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Foresight-Ok(n,constrained,curr) 
Tentatively schedule n in the current instruction, curr. If there is a conflict, return FALSE. 
Update absolute times (tentatively). 
Order constrained by minimum absolute time, ties are broken by maximum absolute time. 
For each m E constrained 

Place m in the earliest instruction allowable. 
return(can all elements of constrained be placed?) 

Fig. 6. Foresight-Ok algorithm. 

TABLE I 
DIFFERENCES IN FAILURE AND TIME 

Failures Time Failures Time Failures Time 

73.7 136.5 97.4 62 
C 6 88.0 0 137.2 109.2 57 
D 6 88.8 0 96.4 0 95.4 13 

using the foresight algorithm is 62.8 units, while the excess time of 
using the incremental algorithm is only 23.7 units, so the excess time 
saved by using the incremental is 62% ((62.8 - 23.7)/62.8). 

The need for incremental compaction grows with the number of 
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finite maximum arcs. Overall, the incremental algorithm saves around 
48% of excess time, and neither algorithm fails in compacting the 
examples. However, since this is still an increase over no foresight, 
it is better to use the incremental foresight algorithm only when the 
DPS fails. On the Complexity of Search Algorithms 
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111. CONCLUSIONS 

Compaction with timing constraints requires new techniques. Fore- 
sighted compaction is very effective in reducing failure inherent in 
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Consider a search key and a sorted file of records stored on a tape. 
The goal of a search algorithm is to find the record saved on the tape 
that matches the given key. 

In this note we investigate the average complexity of four known 
search algorithms, namely, sequential search (SS), binary search (BS), 
Fibonacci search (FS), and a modified version of Fibonacci search 
(mFS). For the purpose of analyzing the complexity of these four 
search algorithms, we shall only concern the average total distance 
that the reading head is required to move for searching a record. This 

Manuscript received September 21, 1990; revised October 6, 1991. This 
work was supported in part by the National Science Council of R.O.C. under 
Grant NSC79-0408-E002-07. 

K.-L. Chung is with the Department of Information Management, National 
Taiwan Institute of Technology, Taipei, Taiwan 10772, R.O.C. 

W.-C. Chen and F.-C. Lin are with the Department of Computer Science and 
Information Engineering, National Taiwan University, Taipei, Taiwan 10764, 
R.O.C. 

IEEE Log Number 9103107. 

0018-9340/92$03.00 0 1992 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 13, 2009 at 03:05 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992 

is due to the fact that moving the reading head of the tape takes much 
longer time than reading and comparing the current record with the 
search key. Hence, head movement time, which is proportional to the 
traveling distance, is the dominant factor in the search time. 

To make the complexity analysis easier, we shall assume that 
the sorted file containing F,, - 1 records, where F,, is the nth 
Fibonacci number. Our main results derived in Section I11 show that 
the complexities of SS, BS, FS, and mFS are asymptotically equal to 
O..IF,, , F,, , 0.882F7,, and 0.809F,, , respectively. Our results indicate 
that algorithm SS is optimal and gives 30% better efficiency than 
BS; mFS gives 19.1% better efficiency than BS; and FS is 11.8% 
better than BS. Some of these results are consistent with the recent 
simulation results by Nishihara and Nishino [4]. 

11. THE PERFORMANCE EQUATIONS 

This section first describes the basic concepts of the BS, FS, 
and mFS algorithms and then derives their corresponding recurrence 
equations for the average complexity formulas (complexity, for 
short). The recurrence equations for the average distance of the 
head movement required by the algorithms for external search on 
a tape were derived recently in [4]. However, they did not solve 
the recurrence equations to get the closed forms of the formulas. 
Instead, they used these recurrence equations iteratively to obtain the 
approximate performance values for some specific file sizes. In this 
note we solve the recurrence equations to get the closed forms of 
the formulas. These formulas are then used to compare the search 
complexities of the four search algorithms. 

