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Abstract

In the second year of the project, we develop a data alignment mechanism for sensor
networks. The mechanism allows the sensor data streams to be aligned without
real-time clocks or virtual clocks [1]. The clock synchronization is essential for the
multi-media end-to-end transmission which will be developed in the next year. The
developed mechanism makes use of the built-in counters on sensors and external
synchronization signals to align data streams. The data server broadcasts out-of-channel
synchronization signals with constant or variable intervals. The sensor data streams are
aligned when received on the server. Only one way communication is used so as to
reduce the communication overhead and clock synchronization overhead on sensors
nodes. In addition, the developed mechanism is scalable thanks to one way
communication. The synchronization error is bounded by the maximum sampling
period of the sensors, and is independent of the number of the nodes in the network. Our
analysis also shows the required awake time for sensors to tolerate different clock drifts
and signal lost.
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I. Introduction

Many emerging sensor network applications such as sniper localization[2],building risk monitoring [3],
habitat monitoring [4], and movement tracking [5] require the systems to co-relate the data from different
sensors in order to discover certain events or locate where an event occurs. The sensors in the network may
need to agree on the time. A global clock in the network will help to process and analyze the data, and to
predict future system behavior. However, the low computation capacity on the sensors and unpredictable
network propagation delay make it difficult to deploy traditional distributed clock synchronization protocols
on such sensor networks.

Clock synchronization for distributed systems has been studied for a long time for traditional distributed
and embedded systems [6], [7], [8], [9]. Some of them focused on distributed systems, and some of them
focused on high computation bandwidth sensor networks. The recent developed sensors impose new
challenges for clock synchronization protocols. H. Dai and R. Han [10] propose a protocol called HRTS
(Hierarchy Referencing Time Synchronization). This protocol reduces the number of messages of a
synchronization to three messages. In addition, they propose a protocol to synchronize nodes in sensor
network via multiple hops. Other related clock synchronization protocols are RBS [11], TPSN [12], and
FTSP[13]. The related works may use different manners to synchronize the clocks on sensors but all protocols
modify the clocks on the sensors. Ukita and Matsuyama [14] developed the dynamic-memory approach to
virtually synchronize the clocks on distributed sensors. The approach makes use of the common events on
different sensor streams to compute the sample times for different sensors. Then, it predicts the time instances
at which the events of interests may occur on different sensors. The sensors are requested to sample at the
given time instances, which may be different for all the sensors. The approach introduces great overhead when
there is large number of sensors and is difficult to scale up.

In FireFly project [15], an AM transceiver is used to transmit the synchronization signals and each sensor is
equipped with a low cost AM receiver to synchronize its real-time clock with the reference real-time clock. In
the project, the sensors have to wake up at right time to listen to the sensors in the neighborhood, listen to the
server, and transmit the data. In this way, the sensors can avoid data collision to reduce the power
consumption of nodes.

Although clock synchronization helps to the sensors and server to obtain correct timing information as
discussed above, global clock synchronization leads to heavy overhead in terms of time and may not be
necessary. In addition, in several sensor networks such as habitat monitoring [4], the sensors do not have
accurate real-time clocks. Last but not the least, it is often consuming too much energy to continuously
transmit sampled data to data servers. To reduce energy consumption, the sensor usually transmits sampled
data at a rate which is much less than its sampling rate, or when a certain amount of data is collected. Hence,
the time instance at which the data server receives the data may not be the time instance at which the data are
sampled. In other words, even there is no network propagation delay, using real-time clock on data server to
time stamp the received data could lead to incorrect timing information.

In several sensor networks, some of the sensor nodes or data servers can act as intermediate nodes to
aggregate or collect the data streams and send the streams to the servers later. It is sufficient that the data
streams are aligned on the intermediate nodes and is not necessary to synchronize the clock on the sensors if
there are any. In this paper, we propose to align the received sensor data in a passive manner. In our approach,
the clocks on sensors if any are not adjusted at all. After the data streams are received on intermediate nodes or
data server, the data streams are aligned and time-stamped. The data streams are aligned based on the
embedded synchronization information in the streams. For different sensor network applications, we develop
different mechanisms. When the network delay is short and energy consumption is not a critical concern,
synchronization information is constantly generated. We prove that the synchronization error is bounded by
the maximum sampling period of the sensors and is independent of the number of nodes in the network. When
the network delay is long or energy consumption is one of the critical concerns, synchronization signals are



generated with variable intervals to tolerate longer propagation delay. The synchronization error is also
bounded by the length of synchronization signal.

