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技術說明 

中文：iPDA 網頁服務旨於提供生化學家一個容易使用且準確度高的「蛋

白質功能區之不規則性分析軟體」，其整合本實驗室所開法的蛋白質不穩

定區域與蛋白質功能區兩種預測工具，以及多種現今最常使用之蛋白質序

列分析軟體。所提供之資訊包括：胺基酸保留性、二級結構預測、疏水性
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現象。 
英文：iPDA aims to predict the disordered regions of a query protein. Automatic 
prediction of disordered regions from protein sequences is an important problem in the 
study of structural biology. The proposed predictor, DisPSSMP2, is different from 
several existing disorder packages by its employment of position specific scoring 
matrices with respect to physicochemical properties (PSSMP), where the 
physicochemical properties adopted here especially take the disorder propensity of 
amino acids into account. The web server iPDA integrates DisPSSMP2 with several 
other sequence predictors in order to investigate the functional role of the detected 
disordered region. The predicted information includes sequence conservation, 
secondary structure, low complexity, and hydrophobic clusters. Furthermore, a pattern 
mining package for detecting concurrent sequence conservation is embedded in iPDA 
for discovering potential binding regions of the query protein, which is really helpful 
to uncovering the relationship between protein function and its primary sequence. The 
web service is available at http://biominer.bime.ntu.edu.tw/ipda. 

可利用之產業 
及 

可開發之產品 

可將 iPDA 軟體發展成為生物資訊套裝軟體。 

技術特點 
iPDA 使用本實驗所提出之新的序列特徵進行蛋白質不穩定區域之預測，

並搭配本實驗室所研發之序列特徵探勘軟體進行蛋白質功能區之域測。 

推廣及運用的價值 蛋白質功能區之不穩定性分析於設計可靠之鍵結能量方程式扮演重要角

色，將有助於蛋白質配體嵌合預測工具之開發。 



 iii

English Abstracts 

The primary objective of the integrated project is to develop a novel molecular docking approach that 
achieves the level of efficiency required for carrying out virtual screening and de novo design and is 
able to overcome the obstacle of protein flexibility, which is difficult to deal with the conventional 
approaches. The basis of the novel approach is to exploit the machine learning mechanisms efficiently.  
In the second year of this project, we have focused on development of a protein disorder predictor that 
facilitates investigation of the structural flexibility of protein functional regions. This study first 
examines the effect of a condensed position specific scoring matrix with respect to physicochemical 
properties (PSSMP) on the prediction accuracy, where the PSSMP is derived by merging several amino 
acid columns of a PSSM belonging to a certain property into a single column. Next, each conventional 
physicochemical property of amino acids is decomposed into two disjoint groups which have a 
propensity for order and disorder respectively. It will be shown by experiments that some of the new 
properties perform better than their parent properties in predicting protein disorder. In order to get an 
effective and compact feature set on this problem, a hybrid feature selection method is proposed, which 
inherits the efficiency of uni-variant analysis and the effectiveness of the stepwise feature selection that 
explores combinations of multiple features. Finally, the proposed method is integrated in a web server 
named iPDA with several other sequence predictors, in order to investigate the functional role of the 
detected disordered region. The predicted information includes sequence conservation, secondary 
structure, low complexity, and hydrophobic clusters. 

Keywords 
Protein structure, machine learning, protein interaction. 
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Chinese Abstracts 

