(11

NSC92-2220-E-002-013-
92 11 01 93 07 31

93 5 28

O o oO

U X
NSC 93-2220-E-002 —001 -
92 11 1

93 5

93

30

31

(1/ 3)

N S @3-2220-E-002 —001 -

92

11 1 93 7 31
e-mayvbhngc@csie.ntu. edu.
ywchang@cc. ee.ntu. edu
http:// www. csie.ntu.edu
ee.ntu. edu

http:/ /] cc

bl o CKléy?Nord:

growing circuit size. We also use the Fast-SA to
handle different modern floorplanning constraints to
demonstrate the effectiveness and the efficiency of our
Fast-SA method.

fixed-outline floor planning,
placement, multilevel framework, nanometer
technology, smulated annealing

Introduction & Objective

In 1983, Kirpatrick, Gelatt, and Vecchi observed the
analogy between a combinatorial optimization problem and
the problem to determine the lowest-energy ground state of

(fas g physica system with many interacting atoms [10]. They

I C
| P
(buffer
I C
simul ated annealing)

Abstract

Design complexities are growing at a breathtaking
speed with the continued improvement of the
nanometer |C technologies. On one hand, designs with
one billion transistors are even expected within this
decade, |P modules are widely reused, and alarge
number of buffer blocks are used for delay
optimization as well as noise reduction in nanometer
interconnect-driven floorplanning/placement, which all
drive the need of atool to handle ultralarge-scale
mixed-size modules/cells. On the other hand, the
highly competitive IC market requires faster
design convergence, faster incremental design
turnaround, and better silicon area utilization. Efficient
and effective hierarchical design methodology and
tools capable of placing and optimizing ultra
large-scale mixed modules and cells are essential for
such large designs. In this year’ s report, we proposed
afast simulated annealing (Fast-SA) to handle the ever

generalized the basic approach by introducing a
multi-temperature approach in which the temperature is
lowered slowly in stages. At each temperature, the

system is simulated by Metropolis procedure until the
system reaches equilibrium. This is so-called simulated
annedling. Since then, the simulated annealing technique
has been very successfully applied to many optimization
problems. For VLSl design automation, simulated
anneding is widely used in floorplanning, placement,
routing, etc. Due to its popularity and usefulness, severd
variants of simulated annealing have been proposed in the
literature. For example, Otten and van Ginneken in [14,15]
and Wong, Leong, and Liu in [17] studied the mechanism of
simulated annealing in great depth by applying annealing to
floorplan design. However, the excessive running timeis a
significant drawback of the simulated annealing process.
Some adaptive temperature schedule techniques are also
introduced to simulated annealing process to save iterations
[1,16]. Other possibility is using a better perturbation
method to perform a better local search [4]. This kind of
methods is confined by the given problem and is thus not
general. Recently, Hentschke mixed random perturbations
and greedy perturbations to improve simulated annealing
based placement [7], but the greedy perturbation scheme is
not popular for those applications. In this report, we
propose a fast simulated annealing scheme, called Fast-SA,
to improve the anneding schedule for better solution
convergence speed and stability. It consists of three stages
of temperature modification. The fist stage is like a random