With the BS algorithm described in [3], we begin a search process 
by comparing the search key with the record in the middle of the 
sorted file. The orbit of BS on the sorted file consists of a root node 
containing a record and the links to the left and right subtrees which 
are defined in the same way. The left subtree contains those keys 
which are smaller than the key at the root, whereas the right subtree 
contains the larger keys in comparison with the root. Given, say, 12 
records IC1 . I<z. . . . .IC12 and the search key I<, the first record being 
examined is IC6 which is labeled by the index 6. If l i e  is less than 
IC, then IiS is examined; otherwise l i 3  is examined. Continuing this 
process, the binary tree with root at level 0 describing this process is 
shown in Fig. l(a) and the search sequences with only the first three 
probes on the storage are shown in Fig. l(b). 

In order to make the analysis easier, we may assume that the 
number of records in the sorted file is F,, - 1 = 2"' - 1 for some 
I I I  2 1.  We also assume that each record is searched with equal 
probability. Under these assumptions, the complexity of BS is given 
by 

21(2'''- t  - 1) /(F,t - 1). (1) 1 T B . s ( I ~ )  = ( 2"'-'-' 
O < >  <,,! - 1 

The reading mechanism moves 2"'-'-' units of length when travers- 
ing a node at level ( i  - 1) to a node at level i .  Therefore, the time 
needed in a search step is 2"'-'-'. The number of subtrees whose 
roots are at level i is 2' and the size of those subtrees is 2'n-1 - 1.  
Furthermore, each node in the corresponding subtree accumulates 
2"'- 1 - c  

An alternative method proposed by Ferguson [ l ]  is FS which splits 
the file according to the Fibonacci sequence. The Fibonacci sequence 
is defined as 

time units when one search step is passed. 

F(, = 0. F I  = 1. 
F, = Ft-, + Ft--2 for i 2 2. 

In FS, we first examine the F,,-znd record instead of the middle 
one. The F,,-and record corresponds to the root of the Fibonacci 

I 1 l ' ' I 1 1  I 
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(a) 
1st 

2nd a d  

(b) 

Fig. 1 .  (a) A binary search tree. (b) Search sequences of BS. 

1st 

AA 
1 2 3 4 5 6 7 8 9 1 0  1 1  12 

a d  2nd 

(b) 

Fig. 2. (a) A Fibonacci search tree. (b) Search sequences of FS. 

tree containing F,, - 1 nodes. Based on the comparison result, we 
then (recursively) search either the left subtree or the right subtree 
which contains F,,-Z - 1 or Fn-l - 1 records. For example, given 12 
records (TI = 7), the Fibonacci tree describing the splitting process 
is shown in Fig. 2(a), and the search sequences of FS with the first 
three probes are shown in Fig. 2(b). 

Consequently, the total search time is equal to F,L-2(FrI - 1) plus 
the total amount of time needed in the left and right subtrees. As 
shown in Fig. 3, the distances from the root of the original tree 
to the roots of the left and right subtrees are both Fn-3. In fact, 
for any node, the distance from this node to its two subtrees are 
equal. However, since the splitting point is decided by the Fibonacci 
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Fig. 3. The recursive tree of FS. 

sequence, the sizes of these two subtrees are different, namely, 
Fn-2 - 1 for the left subtree and Fn-l - 1 for the right subtree. 

Thus, the complexity of FS is T ~ s ( n )  = pn-z/(Fn - l), where 
pn is subject to 

pn = Fn(Fn+2 - 1)  + p n - l +  Qn-1, 

qn = Fn(Fn+l - 1) + pn-2 + qn-2 for 7~ 2 2 (2 )  

with the initial conditions p o  = 0, p l  = 1, qo = 0, and 41 = 0 
[4]. Note that the initial condition can be obtained by checking the 
case n = 4. 

A modified version of FS (mFS) is proposed to keep the amount of 
head movement as small as possible [4]. In FS, the sizes of the splitted 
pair of subfiles (subtrees) always form the two numbers F, - 1 and 
F,+1- 1. In mFS, while the moving manner of the reading mechanism 
is similar to that of FS, the splitting position is decided such that the 
splitted part with smaller length F, always abuts the current position 
of the reading head. The probe sequence defined in this way can keep 
the head movement small since the reading mechanism moves only 
F, units of length in each search step. 