此整合型計畫的目標是開發一個新的分子嵌合(molecular docking)方法，以設計一套具備高效能

處理虛擬藥物篩選(virtual screening)與起始式藥物設計(de novo)能力的軟體。而此新方法的基礎

在於有效地運用機器學習演算法(machine learning algorithms)。在本年度的計畫中，我們致力於

開發一個命名為iPDA的高準確度「蛋白質功能區之不規則性分析軟體」。有了iPDA，生化學家

便能準備預測蛋白質不規則性的區塊(Disordered regions)，而這些區塊許多都與蛋白質功能相

關。iPDA整合本實驗室所開法的蛋白質不穩定區域與蛋白質功能區兩種預測工具，以及多種現

今最常使用之蛋白質序列分析軟體。所提供之資訊包括：胺基酸保留性、二級結構預測、疏水性

群聚等蛋白質序列之重要特性，將有利於分析蛋白質功能區之結構不規則現象。 

Keywords 
分子嵌合，機器學習，蛋白質互動 
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一、前言 
Structural flexibility plays an important role on the 
development of accurate regression functions for 
modeling the energy state variations of protein-ligand 
interactions. The goal of the second year aims at 
developing a protein disorder predictor that helps to 
investigate the structural flexibility of protein 
functional regions. The study in the second year first 
examines the effect of a condensed position specific 
scoring matrix with respect to physicochemical 
properties (PSSMP) on the prediction accuracy, 
where the PSSMP is derived by merging several 
amino acid columns of a PSSM belonging to a certain 
property into a single column. Next, each 
conventional physicochemical property of amino 
acids is decomposed into two disjoint groups which 
have a propensity for order and disorder respectively. 
It will be shown by experiments that some of the new 
properties perform better than their parent properties 
in predicting protein disorder. In order to get an 
effective and compact feature set on this problem, a 
hybrid feature selection method is proposed, which 
inherits the efficiency of uni-variant analysis and the 
effectiveness of the stepwise feature selection that 
explores combinations of multiple features. Finally, 
the proposed method is integrated in a web server 
named iPDA with several other sequence predictors, 
in order to investigate the functional role of the 
detected disordered region. The predicted information 
includes sequence conservation, secondary structure, 
low complexity, and hydrophobic clusters. 
 
二、研究目的 
Intrinsically disordered proteins or protein regions 
exhibit unstable and changeable three dimensional 
structures under physiological conditions [1]. 
Although lacking fixed structures, protein disorder 
has been identified to carry out important functions in 
many biological processes [1,2]. In addition, it is 
observed that the absence of a rigid structure allows 
disordered binding regions to interact with several 
different targets [3,4]. These regions, sometimes 
called “molecular recognition elements”, usually 
undergo a disorder-to-order transition when binding 
to their targets [5,6]. In this regard, predicting protein 
disorder and investigating its potential for induced 
folding is a necessary preliminary procedure in 
understanding protein structure and function [7]. 

In our recent work DisPSSMP, it is demonstrated 
that the accuracy of protein disorder prediction can be 

greatly improved if the disorder propensity of amino 
acids is considered when generating the condensed 
PSSM (position specific scoring matrix) features [8]. 
For iPDA, we implement a two-stage classifier of 
Radial Basis Function Networks (RBFN) to further 
enhance the predicting power of DisPSSMP. As 
unbalanced datasets, a large amount of ordered 
residues over disordered residues, are employed when 
training the classifier DisPSSMP2, an alternative 
decision function is newly adopted and the cutting 
threshold is dynamically determined by the 
proportion of predicted secondary structure in the 
query protein [9]. 
 
三、文獻探討 
It has been shown in many studies that protein 
disorders can be predicted from their primary 
sequences [3, 17, 18, 19, 20, 21, 22]. The prediction 
methods developed in recent years initiate the 
possibility of identifying such disordered binding 
sites automatically [18, 21]. A more general concept 
is that all the necessary information for the correct 
folding of a protein is included in its amino acid 
sequence [23]. Disordered regions are comprised of a 
category of amino acids distinct from that of ordered 
protein structures [24]. For example, amino acids of 
aromatic hydrophobic groups are known to be good 
for the general stabilization of order, and thus are less 
found in the disordered regions [17]. Incorporating 
information of the biased amino acid composition in a 
neural network predicts the locations of disorder with 
accuracy better than random guesses [17]. In 1998, 
Romero et al. showed that more than 15,000 proteins 
in the Swiss-Prot database contain long disordered 
segments (40 or more residues) based on their 
predictions [18, 25]. Studies on some of these 
disordered regions reveal that they are evolutionarily 
conserved and possess biological functions [3]. 