t w

t w
t w/
t w/ ~ywch

-y

search. The second stage is a pseudo greedy local search.
Finaly, the third stage is a hill-climbing stage to avoid
bogging in alocal minimum in the second stage. Based on
the B*-tree floorplan representation [5], three types of
modern floorplanning problems are examined to
demonstrate the effectiveness and efficiency of Fast-SA: (1)
classical floorplan design, (2) fixed-outline floorplanning,
and (3) position constrained (e.g., bus-driven) floorplanning.
For classica floorplan design, simulations show that
Fast-SA achieves an average speedup of 17 times over
classical SA. To cope with fixed-outline floorplanning, we
extend the Fast-SA to Adaptive Fast-SA to demonstrate the
effectiveness of the new annealing scheme. The Adaptive
Fast-SA controls the parameters of the desired aspect ratio,
area, and wirelength dynamically according to the success
rate of fitting into the given floorplan outline for the 500
most recent floorplan solutions. Experimental results show
that our method achieves an average success rate of 100%
(99.7%) for fixed-outline floorplanning with a dead space of
15% (10%) and various aspect ratios, compared to average
success rates of 78% and 85% obtained by the recent works
[2,3,4] and [11], respectively. In particular, even though
fixed-outline floorplanning is considered much harder than
classical outline-free floorplanning, our B*-tree based
Fast-SA for fixed-outline floorplanning achieves
floorplanning quality of as good as classical outline-free
floorplanning. Floorplanning with position constraints are
prevailing in modern floorplan design. There exist many
types of position constraints in modern floorplanning, such
as bus, range, aignment, symmetry constraints. To test
Fast-SA for position constrained floorplanning, we consider
the most recently addressed bus-driven floorplanning [18].
Compared with the most recent work by Xiang et a [18],
our method can obtain bus-constrained floorplans of less
20% of dead space on average by using much less CPU time
for hard modules. When coping with soft modules, our
method can even reduce 55% of dead space on average.
We note that the new simulated annealing schemes
developed in this report are general and thus can be applied
to other optimization problems.

Resear ch Techniques
1. Simulated annealing

r.hl!l.l i ey ion

;.--',r

||||__||-|'|I|I"'||. 1 .
| ’ il 10030 PR IrLwmIm

|

S
[Folweion rpace)

Figure 1. The analog of the solution space as a
one-dimensional hills and valleys.

Simulated annealing is a widely used non-deterministic
algorithm for solving combinatorial optimization problems.
Every combinatorial optimization problem could be
discussed in terms of a dtate space. A state is a
configuration of the combinatorial objectsinvolved. There
are typicdly many configurations in a combinatorial
optimization problem. Only some of these correspond to
globa optima. A greedy, iterative improvement method

starts with a given state and examines a loca neighborhood
of the states for better solutions. The iterative method
moves from the current state to one in the loca
neighborhood, if the latter has a better cost. If al the
neighborhood solutions have inferior costs, the algorithm is
said to have converged to a local optimum. In Figure 1,
the states are shown along the x-axis, and it is assumed that
two consecutive states are loca neighbors. If the greedy,
iterative method starts at an initial solution S, it could find a
local minimum like L; however, it could not find the global
minimum like G unless it ““climbs the hill." Simulated
annealing is an algorithm with non-zero probability for
“up-hill" moves. The probability depends on the
magnitude of the ““up-hill" movement and temperature (for
modelling the search time---the lower the temperature, the
longer the search time). The probability is defined as

follows:

1 i irAC <0
e 2 AC =0
where C is the difference of the cost of the neighboring
state and the cost of the current state, and T is the current
temperature. Thus, at very high temperature, say T — o,

the above probability approaches 1. In contrast, when T
~ 0, the probability e~ €/T} approaches 0.

1.1 Floorplan Design Using Simulated
Annealing

There are four basic ingredients for simulated annealing:
solution space, neighborhood structure, cost function, and
annealing schedule. In this report, we use the B*-tree
representation to model a floorplan. Each B*-tree
corresponds to a floorplan. Therefore, the solution space
consists of all B*-trees with the given nodes (modules). To
find a neighboring solution, we perturb a B*-tree to get
another B*-tree by the following operations:

Opl: Rotate a block.
Op2: Move a node/block to another place.
Op3: Swap two nodes/blocks.

For Opl, we rotate a block orientation in a B*-tree node.
It does not affect the B*-tree structure. For Op2, we delete a
node and move it to another place in the B*-tree. For Op3,
we swap two nodes in the B*-tree. After packing for the
B*-tree, we obtain a new floorplan. Whether or not we
take the new solution depends on the aforementioned
probability which in turns depends on its cost function.
The cost function is defined based on problem requirements.
For example, we may adopt the following cost function to
optimize the wirelength and area of afloorplan:

Prob(§S — 8" = {

o= CJ'L+(1—CJ’)L , where
Whorm

A is the current area, Anorm is the average area, W is the
current wirelength, Wnorm is the average wirelength, and

a controls the weight between area and wirelength.