II. Formal Model

Thus far, we have used the terms used in wireless sensor network, and embedded systems literature and
formally define them below. Sensor, denoted by O; where 1 <i <N and N is the number of sensors in an area
of interests, is an analogue/digital device which can monitor certain physical events such as images or sound,
and transmits the sampled events in digital form to a data server. We assume that there may be no real-time
clocks but simple counters are always available on sensors. The sensors may transmit the sampled events via
RF radio or wired network such as CAN [16], bus token-ring, and «ITRON [17]. Hence, we assume that there
is an upper bound for the transmission delay. Data server is a device which receives the data streams from
sensors, and analyzes the data streams to discover the interested events. The data server may or may not have
real-time clocks. When it has real-time clocks, it time-stamps the received data; when there is no real-time
clock, the data server marks the data with non-decreasing counters. For the sake of representation, we assume
that there is a real-time clock on data server. Note that our approach is still applicable when real-time clocks
are not available on data servers. A sensor group consists of at most N sensors and one data server. The data
server is referred to sensor Oy in one sensor group. A sensor network consists of a set of sensor groups. We
assume that, in this paper, data alignment is conducted for one sensor group but our approach can be easily
extended for sensor networks.

Each sensor samples at a constant time interval to record the acoustic events, visual events, or the other
physical signals. We denote the samples for sensor O; by S, , S,,, etc. The sample period for sensor O,, denoted
by sp;, is the minimal time interval between every two consecutive samples for sensor O,. Sample time for
sample S,;, denoted by s¢,;, is the time instant at which sensor O; conducts the j-th sample. Because there may
be no real-time clocks on the sensors, the sample times are not available in practice. We will use the sample
times as the reference to evaluate the accuracy for clock synchronization algorithms. When the data server
receives a sample S;;, it estimates the time instance at which the sample might occur. The time instance is
called estimated sample time, denoted by s¢™;; for sample S;;. By determining estimated sample time for every
sample, the data server maps estimated sample times for all samples into one time domain, which could be
either a real time clock or a logic clock.

After the sensor samples at one period, it may not immediately send the samples to the server. In practice,
the sensor will buffer the sample data, waits for a certain amount of time or having enough data to send, and
sends to the collected samples to the server. So, it can reduce the communication overhead and energy
consumption. Buffering time for sample S;;, denoted by b;;, is the time interval between sample time s¢;; and
the time instant at which the sample data is sent out. Because the sample period is a constant, the difference of
the buffering time for every two consecutive samples is the sample period, which is a constant. Hence,
assuming that the buffering time of the last sample in a packet is negligible and 0 will not affect our analysis.

When a sensor may be turned on or off to reduce the energy consumption, it is desirable to know the
minimal amount of data that a sensor should collect and transmit to the data server. Least awake time, denoted
by W, is the minimal length of a time interval during which a sensor cannot be turned off so as to collect
enough samples requested by the server. To reduce energy consumption, least wake time should be as short as
possible.

Transmission delay for sample S,;, denoted by d;; and d;;>0 for all 7,7, consists of the time interval to content
for the transmission media and the network propagation delay. Maximum transmission delay, denoted by d ’,

is the upper bound to the transmission delay for all samples, i.e., d ' = max{d,; 3 i, j}. In some network
applications, it is more convenient to know the maximum difference between the transmission delays. We call
it maximum clock drift, denoted by d *. In other words, d “= max {dim-d,,3 i, j, m, n}.

Arrival time for sample Sij, denoted by 4,;, is the time instant at which sample S;; is received on the data



server. Specifically, arrival time A4;, for sample S,; is the sum of its sample time, buffering time, and
transmission delay, i.e., 4;;= st;;+ b;; + d;; . Because several samples may be sent in one message, the samples
sent by the same message have the same arrival time and same transmission delays. Without loss of generality,
we assume that buffering time is zero as discussed above. Un-buffering arrival time for sample S;;, denoted by
a,; 1s the time instant at which sample S;; is received on the data server when the buffering time is assumed to
be zero. In other words, st;;+d,,= a;;. For the remainder of this paper, arrival times refer to un buffering arrival
times unless it is specifically pointed out.