The modified Fibonacci tree describing the splitting process is 
shown in Fig. 4(a) and the search sequences of mFS with the 
first three probes are shown in Fig. 4(b). The complexity of mFS, 
which can be derived by virtue of Fig. 5, is equal to T , F s ( ~ )  = 
sn-2/(Fn - l), where sn is subject to recurrence 

s, = Fn(F,+2 - 1)  + s , - ~  + sn-z for n 2 2 (3 )  

with initial values SO = 0 and s 1  = 1 [4]. 

111. THE ANALYSIS OF COMPLEXITIES 
In this section, we analyze the complexities of SS, BS, mFS, and 

FS. First, the complexities of SS and BS can be analyzed rather easily. 
Theorem 1: The complexity of SS is Tss(n) M 0.5Fn. 

Proof: In SS,  the complexity Tss(n) is given by 

M 0.5Fn. 

This completes the proof. 
Theorem 2: The complexity of BS is TBS (n )  M F,, . 

Proof: Replacing the term 2" in (1) by F,, we have 

TBS(n) = ( 2"-1-z22"(2m-t - l))/(Fn - 1) 
O < z < m - l  

F, - 1 
M- (2"(2" - 1 )  - m2"-') 

"N F,. 

I 

Fig. 4. (a). A modified Fibonacci search tree. (b) Search sequences of mFS. 

n 

Fig. 5. The recursive tree of mFS. 

Before analyzing the complexities of mFS and FS, we need some 
important lemmas and corollary. The following three lemmas are 
from [2]. 

Lemma 1: Fn+, = Fm-lFn + Fn+lFm. 
Lemma 2: 

where M 1.618 and 4 M -0.618. 
Lemma 3: 
From Lemma 1-afd the fact that Fn+l M 1.618Fn [2], we obtain 

Corollary 1: F2,, M 2.236FnFn. 
Theorem 3: The complexity of mFS is T,~s(n)  M 0.809Fn. 

F k F n - k  = 9 F n  + FFn-1.  

the following corollary. 

Proof: Since T,~s(n)  = sn-2/(Fn - l), we first solve sn-2 

in (3) as follows: 

st = Fz(Fz+2 - I) + sz--l + s,-2 for i 1: 2, 

where SO = 0 and s1 = 1. 
Taking the generating function on both sides of the above equation, 

we have 

S(3)  = 3 + z S ( z )  + Z 2 S ( 3 )  + C F Z ( F 2 + 2  - l)ZZ 
1 2 2  
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where S ( z )  = 
as shown in [2]. 

right-hand side of (4), thus 

s , z z  and G ( z )  = 2 / ( 1 -  z - 2 ' )  = Cz2" F,zz 

The value of s n P 2  is equal to the coefficient of tn-' on the 

- 

S n - 2  = FkFn-k-lFvz-k+l - E FkFn-n-i. 
OSk<n-l 0 5 k <, I  - 1 

From Lemma 3, the above equation is 

n - 2  2n - 2 
Fn-2. (5)  Fn-1 - - 

Then using Lemma 2 and Corollary 1, we can calculate the 

_ -  

summation term in the right-hand side of (5) .  

FkFn-k--IFn-k+i 
OSkSn-1 

- 

+ J n + l Q n - k - l  + Q n - I d n - k + l  - 

- - + 4 k d 2 n - 2 k  - J k 4 2 n - Z k  

JZn-,,. 
(6) 

Although, there are 8 summation terms in the right-hand side of (6), 
only the following two terms need be considered: 

M 5.854F2, 
M 13.090FnFn, 

Jk42,1-2k - - (in - d 2 n ) @ 2  
O < k L n - l  4 - d2 

M l .81Fzn 

% 4.047Fn F,. (7) 

The other 6 summation terms can be ignored because their values 
are too small to affect the analytical result. For example, the fourth 
term is 

% 0.691Fr3, 

which is quite small, compared with the above hvo summation terms. 
Plugging the right-hand sides of (7) into (6), we have 

FkFn-k--lFn-k+l M 0.809FnF,,. ( 8 )  
O<k<n-l 

Finally, from (5)  and (8) we get 

~ ~ - 2  % 0.809FnFn. 