1.2. Fast Annealing Schedule

The excessive running time is a significant drawback of
the classical simulated annealing process. To reduce the
running time of simulated annealing, we shal save the
iterations. Choosing asmallerA can definitely reduce the
running time. However, if the temperature reduces too fast,
then it is very likely to stop a a loca optimum. To

integrate the random search and hill climbing more
efficiently, we proposed a Fast Simulated Annealing
(Fast-SA) process. The annealing process consists of three
stages. (1) The high temperature random search stage, (2)
the pseudo greedy local search stage, and (3) the hill
climbing search stage. At the first stage, welet T - o
so that the probability of accepting a worse solution
approaches 1. The process is like a random search to find
the best solution. At the second stage, we let T - 0.
Since the temperature is very low, we only accept a very
small number of worse solutions. The behavior is like a
greedy local search, but we still accept a small number of
“hill-climbing” solutions. We call this process as the
pseudo greedy local search stage. The third stage is the hill
climbing search stage. The temperature raises again to
facilitate hill climbing. Thus, it can escape from the local
minimum and search for better solutions. The temperature
reduces gradually, and very likely it finaly converges to a
globaly optimal solution. Since the new simulated
annealing scheme saves many iterations to explore the
solution space, it could devote more time to find better
solutions in the hill climbing stage. This makes the
annealing much more efficient and effective. To
implement the annealing scheme, we define the temperature
of the Fast-SA by the following equations:

A |
—'—Iﬁ},‘ n=1
Tp={ - 5'5-”—"” 2<n<k
."II| :: CaE T :: "
e on = K
Here, 4 iS the average cost change, and n is the

number of iterations. At the first iteration, the temperature
is set according to the given initial accepting probability P.
Since P is usualy set close to 1, so it performs the random
search to find a good solution. Then, it enters the pseudo
greedy local search stage until k iterations. Here, c is a
user-defined parameter to control how low the temperature
isinthe second stage. We usually choose alarge c to make
T - 0 so that it amost only accepts good solutions to
perform pseudo greedy searches. After k iterations, the

temperature jumps up to further improve the solution quality.

< o> aso affects the reduction rate of the temperature.
If the cost of a neighboring solution changes significantly, <

<o is larger and thus the temperature reduces less. In
contrast, if < coaxissmaler, it implies that the cost of the
neighboring solution only changes a little; for this case, we
reduce the temperature more to save iterations. The
behavior of the temperature is illustrated in Figure 2(b).
The number of iterations in the second stage can be
determined by the problem size. The smaller the problem
size, the smaller the k value. In our cases, we set ¢ = 100
and k = 7 for floorplanning problems and it could handle
tens to hundreds of blocks. Note that the initia
temperature for the Fast-SA is the same as the classical SA,
i.e, Ty = avy | n PThe initial temperature T; needs to
keep high to avoid getting bogged in alocal minimum in the
very beginning.

2. Fixed-outline Floor planning

The classical floorplanning formulation determines the
layout of given blocks without given a fixed outline. Many
previous works focused on minimizing floorplan area based
on fully or partially topological floorplan representations,
such as segquence pair [13], O-tree [6], B*-tree [5], TCG

[12], CBL [8], etc. These floorplanners can easily obtain
floorplan solutions with dead space far below 10%.
However, for the top-down design of very large-scale ASICs
and SoCs, acertain outlineis usualy given.A floorplan with
pure area minimization without any fixed-outline constraints
may completely useless because it cannot fit into the given
outline. Modern floorplanning should be formulated as a
fixed-outline (fixed-die) problem [9], and mixed macro and
cell placement can be done through the fixed-outline
floorplanning technique [3]. With the outline constraint,
we shall optimize the given objectives, such as wirelength
and/or area. The fixed-outline floorplanning was shown to
be much more difficult than the outline-free floorplanning

[4].