Several machine learning approaches, such as 
neural networks (NNs) [14, 3, 17, 26], logistic 
regression (LR) [26, 27], discriminant analysis (DA) 
[27], ordinary least squares (OLS) [26], and support 
vector machines (SVM) [12, 27, 28] have been 
introduced to protein disorder prediction. Since 
different classifiers deliver similar prediction 
accuracy based on the same feature set [27], 
extracting more useful features with biological 
insights to improve the quality of prediction attracts 
more attention in recent studies [3, 28]. As amino 
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acid composition has been demonstrated as a useful 
feature for detecting disordered regions, Jones et al. 
showed in their paper that using the position specific 
scoring matrices (PSSMs) within a specific length of 
window centred at a given residue can improve the 
accuracy of predicting its disorder attribute [3]. The 
values in a position specific scoring matrix indicate 
the level of conservation of a position and the 
properties of the substituted residues, which can be 
derived directly from executing PSI-BLAST for each 
target protein sequence. PSSMs have been 
demonstrated to be powerful in constructing feature 
sets for prediction of single-residue properties from 
an amino acid sequence, such as category of 
secondary structures or solvent accessibility [3]. The 
evolutionary information summarized in a PSSM 
table generalizes the attribute of each position in a 
protein sequence, and thus improves the sensitivity of 
the predicting model. 

A development of this approach employs a 
condensed position specific scoring matrix with 
respect to physicochemical properties (it will be 
called PSSMP in this paper) in predicting protein 
disorder, where the PSSMP is derived by merging 
several amino acid columns of a PSSM that belong to 
a certain property into a single column [28]. As a 
PSSM brings in the evolutionary information on each 
position, a PSSMP summarizes this information as 
property attributes. The improvement achieved by 
PSSMP demonstrates that property attributes are 
more informative than amino acid attributes in 
distinguishing ordered/disordered regions. A more 
comprehensive study conducted in this paper reveals 
that PSSMPs outperform PSSMs especially when the 
employed window size is large. 

When employing PSSMP tables as the feature set 
in protein disorder prediction, two questions arise: (1) 
if all the amino acids in one physicochemical 
property group contribute to the predicting power; 
and (2) if all the amino acids in one physicochemical 
property group result in consistent effect on 
prediction. It has been widely studied in previous 
works that the propensity for order or disorder of 
several amino acids is clear. Hydrophobic amino 
acids are more frequently observed in ordered regions 
than disordered regions [22, 23]. Among them the 
aromatic amino acids are present in different 
locations to the aliphatic amino acids [29]. On the 
other hand, the amino acids with charge imbalance 
are often present in disordered regions. In this paper, 

we argue that the propensity for order or disorder of 
each amino acid should be considered when 
constructing PSSMP. After examining the statistics 
derived by comparing the sequence segments in 
ordered regions and disordered regions, we observe 
that not all the hydrophobic amino acids possess a 
propensity for order. Thus we suggest that each 
conventional physicochemical property should be 
divided into two smaller groups with propensities for 
order and disorder respectively, such as hydrophobic 
with an order propensity (HydrophobicO) and 
hydrophobic with a disorder propensity 
(HydrophobicD). The experiments conducted in this 
work reveal that some newly derived properties 
provide more accurate information regarding order or 
disorder. 

Incorporating the propensity for order/disorder 
with physicochemical properties in PSSMP produces 
informative features for protein disorder prediction. 
However, the number of candidate features becomes 
larger than in the case when only twenty amino acids 
are considered. The size of the feature set gets even 
larger when a large window size is employed, which 
might cause the performance of the learning 
algorithms to be degraded due to abundant noise. 
Thus, we present in this paper a feature selection 
mechanism that considers both the size and 
effectiveness issues when determining a feature set on 
protein disorder prediction. A wrapper approach of 
feature selection is employed during training period 
that invokes the adopted Radial Basis Function 
Networks (RBFN) classifier to evaluate the predicting 
power of a candidate feature set. A cluster-based 
redundancy removal procedure is incorporated to 
speed up the stepwise feature selection process, 
where two levels of redundancy among features are 
considered. 

