exist many 
types of position constraints in modern floorplanning, such 
as bus, range, alignment, symmetry constraints.  To test 
Fast-SA for position constrained floorplanning, we consider 
the most recently addressed bus-driven floorplanning [18].  
Compared with the most recent work by Xiang et al [18], 
our method can obtain bus-constrained floorplans of less 
20% of dead space on average by using much less CPU time 
for hard modules.  When coping with soft modules, our 
method can even reduce 55% of dead space on average.  
We note that the new simulated annealing schemes 
developed in this report are general and thus can be applied 
to other optimization problems. 

三、Research Techniques 
1. Simulated annealing 

 
Figure 1. The analog of the solution space as a 
one-dimensional hills and valleys. 

Simulated annealing is a widely used non-deterministic 
algorithm for solving combinatorial optimization problems.  
Every combinatorial optimization problem could be 
discussed in terms of a state space.  A state is a 
configuration of the combinatorial objects involved.  There 
are typically many configurations in a combinatorial 
optimization problem.  Only some of these correspond to 
global optima.  A greedy, iterative improvement method 

starts with a given state and examines a local neighborhood 
of the states for better solutions.  The iterative method 
moves from the current state to one in the local 
neighborhood, if the latter has a better cost. If all the 
neighborhood solutions have inferior costs, the algorithm is 
said to have converged to a local optimum.  In Figure 1, 
the states are shown along the x-axis, and it is assumed that 
two consecutive states are local neighbors.  If the greedy, 
iterative method starts at an initial solution S, it could find a 
local minimum like L; however, it could not find the global 
minimum like G unless it ``climbs the hill." Simulated 
annealing is an algorithm with non-zero probability for 
``up-hill" moves.  The probability depends on the 
magnitude of the ``up-hill" movement and temperature (for 
modelling the search time---the lower the temperature, the 
longer the search time).  The probability is defined as 
follows:  

, 
where △C is the difference of the cost of the neighboring 
state and the cost of the current state, and T is the current 
temperature.  Thus, at very high temperature, say T →∞, 
the above probability approaches 1.  In contrast, when T 
→ 0, the probability e{ - △ C / T } approaches 0. 

1.1. Floorplan Design Using Simulated 
Annealing 

There are four basic ingredients for simulated annealing: 
solution space, neighborhood structure, cost function, and 
annealing schedule.  In this report, we use the B*-tree 
representation to model a floorplan.  Each B*-tree 
corresponds to a floorplan.  Therefore, the solution space 
consists of all B*-trees with the given nodes (modules).  To 
find a neighboring solution, we perturb a B*-tree to get 
another B*-tree by the following operations: 

Op1: Rotate a block. 
Op2: Move a node/block to another place. 
Op3: Swap two nodes/blocks. 
For Op1, we rotate a block orientation in a B*-tree node.  

It does not affect the B*-tree structure. For Op2, we delete a 
node and move it to another place in the B*-tree.  For Op3, 
we swap two nodes in the B*-tree.  After packing for the 
B*-tree, we obtain a new floorplan.  Whether or not we 
take the new solution depends on the aforementioned 
probability which in turns depends on its cost function.  
The cost function is defined based on problem requirements.  
For example, we may adopt the following cost function to 
optimize the wirelength and area of a floorplan: 

    
Wnorm

W
Anorm

A )1( αα −+=Φ ,  where 

A is the current area, Anorm is the average area, W is the 
current wirelength, Wnorm is the average wirelength, and 
α controls the weight between area and wirelength. 