Thus, T,FS(II)  = S , - L ) / ( F ~ ~  - 1 )  % 0.809F7,. I 

Theorem 4: The complexity of FS is TFS(  n )  M 0.882F,,. 
Proof: Since T ~ s ( n )  = pn-2/(F,, - l ) ,  we first solve pn-2  

in (2) as follows: 

p t  = Ft(F,+z - 1) +p,-i + ~ ~ - 1 :  

qL = Ft(FL+l - 1) +pl--2 +q,--2 for i 2 2 

where PO = 0 , p l  = 1,yo = 0,  and q1 = 0. 

equations and obtain 
We take the generating function on both sides of the above 

P ( z )  = z + IP(z) + z Q ( z )  + F,(FL+2 - l ) z ' ,  (9) 
1>2 

Q ( Z )  = Z ~ P ( Z )  + 2~(.) + C F , ( F , + ~  - 
6 2 2  

where P ( z )  = C 1 > O p L z *  , Q ( z )  = Cz20qztz. Replacing Q ( z )  in 
(9) by the right-haid side of (lo), we have 

P ( z )  = 2 + 2P(_,)  + - (a(_.) 
1 - 22 

1 - 2 2  

+ C F z ( F z + 2  - 1); ' )  

-- - - - ,2 ( 2  + A E FC(FL+l - 1b' 
1 2 2  

L>2 

= ( 1  - z 2 ) G ( z )  + G(3)  F,(F,+1 - 1)z '  
222 

1 -  + +G(z) Ft(Fz+z - 1 ) ~ '  
L >2 

= G ( z )  F,(F,+1 - 1 ) ~ '  + ( 1  - z 2 ) G ( z )  
&>0 

. C F , ( F , + ~  - ~ ) ~ ' - l .  (11) 
*>O 

The value of pn-2  is the coefficient of z n P 2  in the right-hand side 
of (ll), thus 

Pn-2 % 1 FkFn-k-2Fn-k-1 
O < k < n - 2  

- c FkFtt-k--3F~~-k--l- (12) 
OSk<n-3 

Each summation term in the right-hand side of (12) is similar to 
the term in (11) and thus can be calculated using Lemma 2 and 
Corollary 1 as follows: 

FkFn--l;--2Fn-k-1 0.085F2, M 0.191FnFn. 
O<_k<n-2 

FkFn--k--lFn-k+l % 0.362F2, % 0.809FnFn. 

FkFn-k-3Fn-k-1 NN 0.053F2, M 0.118FnFn. 

O<k<n-1 

O<k<n--3 

Substituting the values of the above summation terms into (12), 
we have 

pn-2 M 0.882FnF,,. 

Therefore, T ~ s ( n )  = P , - ~ / ( F , ~  - 1) M 0.882Fn. I 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 13, 2009 at 03:05 from IEEE Xplore.  Restrictions apply.



1176 

IV. CONCLUSIONS 

Theorems 1 and 2 give TSS/TBS N 0.5. That is, SS is 50% 
better than BS. Theorems 2 and 3 give T,,,b \/TB\ M 0.809, or 
mFS is 19.1% more efficient than BS. Theorems 2 and 4 give 
TFS/TBS z 0.882 or FS is 11.8% more efficient than BS. In 
summary, when searching on a tape, sequential search, Fibonacci 
search, and modified Fibonacci search are all better than binary 
search. Moreover, modified Fibonacci search indeed is better than 
Fibonacci search. 