Data stream, denoted by D; for 1 <i <N where N is the number of sensors in the sensor group, is a sequence
of samples of sensor O,. We define D; =(S,, S,>,..., S;..). Reference data stream, denoted by D0, is the sequence
of data bits representing the time sequence for the actual events over the time line. Note that reference data
stream is a clairvoyant data stream and may not be available. Reference data stream DO will not be used in the
developed mechanism but will be used to verify the proposed mechanism. Because it is often too costly for the
sensor to transmit one sample data in every transmission, we assume that every sensor transmits the data to the
data server after certain number of samples is collected on the sensor. The data server concatenates the data
from each sensor to construct sensing data streams.

Event of interested is the physical event which can be sampled by sensors during a time interval. During the
time interval, the environment data can vary with time. We assume that for each event, its duration is greater
than any sensor sample period. Hence, every event can be sampled by each sensor at least once. When an
event can be sampled by a sensor multiple times, we are only interested in the first sample.

Figurel is an example for the above terms. This example shows a time sequence for six samples on Sensor
O;: S;;for 1 <j <6. The line on the top is the sample sequence over time line for sensor O,. Each solid circle
represents the time instance at which a sampling occurs. Specifically, the sample time for S, is s¢,; shown on
the bottom line. In this example, four samples S, ; for 1 <j< 4 are buffered till time st,, and sent to the data
server. All four samples are received at time a, ,and have the same transmission delay. The solid directed line
represents the transmission from sensor O; to the data server; the dashed lines represent the virtual
transmissions from sensor O; to the server. Each sample has different buffering time b,; for 1 <j< 4 and its
(un-buffering) arrival time is a,; for 1 <j < 4.

Synchronization error of two samples S,,, and S,, is the difference between estimated sample times and
sample times (i.e., |(St;,-S¢;,) - (st”,-,m-stf,-,,,)‘). We will use synchronization error to evaluate the accuracy of the

algorithms. The less the synchronization error, the more accurate the algorithm.
The Data Stream Alignment problem is defined as follows.

Definition 2.1 (Data Stream Alignment Problem): We are given a set of data streams: {D,D,,....D,},
maximum transmission delay d t, and maximum clock drift d . The problem is to assign estimated sample time
for each interested sample such that for every two samples S,,, and S, ,, their synchronization error is bounded.

Examples shown in Figure 2 (a), (b), and (c) illustrate the Data Stream Alignment problem and expected
results. Figure2(a) shows the sensor samplings over real-time clock. Suppose an event starts at time 1 and
ends at time 7. The circles represent the samples on each sensor. Solid circles represent that the sensor samples
the event; empty circles represent no event are sampled by the sensor. The sample periods for sensors O, O,,
and Os, are 2, 3, and 4 units of time. Figure 2 (b) shows the sample times computed by the data server before
stream alignment. In this example, the data server may consider that there are two events in the interested area:
one starts at time3 and ends at time 7, and the other starts at time9 and ends at time 11. Figure2(c) shows the
estimated sample times after stream alignment. The estimated sample times for sample O,; are aligned with
that for sample O, ; and O; .. Consequently, the data sever considers that there is only one event starting at time
2 and ending at time 7. In this example, the synchronization error is one unit of time.

In this paper, we assume that the sensor network only aligns data streams on request. This is because it is
not necessary to align the data streams when every signal is sampled. When the data server finds one



interested event on some data stream, it starts to align the data streams to confirm the event. In other words,
the data server starts to collect necessary information after the request arrives. Hence, the proposed approach
has low space and time complexity to align the data streams.