1.2. Fast Annealing Schedule 
The excessive running time is a significant drawback of 

the classical simulated annealing process.  To reduce the 
running time of simulated annealing, we shall save the 
iterations.  Choosing a smallerλ can definitely reduce the 
running time.  However, if the temperature reduces too fast, 
then it is very likely to stop at a local optimum.  To 



 4

integrate the random search and hill climbing more 
efficiently, we proposed a Fast Simulated Annealing 
(Fast-SA) process.  The annealing process consists of three 
stages: (1) The high temperature random search stage, (2) 
the pseudo greedy local search stage, and (3) the hill 
climbing search stage.  At the first stage, we let T → ∞ 
so that the probability of accepting a worse solution 
approaches 1.  The process is like a random search to find 
the best solution. At the second stage, we let T → 0.  
Since the temperature is very low, we only accept a very 
small number of worse solutions.  The behavior is like a 
greedy local search, but we still accept a small number of 
``hill-climbing" solutions.  We call this process as the 
pseudo greedy local search stage.  The third stage is the hill 
climbing search stage.  The temperature raises again to 
facilitate hill climbing.  Thus, it can escape from the local  
minimum and search for better solutions.  The temperature 
reduces gradually, and very likely it finally converges to a 
globally optimal solution.  Since the new simulated 
annealing scheme saves many iterations to explore the 
solution space, it could devote more time to find better 
solutions in the hill climbing stage.  This makes the 
annealing much more efficient and effective.  To 
implement the annealing scheme, we define the temperature 
of the Fast-SA by the following equations: 

 
Here, △cost is the average cost change, and n is the 

number of iterations.  At the first iteration, the temperature 
is set according to the given initial accepting probability P.  
Since P is usually set close to 1, so it performs the random 
search to find a good solution.  Then, it enters the pseudo 
greedy local search stage until k iterations.  Here, c is a 
user-defined parameter to control how low the temperature 
is in the second stage.  We usually choose a large c to make 
T → 0 so that it almost only accepts good solutions to 
perform pseudo greedy searches.  After k iterations, the 
temperature jumps up to further improve the solution quality.  
<△cost> also affects the reduction rate of the temperature.  
If the cost of a neighboring solution changes significantly, <
△cost> is larger and thus the temperature reduces less. In 
contrast, if <△cost> is smaller, it implies that the cost of the 
neighboring solution only changes a little; for this case, we 
reduce the temperature more to save iterations.  The 
behavior of the temperature is illustrated in Figure 2(b).  
The number of iterations in the second stage can be 
determined by the problem size.  The smaller the problem 
size, the smaller the k value.  In our cases, we set c = 100 
and k = 7 for floorplanning problems and it could handle 
tens to hundreds of blocks.  Note that the initial 
temperature for the Fast-SA is the same as the classical SA, 
i.e., T1 = △avg/lnP.  The initial temperature T1 needs to 
keep high to avoid getting bogged in a local minimum in the 
very beginning. 

2. Fixed-outline Floorplanning 
The classical floorplanning formulation determines the 

layout of given blocks without given a fixed outline. Many 
previous works focused on minimizing floorplan area based 
on fully or partially topological floorplan representations, 
such as sequence pair [13], O-tree [6], B*-tree [5], TCG 

[12], CBL [8], etc.  These floorplanners can easily obtain 
floorplan solutions with dead space far below 10%. 
However, for the top-down design of very large-scale ASICs 
and SoCs, a certain outline is usually given.A floorplan with 
pure area minimization without any fixed-outline constraints 
may completely useless because it cannot fit into the given 
outline.  Modern floorplanning should be formulated as a 
fixed-outline (fixed-die) problem [9], and mixed macro and 
cell placement can be done through the fixed-outline 
floorplanning technique [3].  With the outline constraint, 
we shall optimize the given objectives, such as wirelength 
and/or area.  The fixed-outline floorplanning was shown to 
be much more difficult than the outline-free floorplanning 
[4].   

 
Figure 2. Temperature v.s. time for classical simulated 
annealing and Fast-SA. The Fast-SA consists of three stages. 

2.1. Fixed-outline constraint 
For a collection of blocks with the total area A and the 

given maximum percent of dead space γ, we construct a 
fixed outline with the aspect ratio R*, i.e., height/width.  
Since a floorplanner can change orientations of individual 
blocks, we choose R* ≧ 1.  The height H* and width W* 
of the outline is defined by the following equations [4]. 