As far as the experimental materials are 
concerned, a new dataset PDB693 organized from the 
Protein Data Bank (PDB) [30] database is coined in 
this work to benefit the study on protein disorder. 
PDB693 and another dataset D184 collected from 
Database of Protein Disorder (DisProt) [31] 
constitute the training data of our classifier 
DisPSSMP. The performance of DisPSSMP is 
compared with twelve existing disorder prediction 
packages, where the blind testing data comes from a 
recent study [14]. The experimental results 
demonstrate that the selected property features are 
informative in protein disorder prediction and can be 
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used to derive discriminating patterns for order and 
disorder classification. 
 
四、研究方法 
In this section, we provide the details about the 
procedures of constructing PSSMPs, calculating the 
propensities for order/disorder of an amino acid, 
training a predicting model, and selecting useful 
feature sets respectively. 

For each protein in the training and testing data, 
we employ the PSI-BLAST program [46] to construct 
its position specific scoring matrix (PSSM). More 
specifically, the derived PSSM table is a position 
specific scoring matrix of 20 amino acids, which 
provides the evolutionary information about the 
protein at the level of residue types. We name the 
feature set created based on PSSMs FS-PSSM, which 
is considered as the baseline of employing 
evolutionary information in protein disorder 
prediction. The values in PSSMs, which each 
represents the likelihood of a particular residue 
substitution at specific position, are first rescaled to 
be within 0 and 1 using the logistic function as 
suggested in [47]: 

 
)exp(1

1)(
x

xf
−+

= , (2) 

where x is the raw value in profile matrices and f(x) is 
the rescaled value of x. After that, the rescaled 
profiles are organized into a number of w × 20 
dimensional vectors, each of which serves as the 
feature vector of a target residue as the learning or 
predicting instances. When w is odd, which is always 
the case in our experiments, the sliding window of 
size w for acquiring the feature set of a given residue 
is centred at the target residue. 

We next construct the feature set of PSSMP as 
follows. First, columns in the original PSSMs are 
grouped by the user defined property groups and the 
raw values from different columns are summed up as 
a new feature column. In a PSSMP table, the entry yik 
of position i for property k is defined as follows: 

 ∑
=

×=
20

1j
ijkjik xAy , (3) 

where (1) i is the index of a position; (2) Akj = 1, if the 
j-th type of amino acid belong in the k-th property, 
and Akj = 0, otherwise; (3) xij is the raw value of the 
j-th type of amino acid in the position i of the PSSM. 

We call the derived feature set as FS-PSSMP. As 

will be explained the following subsection, different 
FS-PSSMPs can be generated when different property 
groups are specified in constructing FS-PSSMP. 

Table 1 lists the ten physicochemical groups that 
are widely used in analyzing protein sequences [13, 
48]. This paper proposes considering the propensity 
for order or disorder of each amino acid when 
designing a property group in construction of 
PSSMPs. The propensities for order/disorder of 
different amino acids have been widely discussed in 
the previous studies [17, 21, 23, 25, 26, 7, 43, 44, 
45]. Some of them specifically provide a measure of 
propensity based on the occurrences of each amino 
acid in different regions of the datasets they collected 
[26, 7, 44]. In this work, we recalculate the 
propensity for each amino acid based our training 
data. The propensity P(AAi) of an amino acid i toward 
ordered or disordered regions is defined as follows: 

 ,
)(

)()(
)(

i

iDiO
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where F(AAi) is the frequency of amino acid i in the 
training data and FO(AAi) and FD(AAi) are the 
frequencies of amino acid i in the ordered and 
disordered regions of the training data. We say amino 
acid i has a propensity for order if P(AAi) > 0, and 
verse visa. 