III. Clock Free Data Streams Alignment

To align the data streams, we propose to use synchronization signals. When a sensor receives the
synchronization signals, it uses a different representation to distinguish a synchronization signal from other
events. After receiving the data streams from the sensors, the data server identifies the synchronization signals
in the data streams and uses the temporal information for synchronization signals to align the data streams. By
so doing, the data streams from different sensors are aligned to one reference time-line, i.e., the real-time
clock or logic clock on the data server, but there is no need to adjust the real-time clocks on sensors.

real time axis It 4 4 4 4 4 it 4 -

Fig. 2. An Example of Stream Alignment Problem

The proposed approach is similar to the one used in FireFly project [15]. In FireFly project, the sensors have to
wake up at right time to listen to the sensors in the neighborhood, listen to the server, and transmit the data.
However, in the scenario with which we are concerned, the sensors only transmit the data to the server. There
is no need for the sensors to wake up for listening at any specific time. Hence, it is not necessary to adjust the
real-time clocks on each of the sensors.

Our observations for Data Stream Alignment problem are the following. First of all, the timing information
for the sampled data affects the inference results only when the data are collected and are being co-related by
the data server. Second, only the relative timing information of the data streams matters. As shown in Figure 2,
the data server can recognize that one interested event is detected by three sensors only when the data server
concludes that samples S,,, S,,, and S;, are sampled at the same time instance.

The correctness of the real-time clocks on sensors or data servers does not affect the result of aligning the data
streams. Furthermore, we argue that it introduces unnecessary costs to install additional receivers to achieve
clock synchronization. The field sensors are ready to sample certain signals. For the sensor networks
interested in acoustic signals, acoustic sensors should be deployed in the network. For the networks interested



in video surveillance, image sensors should be deployed in the network.

In our approach, the synchronization server broadcasts out signals which can be sampled by the sensors but
will not affect the sample results. For example, a sensor network in battle field consists of acoustic sensors to
detect sniper location. The sensors can sample sound ranging from 100Hz to 20kHz. However, the frequency
of gun shot ranges from 1000Hz to 10kHz.We can choose 15kHz frequency signals as the synchronization
signals, which is not affected by the background noise and will not affect the sampling results. Then, the
server broadcasts the 15kHz frequency sound wave as the synchronization signals, which do not interfere the
interested signals. Synchronization server is a device which generates synchronization signals for the sensors.
The signals are generated in a periodic or aperiodic manner. In a sensor network, there can be more than one
synchronization server to generate the signals for different types of sensors to extend the coverage of the
networks. However, the signals should be generated with the same schedule. We will discuss how to
determine the schedule later. When a sensor samples the synchronization signals, it marks the occurrence of
the signals in its data stream and transmits the stream to the data server.

Synchronization interval for sensor O, denoted by c¢;;, is the number of samples between (j- 1)-th and j-th
synchronization signals for stream D,. Synchronization event stream for sensor O,, called stream for short and
denoted by Si for i>=1, is a sequence of synchronization intervals for a data stream D,. In other words, stream
S is defined as S; =<c;,,¢;3,...,C;n, > Where n; is the number of synchronization signals for stream S.. When the

data server receives one data stream, it first counts the number of samples between two synchronization
signals in the stream to compute synchronization interval ¢;; and constructs synchronization event stream S.
HappenTogether for two samples S,, and S;, where i =j represents that one event is sampled by both samples.

In our model, the sensor samples one instance for each sample period. To guarantee that the
synchronization signal will be sampled by sensors. The length of synchronization signal is no less than the
maximum sampling period, i.e., max{sp;}. This design is common to real-world applications. For instance, an
acoustic sensor can sample at 10k Hz or 44k Hz. Hence, as long as the time interval for synchronization signal
is longer than 0.1 ms, the acoustic sensor can always sample the synchronization signals.

The clock free data streams alignment approach consists of the following three steps.

Step 1: Determining the schedule for synchronization signals: In this step, the synchronization server
determines the schedule to generate the synchronization signals. The signals can be generated with
constant or variable intervals. The schedule for synchronization signals affects the tolerable transmission
delay, necessarily nodes being awake time, and capability to recover lost signals. For the sake of power
saving or sensor control, sensors may be turned on/off by other mechanism. It is not guaranteed that a
sensor will receive all synchronization signals. However, in order to align the data streams, the sensor
may be requested to be awake for a certain amount of time to receive enough signals. A good schedule for
synchronization signals should minimize the least awake time. In addition, the schedule also affects the
capability of discovering lost signals. A good synchronization signal schedule should allow the data
server to discover a lost synchronization signal in the given streams. We will discuss how to generate the
schedule for different types of sensor networks in the following two sections.

