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Heap-ordered Trees, 2-Partitions and Continued Fractions

WEN-CHIN CHEN AND WEN-CHUN NI

This paper studies the enumerations and some interesting combinatorial properties of
heap-ordered trees (HOTs). We first derive analytically the total numbers of n-node HOTs.
We then show that there exists a 1-1 and onto correspondence between any two of the
following four sets: the set of (n+ 1)-node HOTs, the set of 2-partitions of Z,,=
{1,2,..., 2n}, the set of Young tableaux from Z,, without odd-length columns, and the set of
weighted paths of length Zn. These correspondences can not only be used to obtain the above
enumeration quantities through combinatorial arguments, but can also relate their generating
functions to continued fractions.

1. INTROBUCTION

A heap-ordered tree (or priority queue) is an important data structure in computer
applications. A heap-ordered tree (HOT) is defined recursively to be a rooted tree, the
root of which contains the minimum key, and the subtrees of the root are all HOTs
themselves.

Throughout this paper, all HOTs we consider will be labeled, in that two trees of the
same ‘shape’ but with different labeling are considered to be distinct. In other words,
the ordering of the subtrees with respect to the root is important. For an (s + 1)-node
HOT, we further assume that all the key values are distinctly chosen (labeled) from the
set {0}V Z,, where Z,={1,2,...,n}. It is easy to see from the definition of an HOT
that the root of an HOT is always labeled with the minimum value 0.

This paper investigates the enumeration and some combinatorial properties of
HOTs. The paper is organized as follows. In Section 2 we derive analytically b, the
number of (n + 1)-node HOTs using recurrence techniques. In Section 3, a bijection
between the set of (n+1)node HOTs and the set of 2-partitions of Z,, is
demonstrated. A 2-partition of Z,, is a set of n pairs, where each element is uniquely
selected from Z,,. One application of this correspondence is that b, can be derived
through combinatorial arguments. In addition, we show that the bijection also applies
to the set of Young tableaux from Z,, without odd-length columns. Finally, a bijection
between the set of (# + 1)-node HOTs and the set of weighted paths of length 2# is
described. Moreover, the generating functions of b, are shown to be related to
continued fractions.

2. ENUMERATION OF HEAP-ORDERED TREES

Let b, denote the numbe of (n + 1}-node HOTs. If the leftist child of the root of an
{n +1)-node HOT T is labeled i and the leftist subiree contains (k + 1) nodes, then
there are (", ') ways to choose k nodes into the leftist subtree of 7. We thus obtain the
recurrence relation for b,

Z 2 (n _z)bkbn—k—ly iffl;l,

b — 1=i=n QO<k=n—i k
" 1, ifn=0.
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Using the techniques described in [3], b, can be simplied as

> (n)bk—lbn—b ifn=1;

b — 1=k=n k
" 1, iftn=0

Let B{x)=2,.pb,x"/n! be the exponential generating functions of b,. The above
equation gives

S bxtnt=Y Y (z)bkqlbn,kx"/n!

=] n=] 1sk=n
= (E b,,x"/n!)(Z b,,,lx"/n!).
n=0 n=l

The left-hand side of the equation is B(x)—1 and the right-hand side equals
B(x} [§ B(f) dr. Thus we have

B(x)—-1= B(x)J:B(t) d.

Solving the equation, we have
B{x)=(V1-2x)"".
Expanding B(x), we obtain b, = n! (7)/2". This yields the following theorem.

TueoreM 1. The total number of (n + 1)-node HOTs equals

n!

2 .
"= ( n) ~2"e™"M1+0Mn™Y), forn=1

n

3. 2-PaRTITIONS AND YOUNG TABLEAUX

A 2-partition of Z,, is a set of n pairs {{p1, ¢,), (P2, ¢2), - . ., (Pn» gn)}, Where p;,
g; &y, 1=<i=n, are all distinct. The algorithm below establishes a bijection @
between the set of (n +1)-node HOTs and the set of 2-partition of Z,,. Given an
(n +1)node HOT T, this algorithm explicitly produces @(T), the corresponding
2-partition of Z,,;:

Input: An HOT T with (n + 1) nodes labeled from {0,1,...,n}.
OCutput: A 2-partition ®(TY of Z,,=1{1,2,..., 2n}.
Algorithm:
Let I.=2Z,, and II =,
For j = n down to 1 do begin
Let & = numbering(7, j);
Delete node j from T
Let p be the minimum element in L and
¢ be the (k + 1)st smallest element in L;
Add(p,g)into ITand let L=L —{p, q};
end;
&(T) =11
As for the function numbering used in the algorithm, an informal introduction may be
helpful. For an HOT with (k +1) nodes, we can inductively prove that there are



Heap-ordered trees, 2-partitions and fractions 515

e 5 creates (1,8)
among {1,2,3,...9, 10}

7th position

4 creates (2,6)
% among {2,3,4,5,6,7,9,10}

0
’7 ||§\
- 1 hat 3 creates (3,9)
“ 2 02 ll % among {3,4,5,7,9,10}
o
Qs

4th position
FiGurE 1. Constructing the 2-partition from a HOT.

2k + 1 possible positions into which the new key £ + 1 can be inserted. For example,
the first tree in Figure 1 contains five nodes (nodes labeled 0,1, ..., 4) before node 5 is
inserted. The nine positions into which node 5 can be inserted are marked with small
circle, *o’. Note that we number these positions ‘level-wise’ and from left to right.
Actually, different numbering schemes may produce different 2-partitions for a specific
HOT. The meaning of numbering(T, ;) is indeed the position at which node j is
inserted into the subtree of 7 containing nodes 0,1,...,(j — 1) only.