 
2.2. Algorithm Overview 

We use our Fast-SA to search for a desired solution. 
For some blocks, they only have one feasible orientation to   
fit into the fixed outline.  We mark all such blocks as 
non-rotatable blocks and set their orientations before 
performing perturbations. For Op1, we can only choose a 
rotatable block.  Since we intend to minimize the 
wirelength/area of the floorplan, we always record the 
floorplan of the minimum wirelength/area during simulated 
annealing.  After the temperature cools down enough, we 
terminate the simulated annealing process and return the 
best floorplan.  Unlike outline-free floorplaning, we only 
modify the objective function to cope with fixed-outline 
flooplanning.  We do not have to add any other operations 
for the perturbation, and Fast-SA is capable of finding 
feasible solutions efficiently. 

2.3. Cost Function 
In addition to the wirelength/area objective, we add an 

aspect ratio penalty to the cost function.  The idea is that if 
the aspect ratio of the floorplan is similar to that of the 
outline, and the dead space of the floorplan is smaller than 
the maximum percentage of dead space γ , then the 
floorplan can fit into the outline.  Assume that the current 
aspect ratio of the floorplan is R.  We define the cost 



 5

function Φ by the following equation: 
   

, 
where A is the current floorplan area, W is the current 
wirelength, R is current floorplan aspect ratio, and R* is 
desired floorplan aspect ratio. α, β, γare user-defined 
parameters.  

2.4. Adaptive Simulated Annealing 
Since R* and λ are user-specified parameters, the 

weight between area and the aspect ratio should be 
determined by the given values.  We do not know what 
$\alpha$ should be, and it is not feasible to try every 
$\alpha$ value in the cost function because it would spend 
too much time. So we use an adaptive method to control 
$\alpha$ according to $n$ most recent floorplans found.  
The area weight $\alpha$ is defined by the following 
equation: 

,      
where nfeasible is the number of feasible solutions in n most 
recent floorplan solutions, and αbase is chosen by the user. 
From our experiments and observations, αbase = 0.5 is 
suitable for most cases. Once α is determined, the weight 
of the aspect-ratio penalty is also determined.   

3. Bus-Driven Floorplanning 
3.1. Problem Formulation 

We consider a chip with multiple metal layers, and 
buses are assigned on the top two layers. The orientation of 
buses is either horizontal or vertical.  The problem of 
bus-driven floorplanning (BDF) is defined as follows [18]: 
Given n rectangular macro blocks B = {bi | i=1, ..., n} and m 
buses U = {ui | i=1,...,m}, each bus ui has a width ti and goes 
through a set of blocks Bi, where Bi ⊆  B and |Bi| = ki.  
Decide the positions of macro blocks and buses such that 
there is no overlap between any two blocks or between any 
two horizontal (vertical) buses, and bus ui goes through all 
of its ki blocks. At the same time, the chip area as well as the 
bus area are minimized. 

3.2. Cost Function 
We apply Fast-SA to B*-tree to find optimal solutions 

for bus-driven floorplanning.  Since the objective function 
of bus-driven floorplanning is to minimize the chip area and 
the total bus area and we must satisfy all bus constraints, we 
define the cost function as follows: 

Cost = α A +β B + γ M 
where A is the chip area, B is the bus area, and M is the 

number of unassigned buses. α , β , and γ  are 
user-specified coefficients. 

3.3. Algorithm Overview 
We initialize the B*-tree as a complete tree and start 

the Fast-SA process.  The soft block adjustment is also an 
operation for perturbation.  We perturb a B*-tree to another 
by the following operations: 

Op1: Rotate a block. 
Op2: Move a block to another place. 
Op3: Swap two blocks. 