Step 2: Determining the temporal order of received data streams: After receiving the data streams, the data
server determines the temporal order of the data streams based on the synchronization intervals in every
data stream. The schedule of synchronization signals in Step 1 forms a repeating pattern for the sequence
of synchronization intervals. Comparing the sequence of the synchronization intervals, the data server
determines the temporal order of the data streams.

Step 3: Assigning HappenTogether relations: After determining the temporal order, the data server can
determine the HappenTogether relations among synchronization signals. Suppose the latest stream and
second latest stream are S =<Ci2eersCin, > and Sp, =<Cmz+sCmn,y > and the synchronization signals are

SityersSing for S, S tseesSmn, for §,. By some method which we will discuss later, we can find a



synchronization signal s;; of which the estimated sampled time is equal to that Smn, - SO WE can assign the
HappenTogether relations between these two samples. Then, we begin to assign estimated sample time
for other samples. Suppose s;; is recorded in S,;, and S, for Smn, -We s€t 1, =114 +(p-k)X spiand ¢, = b,
+(q - n,) x sp,. So, we can map all samples for all sensors to a single time axis.

With above three steps, the data server finds out samples with the same synchronization signal, and sets the
same estimated sample time for these samples having HappenTogether relation. Because the length of
synchronization signal must be longer or equal to the longest sample period in all sensors, the synchronization
signal length is set as the maximum sampling period.

One important issue for the approach is to design the schedule for synchronization signals. In the following
two sections, we discuss two policies for generating synchronization signals: constant interval and variable
interval for synchronization signals, and how to determine the temporal order of the streams.

IV. Constant Interval Synchronization Signals

The simplest policy is to generate the synchronization signals at a constant rate. In other words, the
synchronization server generates the signals with a constant interval. Synchronization period, denoted by p, is
the minimal time interval within which the synchronization signal schedule does not repeat. In this section, the
synchronization period is equal to the synchronization signal period. A good synchronization schedule should
prolong the synchronization period and shorten the least awake time. A long synchronization period allows
the system to tolerate greater clock drift error; a short least awake time allows the sensors to consume less
energy and the server to complete the data stream alignment earlier. (The server has to wait for all the sensors
sampling for least awake time.) We propose two policies for generating constant interval synchronization
signal schedule: simple constant interval and constant interval with different signals. In the following, we
discuss how to determine the synchronization period and how to determine the temporal order of data streams.

t
We design two period assignment algorithms: one for the case that maximum transmission delay d is known
C
in advance and the other one is for the case that the maximum clock drift d is known in advance.

A. Period Assignment for Known Maximum Transmission Delay

t
When there is an upper bound d of all samples transmission delays and the length of one synchronization
t
signal is /, we set the synchronization period to d + | units of time (i.e., synchronization signals are generated

for every d + 1 units of time). While the period is used, we claim that the synchronization error is bounded by
the length of synchronization signals, i.e., /.

The requirements for assigning the synchronization period is that the data server shall be able to determine
the temporal order of the received data streams and assign the estimated sample time for every sample. When

the maximum transmission delay is d , for any sample S, whose arrival time is «,,, we know that the sample

t
time must be in the time interval (a,, —d - [, a;,). The right end of the interval represents the case that the
sensor samples the end of the signal and it takes almost no time to transmit the message. The left end of the
range represents the case that the sensor samples the beginning of the synchronization signal and it takes the

maximum transmission delay to send the message. Because the synchronization period is d+ [, there 1s one
and only one signal in time interval (al-,,,,-dt -1, a,,).

Figure 3 shows an example in which the maximum transmission delay is eight units of time and
synchronization signal length is two units of time. In the figure, the dark circle and gray circle represent the
first and second synchronization signals received by the sensors. According to the known maximum
transmission delay and the length of synchronization signals, we know that the first synchronization signal



and second synchronization signal will be received in interval (0, 10) and (10, 20), respectively. For the
stream, we choose the sample S;; which samples the synchronization signal and whose arrival time is the

maximal. Suppose the arrival time for sample S;; is a,,, the time to broadcast the sampled signal must be in the
t

range (aik -d " [, a;;). Suppose the time instance to broadcast the signal received in the range (a,, -d -/, a;y)
is t,, the estimated sample time s¢”; is set as #,. Finally, we assign estimated sample times to other samples by
adding/subtracting its sample period sp,, The CLOCK FREE ALIGNMENT WITH KNOWN MAXIMUM
TRANSMISSION DELAY algorithm is shown in Algorithm 1.