Based on the frequencies calculated based on the 
training dataset, each physicochemical property in 
Table 1 can be decomposed into two disjoint set as 
new order/disorder-based property features, as shown 
in Table 2. Three exceptions are: Aliphatic has only 
three types of amino acid toward ordered regions, and 
Negative and Proline have only the disorder type of 
amino acids. It is noticed that there are some new 
properties which only comprise a single type of 
amino acid, such as AromaticD, PositiveO, ChargedO, 
and TinyO. All the property features will be 
considered in constructing the PSSMP feature set for 
protein disorder prediction. Since the size of the 
feature set is quite large and we do not expect all the 
property features are useful in predicting protein 
disorder, a feature selection method will be conducted 
to find a combination of property features that 
benefits protein disorder prediction. 

In this study, the Radial Basis Function Network 
(RBFN) is used as the classifier for predicting protein 
disorder. The employed QuickRBF package [49] is an 
efficient tool for constructing RBFN classifiers, 
which uses the Cholesky decomposition technique to 
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resolve the least mean square error optimization 
problem when constructing a RBFN classifier. We 
rely on the efficiency of QuickRBF such that a 
wrapped method of feature selection can be used in 
constructing our predictor DisPSSMP, where the 
‘wrapped’ means that the classifier is employed in 
feature selection process for evaluating the predicting 
power of the candidate feature set [50]. 

According to the statistics provided in Table 3, 
the ratios of disorder residues to order residues in 
datasets PDB693 and D184 are 1:3.83 and 1:2.03, 
respectively. In order to tackle the problem of the 
skewed datasets with unbalanced number of positive 
and negative instances, equal quantity of residues 
from ordered and disordered regions is used in 
constructing the classifier. In other words, the same 
amount of ordered residues as that of the disordered 
residues in the training sets is randomly selected and 
the others are removed before the training process. 

It is doubted that all of the properties described in 
Table 1 and Table 2 are useful in the problem of 
disorder prediction. Thus, it is suggested to conduct a 
procedure of feature selection on the training data to 
find a combination of features that perform the best in 
this problem. Feature selection is a common 
optimization problem for finding the smallest subset 
of the features with the best classification 
performance [51]. However, finding the optimal 
feature subset is not easy, since there are 2n possible 
combinations when given n features. The algorithm 
of evaluating all subsets such as exhaustive search is 
impractical for large n. Therefore, an alternative 
stepwise feature selection is presented in this paper 
that takes the characteristics of features into account 
to improve the computational efficiency. Three 
factors are frequently used in evaluating the 
performance of a feature selection approach: 
classification accuracy, size of the subset, and 
computational efficiency [51]. The proposed hybrid 
method employs the efficient uni-variant analysis first, 
and uses a cluster-based redundancy removal 
procedure to speed up the tedious stepwise feature 
selection that explores the predicting power of 
combinations of multiple features simultaneously. 

The proposed feature selection mechanism is 
described as follows. First, uni-variant analyses are 
performed by conducting cross-validation on the 
training data using PSSMPs with one property at a 
time. After that the dependency analysis is executed 
in two levels. Since the members of properties listed 

in Table 1 and Table 2 are clearly specified, it is easy 
to put the related features in one cluster. The first 
level considers the dependency between the child 
properties in Table 2 and their parent properties in 
Table 1, and the second level considers the hierarchy 
dependency between the physicochemical properties 
listed in Table 1. After the dependency analysis, the 
redundancy removal step brings one feature or the 
combination of two features that performs the best in 
each cluster to the next step, stepwise feature 
selection. The representative properties from each 
cluster are sorted by their performance, and the final 
subset is constructed by adding property features one 
by one until the performance of cross validation on 
the training data cannot be improved. 