Fast B4

Clazsical 54

lem peralure

= -
T
(a1 ik

Figure 2. Temperature v.s. time for classicd simulated
annealing and Fast-SA. The Fast-SA consists of three stages.

2.1. Fixed-outline constraint

For a collection of blocks with the total area A and the
given maximum percent of dead space y , we construct a
fixed outline with the aspect ratio R*, i.e., height/width.
Since a floorplanner can change orientations of individual
blocks, we choose R* 1. Theheight H* and width W*
of the outline is defined by the following equations [4].

H =/(1l+TAR W™ =

2.2. Algorithm Overview

We use our Fast-SA to search for a desired solution.
For some blocks, they only have one feasible orientation to
fit into the fixed outline. We mark al such blocks as
non-rotatable blocks and set their orientations before
performing perturbations. For Opl, we can only choose a
rotatable block. Since we intend to minimize the
wirelength/area of the floorplan, we aways record the
floorplan of the minimum wirelength/area during simulated
annedling. After the temperature cools down enough, we
terminate the simulated annealing process and return the
best floorplan. Unlike outline-free floorplaning, we only
modify the objective function to cope with fixed-outline
flooplanning. We do not have to add any other operations
for the perturbation, and Fast-SA is capable of finding
feasible solutions efficiently.

2.3. Cost Function

In addition to the wirelength/area objective, we add an
aspect ratio penalty to the cost function. Theideaisthat if
the aspect ratio of the floorplan is similar to that of the
outline, and the dead space of the floorplan is smaller than
the maximum percentage of dead space y , then the
floorplan can fit into the outline. Assume that the current
aspect ratio of the floorplan is R. We define the cost

(1 +T)A/R"

function @ by the following equation:

P =0d+ W +(1l—o- F)R-R)

where A is the current floorplan area, W is the current
wirdlength, R is current floorplan aspect ratio, and R* is
desired floorplan aspect ratio. a , B, y are user-defined
parameters.

2.4. Adaptive Smulated Annealing

Since R* and A are user-specified parameters, the
weight between area and the aspect ratio should be
determined by the given values. We do not know what
$aphat should be, and it is not feasible to try every
$laphas value in the cost function because it would spend
too much time. So we use an adaptive method to control
$apha$ according to n most recent floorplans found.
The area weight $alpha$ is defined by the following
equation:

; N feazible
¥ = (Yhaae + (J. —_

n

where Negipe 1S the number of feasible solutions in N most
recent floorplan solutions, and a . iS chosen by the user.
From our experiments and observations, O pee = 0.5 is
suitable for most cases. Once a is determined, the weight
of the aspect-ratio penalty is also determined.

3. Bus-Driven Floorplanning

3.1. Problem Formulation

We consider a chip with multiple metal layers, and
buses are assigned on the top two layers. The orientation of
buses is either horizontal or vertica. The problem of
bus-driven floorplanning (BDF) is defined as follows [18]:
Given n rectangular macro blocks B = {b; | i=1, ..., n} and m
busesU = {u; | i=1,...,m}, each bus u; has a width t; and goes
through a set of blocks B;, where B; [1 B and |Bj| = ki
Decide the positions of macro blocks and buses such that
there is no overlap between any two blocks or between any
two horizontal (vertical) buses, and bus u; goes through all
of its k; blocks. At the same time, the chip area as well asthe
bus area are minimized.

3.2. Cost Function

We apply Fast-SA to B*-tree to find optimal solutions
for bus-driven floorplanning. Since the objective function
of bus-driven floorplanning is to minimize the chip area and
the total bus area and we must satisfy all bus constraints, we
define the cost function as follows:

Cost=a A+ B+y M

where A isthe chip area, B isthe bus area, and M isthe
number of unassigned buses. o , B, and y ae
user-specified coefficients.