Algorithm 1 CLocK FREE ALIGNMENT WITH KNOWN
MAXIMUM TRANSMISSION DELAY
Input: 1. data streams 1; = (5;1.5:9,..., Sip)forl =i <N
2. arrival time a; g, for sample S; , for 1 <4 < N and 1 < m < ny
3. maximum transmission delay d°
4. synchronization signal length
Output: estimated sample time st; p, for 1 <4 < N and 1 < m < k.
I fori=11t N do
2: Select a sample £;,,, in [); which represents a synchronization
signal.
3: Fi%ld the synchronization signal broadcasted in interval (a; ,,, — dt —
I, a;,m) on synchronization server and assign the broadeasting time
of the signal to estimated sample time st; .
4 for k=1 10n; do
5 Assign estimated sample ime st; p = sty m + (k —m) x sp;.

Step 2 of this algorithm takes #; units of time to find a sample whose synchronization signal is in the worst
case. Step 3 takes constant time to find the corresponding synchronization signal. Step 5 is also in constant
time. Hence, the complexity is O(n), where n is the total input size.

We claim that at the start of each iteration of the iterative loop, we assign estimated sample times for D, ...,
D;;,and 0 <st";,,—st,, <1 for 1<j<i— 1. Before the first iteration of the loop, there is no streams in D, ..., D;-,.
Hence, the loop invariant holds. If the loop invariant holds after the i-th iteration, in the i +1-th iteration we
will assign estimated sample time for Di+1. Because we assign the time instance at the start of synchronization
signal to the estimated sample time, the estimated sample time is no later than the sample time, and difference
is bounded by /. The loop invariant holds after the i +1-th iteration. After all iteration, for any two sample S;,,
and S, |(st,,=St",)— (5t~ St;)|< |Sti — St | |88, — stAj,n |< [. In other word, the synchronization error is
bounded by /.

We claim that by the algorithm, the synchronization error is at most | units of time. The main idea is that in
the above procedure, we assign the estimated sample time to a stream by shifting the sample time of the stream.
The displacement of each stream is in the range from 0 to /. Hence, the synchronization error is at most /. The
proof for the claim follows.

Fig. 3. An example for constant Interval when dt =8 and 1 =2

Theorem 1: Given a set of data stream, the maximum transmission delay, length of synchronization signal,
CLOCKFREE ALIGNMENTWITHKNOWNMAXIMUM TRANSMISSION DELAY algorithm assigns the
estimated sample time for each sample in the data streams such that the synchronization error is bounded by /.
Proof: Let Sim be the sample which represents a synchronization signal in stream D, Because the time



difference between sample time s, and the beginning of the synchronization signal is at most /, the difference
between the estimated sample time S im, and the sample time st,-,miis atmost I (i.e., S, =Stim, < [). Furthermore,
we assign estimated sample time st”,,, =S8, T Spi X (m — m,) to sample S,,.. Hence, for any two samples, S,,,
and S;,, the synchronization error (st;,, —s¢,,) = (", — st;,)= (¢, —5t,,) — (S i,m —t;,,)| = |t — St;,| — |st; —
st; m)|<[. We can obtain the result that the synchronization error is at most /.

B. Period Assignment for Known Maximum Clock Drift

In this subsection, we are concerned with the case that the maximum clock drift d € is known. As a reminder,
the maximum clock drift d € is the maximum difference between any two transmission delays. In other words,
| diim —dj,n |< d © for all i, j, m, n. When the maximum clock drift is d ©, the synchronization period is set as

2(d€ + [).We claim that the synchronization error is also bounded by the length of synchronization signal, i.e.,
L.

Before we present the algorithm to align the data streams, we define a sequence of interval 71 = ((2,—1)(d ‘

=1, (2i+ 1)(dC —/)) for the algorithm. We claim that for two samples of which the arrival time is a;,, and g, ,, if
a,,— a;,,1s in T,, and S,,, samples the p-th signal, it implies that the S,, samples the p + i-th signal.