In [4], Nishihara and Nishino wrote computer programs to eval- 
uate the performance values by iteratively applying the recurrence 
equations in Section 11. When the size of the sorted file is more 
than 2000 records, they obtained the approximate efficiency ratios as 
TFS/TBS z 0.882 and Tm~s/T& N 0.809. These experimental 
values confirm our theoretic results derived in this note. 
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Exact Parametric Analysis of Stochastic Petri Nets 

Man Li and Nicolas D. Georganas 

Abstract- An algorithm for exact parametric analysis of Stochastic 
Petri Nets is presented. The algorithm is derived from the theory of 
Decomposition and Aggregation of Markov Chains. The transition rate 
of interest is confined into a diagonal submatrix of the associated Markov 
Chain by row and column permutations. Every time a new value is 
assigned to the transition, a smaller Markov Chain is analyzed. As a 
result, the computational cost is greatly reduced. 

Index Terms-Decomposition and Aggregation, Markov Chain, para- 
metric analysis, stochastic Petri Nets. 

1. INTRODUCTION 

Stochastic Petri Nets, introduced independently by Molloy [6] 
and Natkin [7], are a tool for modeling systems with concurrency, 
synchronization, and communication. They have been widely used 
in the performance analysis of communication systems, protocols, 
manufacturing systems, etc. 
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According to Molloy [6], the continuous time Stochastic Petri Net 
is defined as 

S P S  = (P .  T.  3. R )  
P = { p ~ , p ~ : . . p ~ , }  is a set of places 

T = { t ~ . f z ; . . f , ~ }  is a set of transitions 

A c { P  x T} U {T  x P }  

R = { r l  , rq, .  . . T , , ~  } is a set of firing rates for the 

exponentially distributed transition firing times. 

Molloy further showed that any finite place, finite transition, 
marked Stochastic Petri Net is isomorphic to a Markov Chain. As 
a result, the usual way of analyzing a Stochastic Petri Net is to 
generate the Reachability Graph (RG) of the Stochastic Petri Net 
and at the same time construct the associated Markov Chain. The 
markings constitute the states of the Markov Chain (hence we will use 
“state” and “marking” alternatively) and the transition rates between 
markings constitute the infinitesimal generator matrix. Solving the 
Markov Chain, we obtain the steady-state probabilities. From these 
probabilities, we obtain the performance measures of interest. 

Frequently, in the performance analysis by Stochastic Petri Nets, 
we are interested in the behavior of the system with respect to one 
parameter, or one transition. By assigning different values to this 
transition, we may obtain the effect of this particular transition on 
the whole system performance. One drawback of this analysis is that 
every time the transition rate is changed, we have to analyze the 
whole net again. This is a tedious procedure. Regarding this problem, 
Ammar [l] recently proposed a time scale decomposition method 
for analyzing a kind of Stochastic Petri Net whose transition rates 
differ by orders of magnitude. Approximate results were obtained. 
Li and Georganas [5] proposed the parametric analysis of a class of 
Stochastic Petri Nets whose underlying Markov Chain satisfies local 
balance equations. They showed that exact results can be obtained in 
an approach analogous to Norton’s theorem. Both [l] and [5] dealt 
with only a special class of Stochastic Petri Nets. In this paper, we  
propose exact parametric analysis of Stochastic Petri Nets in general. 
The idea is based on the theory of Decomposition and Aggregation 
of Markov Chains. 

The organization of this paper is as follows: Section I1 gives an 
introduction to decomposition and aggregation techniques and then 
derives an algorithm for parametric analysis. Section I11 considers 
the computational gain achieved by the algorithm compared with 
directly solving the Markov Chain by Gaussian elimination. Section 
IV deals with implementation of the algorithm to parametric analysis 
of Stochastic Petri Nets. Section V gives an example and Section VI 
concludes this paper. 

11. EXACT PARAMETRIC ANALYSIS OF STOCHASTIC PETRI NETS 

We give an introduction to decomposition and aggregation tech- 
niques and then derive an algorithm for parametric analysis. 

A. The T h e o v  of Decomposition and Aggregation 

The decomposition and aggregation techniques were first proposed 
by Simon and Ando [9] in the early 1960’s. The primary feature of the 
decomposition and aggregation techniques is reducing the analysis of 
a large system into that of a set of smaller problems. 

Let Q be the infinitesimal generator matrix of a continuous time 
Markov Chain. Assume Q is an rt x t t  matrix. Q is partitioned into 
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