Op4: Resize a soft block. 
After each perturbation, we check if bus constraints are 

feasible and determine the locations of buses.  We also 
check bus overlapping so that no two buses overlap each 
other.  After evaluating the floorplan, the cost can be 
determined by the chip area A, bus area B of feasible buses, 
and the number of unassigned buses M.  In the Fast-SA 
process, we record the floorplan solution with the most 
number of feasible buses and the smallest cost in the 
Fast-SA process.  After the Fast-SA process stops, we 
report the smallest cost with the least number of unassigned 
buses.  Thus, we can find the desired floorplan with the 
most feasible buses. 

四、Bibliography 
[1] E.H.L. Aarts, P.J.M. van Laarhoven, ``A new polynomial time 
cooling schedule," Proceedings of the ICCAD, 1985. 
[2] S. N. Adya and I. L. Markov, ``Fixed-outline 
Floorplanning:Enabling Hierarchical Design", IEEE Trans. on VLSI 
Systems, vol 11(6), December 2003,  pp. 1120-1135 
[3] S. N. Adya and I. L. Markov, ``Consistent Placement of 
Macro-Blocks using Floorplanning and Standard-Cell Placement", 
International Symposium on Physical Design (ISPD), pp. 12-17, 
San Diego, 2002. 
[4] S. N. Adya and I. L. Markov, ``Fixed-outline floorplanning 
through better local search,'' Proceedings of the ICCD, pp. 328-334, 
2001. 
[5] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, 
``B*-trees: a new presentation for non-slicing floorplans," 
Proceedings of the DAC, pp. 458-463, 2000. 
[6] P.-N. Guo, T. Takahashi, C.-K. Cheng, and T. Yoshimura, 
``Floorplanning using a tree representation," IEEE Transaction on 
Computer-Aided Design, pp. 281-289, 2001 
[7] R.F. Hentschke, R.A.D.L. Reis, ``Improving simulated 
annealing placement by applying random and greedy mixed 
perturbations," Proceedings of 16th Symposium on Integrated 
Circuits and Systems Design, pp. 267-272, 2003. 
[8] X. Hong, et al., ``Corner block list: an effective and efficient 
topological representation of non-splicing floorplan," Proceedings 
of the ICCAD, pp. 8-12, 2000. 
[9] A. B. Kahng, ``Classical floorplanning harmful?" Proceedings 
of the ISPD}, pp. 207-213, 2000. 
[10] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, ``Optimization 
by simulated annealing," Science, pp.671-680, 1983. 
[11] C.-T. Lin, D.-S. Chen, and Y.-W. Wang, ``Robust 
fixed-outline floorplanning through evolutionary search," 
Proceedings of the ASPDAC, pp. 42-44, 2004. 
[12] J.-M. Lin and Y.-W. Chang, ``TCG: a transitive closure graph 
based representation for non-slicing floorplans," Proceeding of the 
DAC, pp. 764-769, 2001. 
[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, 
``Rectangle-packing based module placement," Proceedings of the 
ICCAD, pp. 472-479, 1995. 
[14] R.H.J.M. Otten and L.P.P.P. van Ginneken, The Annealing 
Algorithm, Kluwer academic pulishers, Boston, 1989. 
[15] R.H.J.M. Otten and L.P.P.P. van Ginneken, ``Floorplan design 
using annealing," Proceedings of ICCAD, pp. 96-98, 1984. 
[16] J.M. Varanelli and J.P. Cohoon, ``A two-stage simulated 
annealing methodology," Proceedings of the Fifth Great Lakes 
Symposium on VLSI, pp. 50-53, 1995 
[17] D.F. Wong, H.W. Leong, and C.L. Liu, Simulated Annealing 
for VLSI Design, Kluwer academic pulishers, Boston, 1988. 
[18] Hua Xiang, Xiaoping Tang, and Martin D.F. Wong, `` 
Bus-Driven Floorplaning," Proceedings of the ICCAD, pp. 66-73, 
2003. 