Corollary 4.1: Given two samples S,, and S;, of which the arrival time is @,,, and a,,, a,, — a;,, 1s in T,, and
S, samples the p-th signal, S;, samples the p + ith signal.

CLOCK FREE ALIGNMENT WITH MAXIMUM CLOCK DRIFT algorithm determines the estimate sample
times for the stream and is listed in Algorithm 2.

Algorithm 2 CLOCK FREE ALIGNMENT WITH MAXIMUM
CLOCK DRIFT
Input: 1. data streams D; = (S¢1,8:0,...,8ipn; ) for1 <i <N
2. arrival time @; ., for 1 < ¢ < N and 1 < m < ny
3. maximum clock drift J°.
4. synchronization signal length [
Output: estimated sample time sty for 1 < i< N and 1 < m < n;.
1: Choose sample 51, in data stream Dj, where 1 < m < n1.
2: Assign estimated sample time .sAtl__mL =10.
3 for m =1 to ky do

4 Assign estimated sample time P sﬁfl_ml + (m—my) x sp1

5 fori=21w0 N do

6 Find a sample 5, recording a signal.

7 Assign estimated sample time st q, = E(2(d+1)) where a; m, —
ai,m, isin Tg.

8  form=21ton; do

o Assign estimated sample time f:ﬁl,m = shté,m! +(m—m;) x sp;.

Step8 in this algorithm is also in constant time. The other steps are the same as the steps in Algorithm 1. Hence,
the total time complexity is also O(nl + ... + nN ). The time complexity is O(n).

The proof of correctness is similar to the proof of Algorithm 1. There is a constant o such that for each sample
S, in this algorithm, the estimated sample time satisfies o < st;,,—s¢",,,<1+ a. The constant a is the difference
between the real time and the logical time. Hence, for each two sample Sim and Sjn, |(st,,—st";,)—(st;,—st";,)| <
|t — S| = |8t — st";n|< (1 + o) — ()= . In other word, the synchronization error is bounded by 1.



Fig. 4. An example for constant interval when J° = tand [ = 2

Figure 4 shows an example for the case that maximum clock drift is three units of time and the length of
synchronization signal length is two units of time. We can find that there are no samples sensing a signal
whose arrival time is in the time intervals (20,25], (30,35], etc. If we construct a logical time which sets the
arrival time for some sample recording a signal called sig” be 0. Then, for any sample recording a signal
logical arrival time in 7i, the signal differs sig* exactly 1 signals.

In summary, the synchronization error is bounded by the length of the synchronization signal, i.e., . When

t t
the maximum clock delay d is known, the least awake time for the sensors is d + | units of time; when the

maximum clock drift d *is known, the least awake time is 2(a’C + 1) units of time.

V. Self-estimation

We summarize our research achievement of this sub-project in this year here:

1. A novel home network synchronization algorithm, the Clock Free Synchronization Algorithm, for
use -
With this protocol, the low-cost sensor in home network could be virtually synchronized without
local real-time clocks. In other words, it is not necessary to synchronize the clocks if exist on each
sensor. However, the sensed data can be synchronized on one global time-line on the data server. It
will help the sensors in digital home to collaborate and collect accurate data.

2. A framework for peer-to-peer multimedia transmission with QoS guarantee is under-development.
This framework includes the wireless bandwidth estimation, wireless bandwidth management on
local access point, and end-to-end QoS management for peer-to-peer streaming. This framework
will allow the multimedia streaming among digital homes become possible.

VI. Summary

In this paper, we are concerned with aligning the data streams for sensor networks in which the low cost
sensors may not have real-time clocks. We propose to use the synchronization signals as the reference for
aligning data streams. When the clock drifts among the sensors is small and there is no signal lost, one can
generate the synchronization signals with constant interval. When the clock drifts among the sensors is large
or the sensors may miss synchronization signals, one can generate the synchronization signals with variable
intervals. Using this approach, one can avoid the overhead for synchronizing the local real-time clocks in the
sensor networks on a global clock. The data server can adjust the time stamps on data streams to obtain correct
relative timing information among streams. In the future, we will extend the work for recovering the lost
signals. The data server may need to buffer additional counters or additional rules are needed to generate
synchronization round. In this way, the data server can insert the lost signals back to the streams.
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