3.3. Algorithm Overview

We initialize the B*-tree as a complete tree and start
the Fast-SA process. The soft block adjustment is also an
operation for perturbation. We perturb a B*-tree to another
by the following operations:

Op1l: Rotate a block.
Op2: Move ablock to another place.
Op3: Swap two blocks.

Op4: Resize a soft block.

After each perturbation, we check if bus constraints are
feasible and determine the locations of buses. We aso
check bus overlapping so that no two buses overlap each
other. After evaluating the floorplan, the cost can be
determined by the chip area A, bus area B of feasible buses,
and the number of unassigned buses M. In the Fast-SA
process, we record the floorplan solution with the most
number of feasible buses and the smallest cost in the
Fast-SA process. After the Fast-SA process stops, we
report the smallest cost with the least number of unassigned
buses. Thus, we can find the desired floorplan with the
most feasible buses.

Bibliography

[1] EH.L. Aarts, P.J.M. van Laarhoven, “A new polynomial time
cooling schedule," Proceedings of the ICCAD, 1985.

[2] S N. Adya and I. L. Markov, “Fixed-outline
Floorplanning:Enabling Hierarchical Design”, IEEE Trans. on VLS|
Systems, vol 11(6), December 2003, pp. 1120-1135

[3] S.N. Adyaand I. L. Markov, **Consistent Placement of

Macro-Blocks using Floorplanning and Standard-Cell Placement”,
International Symposium on Physical Design (ISPD), pp. 12-17,
San Diego, 2002.

[4] S. N. Adya and I. L. Markov, ““Fixed-outline floorplanning
through better local search," Proceedings of the ICCD, pp. 328-334,
2001.

[5] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S-W. Wu,
TB*-trees: a new presentation for non-sicing floorplans,”
Proceedings of the DAC, pp. 458-463, 2000.

[6] P.-N. Guo, T. Takahashi, C.-K. Cheng, and T. Yoshimura,
““Floorplanning using a tree representation,” |EEE Transaction on
Computer-Aided Design, pp. 281-289, 2001

[71 RF. Hentschke, R.A.D.L. Reis, “Improving simulated
annealing placement by applying random and greedy mixed
perturbations,” Proceedings of 16th Symposium on Integrated
Circuits and Systems Design, pp. 267-272, 2003.

[8] X. Hong, et a., "Corner block list: an effective and efficient
topological representation of non-splicing floorplan,” Proceedings
of the ICCAD, pp. 8-12, 2000.

[9] A. B. Kahng, “Classical floorplanning harmful?" Proceedings
of the ISPD}, pp. 207-213, 2000.

[10] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization
by smulated annealing," Science, pp.671-680, 1983.

[11]] C.-T. Lin, D.-S. Chen, and Y.-W. Wang, “Robust
fixed-outline floorplanning through evolutionary search,”
Proceedings of the ASPDAC, pp. 42-44, 2004.

[12] J-M. Lin and Y.-W. Chang, ~"TCG: a transitive closure graph
based representation for non-dicing floorplans,” Proceeding of the
DAC, pp. 764-769, 2001.

[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kgjitani,
“"Rectangle-packing based module placement,” Proceedings of the
ICCAD, pp. 472-479, 1995.

[14] R.H.JM. Otten and L.P.P.P. van Ginneken, The Annealing
Algorithm, Kluwer academic pulishers, Boston, 1989.

[15] R.H.JM. Otten and L.P.P.P. van Ginneken, ““Floorplan design
using annealing," Proceedings of ICCAD, pp. 96-98, 1984.

[16] JM. Varandli and J.P. Cohoon, A two-stage simulated
annealing methodology,” Proceedings of the Fifth Great Lakes
Symposium on VLSI, pp. 50-53, 1995

[17] D.F. Wong, H.W. Leong, and C.L. Liu, Simulated Annealing
for VLS Design, Kluwer academic pulishers, Boston, 1988.

[18] Hua Xiang, Xiaoping Tang, and Martin D.F. Wong, ™
Bus-Driven Floorplaning,” Proceedings of the ICCAD, pp. 66-73,
2003.