Table 1 Conventional Amino Acid Properties 
(Parent Properties) 

Property I L V C A G M F Y W H K R E Q D N S T P
Hydrophobic Y Y Y Y Y Y Y Y Y Y Y Y    Y
Polar  Y Y Y Y Y Y Y Y Y Y Y
Small Y Y Y Y         Y Y Y Y Y
Aliphatic Y Y Y         
Aromatic Y Y Y Y     
Positive    Y Y Y   
Negative       Y  Y
Proline         Y
Charged    Y Y Y Y  Y
Tiny Y Y Y         Y

Table 2 Order/Disorder-based Amino Acid 
Properties (Child Properties) 

Property I L V C A G M F Y W H K R E Q D N S T P
HydrophobicO Y Y Y Y Y Y Y      Y
HydrophobicD Y Y Y    Y Y    
PolarO  Y Y   Y   Y Y
PolarD    Y Y  Y Y Y Y
SmallO Y Y         Y Y
SmallD Y Y         Y Y Y
AliphaticO* Y Y Y         
AromaticO Y Y Y      
AromaticD

#    Y     
PositiveO

#      Y   
PositiveD    Y Y    
NegativeD*       Y  Y
ProlineD*#         Y
ChargedO

#      Y   
ChargedD    Y Y  Y  Y
TinyO

# Y         
TinyD Y Y         Y
* AliphaticO, NegativeD, and ProlineD are equivalent to Aliphatic, 
Negative, and Proline in Table 1, respectively. 
# AromaticD, PositiveO, ProlineD, ChargedO, and TinyO each comprises 
only a single type of amino acid. 
 
五、成果與討論 
In this section, we first describe how the datasets 
have been prepared and how the performance of 
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prediction is evaluated. Next, we show the results of 
the feature selection after conducting cross-validation 
on the training data. At this stage, we also discuss the 
effect of the window size employed in constructing 
PSSMP. After that, the resultant feature set is 
employed in constructing the final predicting model 
DisPSSMP. Finally, the testing results are evaluated 
based on the bind testing data, and are compared with 
other existing packages performing similar tasks. At 
the end of the section, we show the derived property 
sets can be used to discover patterns that distinguish 
ordered and disordered regions. 

In this study, five datasets have been collected or 
newly created for training and validating processes. 
The detailed statistics about each dataset are provided 
in Table 3, including the number of chains, 
ordered/disordered regions, and residues in 
ordered/disordered regions. The training data used in 
constructing the predictor DisPSSMP is composed of 
datasets PDB693 and D184, which are respectively 
organized from PDB and DisProt database based on 
the procedures described in the following paragraphs. 
Meanwhile, three datasets named R80, U79, and P80, 
which are taken from two related studies [14, 23], 
constitute an independent testing data. This blind 
dataset serves as a platform for comparing the 
performance of the proposed method with some other 
existing packages performing protein disorder 
prediction. 

Table 3 Summary of the datasets employed 
in this study 

 
The dataset PDB693 contains 693 partially 

disordered proteins, where the locations of disordered 
regions are identified by looking for the missing 
residues in a protein structure from PDB database 
(28-Aug-2005 version). There are originally 32204 

structures in this version of PDB database, and those 
structures are filtered by a clustering program Cd-Hit 
[32, 33] such that the resultant nonredundant set 
containing no pair of protein sequences with 
similarity identity of more than 70%. The so-called 
missing residues are those present in the SEQRES 
records but not in the ATOM records with their 
alpha-carbon coordinates. A protein sequence is 
considered in this study only if it contains at least one 
disordered region with more than 30 consecutive 
residues. Furthermore, protein sequences of similarity 
identity of more than 70% against any protein 
sequence in the independent testing data have been 
removed, resulting in 693 protein sequences in the 
PDB693 dataset. 

Another training set D184 is extracted from 
DisProt database. DisProt is a curated database that 
provides information about proteins that entirely or 
partially lack a fixed three-dimensional structure 
under putatively native conditions [31]. The DisProt 
release 2.2 consists of 202 proteins, including 431 
distinct disordered regions in total. Among the 202 
proteins, there are 157 proteins that contain at least 
one disordered region longer than 30 consecutive 
residues. There are more than 50 wholly disordered 
proteins in DisProt database which are annotated as 
serving certain functions. D184 is also filtered by 
Cd-Hit to remove redundant proteins which have 
more than 70% identity with some other proteins 
inside it or in any of the three testing datasets. 