Using the above numbering scheme, the 2-partition of Z,, corresponding to the HOT
at the top of Figure 1 can be constructed as follows. As node 5 is inserted at the 7th
position of the tree without 5, a pair (1, 8) is thus created and added into 1. The set L
then becomes {2,3,4,5,6,7,9,10}. Node 4 is inserted at the 4th position of the tree
without nodes 4 and 5 and thus the pair (2,6) is added to II. The remaining three
nodes 3,2, 1 are inserted at positions 4, 1,0 of their respective trees, and thus produce
respectively the pairs (3,9), (4,5) and (7,10). As a result, we have
{(1, 8),(2,6),(3,9),(4,5), (7, 10)} as the 2-partition corresponding to the HOT.

It i1s not difficult to show that the above transformation @ which transforms an

{n + 1}-node HOT into a 2-partition of Z,, is bijective. We thus have the following
theorem.

THEOREM 2. The number of 2-pariitions of Z,, equals b,, the number of
(n +1)-node HOTSs.

In fact, a 2-partition of Z,,, is a permutation on Z,, containing 2-cycles only. The old
theorem on cycle indicator by Polya [5] stated that the number of n-permutations
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of cycle type (i, i,...), where i, +2L+---=n, equals C,{i,i,...)=
nl/i;1 15,1 2% - - - This theorem, combined with Theorem 2, re-establishes the result in
Theorem 1 that b, equals ¢,,(0, 1, 0, ..., 0 =(2n}! /nt 2"

The above bijection can be extended to an important combinatorial structure called a
Young tableau using the Corollary on page 56 and Exercise 5.1.4-4 of [4].

CoroLLARY 1. There exists a bijection between the set of (n + 1)-node HOTs and the
set of Young tableaux from I, that contains only even-length columns.

4. CoNTINUED FRACTIONS

We have derived in Section 2 that b,=(2n)!/n!2" and obtained B(x), the
exponential generating function of b,. In other words, the following two exponential
generating functions have closed forms:

bnx2n n B bnxn B 1
2w BW= 2T =0-20

The closed forms for their ordinary counterparts B(x) =3, b,x" and B(x?) =X, b,x*"
are, however, difficult to obtain. The purpose of this section is to show that, instead,
B(x) and B(x?) can be elegantly expressed as continued fractions.

Let a;, B; and x be commutative indeterminates for i = 0. For integers 0 <m <n, the
continued fraction of Jacobi (J-fraction) is defined as

2 2 2
ﬁmx Bm+1x — Bn*lx .

—a,x—1—apx—1—apx— —l—ax’

Jx[ab Bk: (m5 I’I)] = 1

and the continued fraction of Steltjes (S-fraction) is defined as

' 1 Bux BmriX Br1x  BaX
Se[Ba: == e e Y/
x[ﬁk (m: n)] 1- 1 - 1 _ _ 1 -1
The S-fractions are related to the J-fractions by an equation called a contraction lemma
[2] (if we let B_, =0):

Se[Be: (0, )] = L [Bax—1 + Bzks BaxBar+1: (0, ®)].

The proposition below is a remarkable result by Rogers [6], which gives a convenient
way to obtain the continued fraction representation of an ordinary generating function
G(x) = Ziaoaex® from its exponential counterpart G(x) =X, awx*/k!, provided
that G(x) has an addition formula. G(x) is said to have an addition formula with
parameters {{ Py, i +1): k =0} G(x + y) = Ziao Prge(x)ge(y), where p, is independent
of x and y and gi(x) = x*/k! + gy x* /(K + 1)1 + O(x*").

ProrosimioN (the Stieltjes—Rogers J-fraction theorem). The power series G(x) has
an addition formula with parameters {(pi, qic+1): k = 0} iff
G (x) = Lqie1 = Grs Picsr/Di (0, )]

To obtain B(x) =3I, b,x*, we shall show that B(x)=(1—2x) z has an addition
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formula with parameters {((2k)!, (2k + 1)(k +1)): k = 0}. Since
B(x +y)=(1-2x —2y)} . &
—-20 -2y i1-—2 )
=(1=26)72(1 ~2y) (1 (1—2x)(1 - 2y))

= 3 (T vr@ra -zt yenra- e

k=0 K

= 3 @1 (50200 (L1 -2y )

k=0

and
xk+l

(k+ 1)
we have p, = (2k)! and g+, = (2k + 1)(k + 1). This gives the J-fraction expression for

B(x) in the theorem below. The S-fraction expression for B(x) is obtained by setting
Bi=k+1.

k k
%(1 —2x)‘("+5’=%+(2k + 1)k +1) + O(x**),

TueoreM 3, The two ordinary generating functions B (x) and B(x?) can be expressed
in continued fraction forms:

B(x) = 1[4k +1, 2k + 1)(2k +2): (0, ®)] = S, [k + 1: (0, )];
B(x?) =70, k +1: (0, )].
The continued fraction for B(x?) in the theorem is derived from B (x):

B(x®) =Sk +1: (0, )] = J[0, k + 1: (0, «)].

5. WEIGHTED PATHsS AND REMARKS

The above result in Section 4 on continued fractions can be re-interpreted in terms of
weighted paths using the theory of set partitions, weighted paths and continued
fractions developed by Flajolet, Frangon and Viennot [1]. Indeed, their theory gives a
method to construct a bijection between the set of weighted path 2n steps and the set
of 2-partitions of Z, (and hence the set of (n + 1)-node HOTs). Their theory also
leads to Theorem 3, which gives the relation between the generating function of b, and
continued fractions.
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