The dataset R80 was prepared by Yang et al. in 
2005 [14]. The 80 protein chains in this dataset are 
collected from the PDB database, and each protein 
chain contains a region of at least 21 consecutive 
disordered residues. Additionally, the dataset U79 
organized by Uversky et al. in 2000 [23] and the 
dataset P80 provided by PONDR® web site 
(retrieved in February 2003) are also compiled into 
the blind testing set, where the dataset U79 contains 
79 totally disordered proteins and the dataset P80 
contains 80 completely ordered proteins. By using 
Cd-Hit again, we observed that two sequences in P80 
are subsequences of a protein in R80 and a pair of 
proteins in U79 have identity of 73%. Like Yang et al. 
did in their paper [14], these three datasets are 
employed as a platform for comparison of our 
approach to some other present packages targeting at 
protein disorder prediction. Thus, we did not change 
the contents of these three datasets such that the 
comparison can be carried out. In particular, the 

 Training data Testing data 

 PDB693 D184 R80 U79 P80

Number of chains 693 184 80 79 80 

Number of ordered regions 1357 257 151 0 80 

Number of disordered regions 1739 274 183 79 0 

Number of residues in the 
ordered regions 201937 55164 29909 0 16568

Number of residues in the 
disordered regions 52663 27116 3649 14462 0 

Total residues in the dataset 254600 82280 33558 14462 16568
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datasets U79 (fully disordered proteins) and P80 
(globular proteins) together suggest whether the 
proposed method is under- or over-predicting protein 
disorder. 

Predicting a residue in the given protein sequence 
as order or disorder is a binary classification problem, 
and many measures have been introduced for 
validation issues [34, 35]. Table 4 lists four widely 
used indices defined by previous related works [14, 
22, 28, 34, 35, 36]. We employ these measures in 
this study to evaluate the performance of different 
feature sets or different packages. Sensitivity 
represents the fraction of disordered residues 
correctly identified in a prediction method, while 
specificity indicates the fraction of ordered residues 
correctly identified. The Matthews’ correlation 
coefficient is a popular measure in many 
bioinformatics problems [37, 38, 39]. However, 
sensitivity, specificity, and the Matthews’ correlation 
coefficient are seriously affected by the relative 
frequency of the target class. Therefore, the above 
three measures are not suitable for evaluating the 
performance in isolation. The probability excess is 
independent of the relative class frequency, and this 
measure can be reduced to sensitivity + specificity − 1 
concisely [14]. In addition, some other indices 
including the CASP S score, product, and probability 
excess are recommended and advised by CASP6 [35] 
and Yang et al. [14] for evaluating the performance of 
prediction. Since these three measures have the same 
tendency with probability excess, we adopt only the 
probability excess in this study for simplicity and 
show the results of other measures in the 
supplementary. 

Table 4 The definition of measures 
employed in this study 

Measure Abbreviat
ion Equation * 

Sensitivity 
(recall) Sens. TP/(TP+FN) 

Specificity Spec. TN/(TN+FP) 

Matthews' 
correlation 
coefficient 

MCC (TP×TN-FP×FN)/sqrt((TP+FP)×(TN+FN)×(T
P+FN)×(TN+FP)) 

Probability 
excess 

Prob. 
Excess (TP×TN-FP×FN)/((TP+FN)×(TN+FP)) 

* The definition of the abbreviations used: TP is the number of correctly 
classified disordered residues; FP is the number of ordered residues 
incorrectly classified as disordered; TN is the number of correctly 
classified ordered residues; and FN is the number of disordered residues 
incorrectly classified as ordered. 
 

In order to conduct a five-fold cross validation, 
the chains in datasets PDB693 and D184 are 
randomly split into five subsets of approximately 
equal size. The results of uni-variant analysis on each 
property feature are shown in Table 5, in which the 
properties oriented from the same physicochemical 
group are put together for the following dependency 
analysis. The dependency analysis of feature selection 
aims to answer if a subset of a property group 
performs better than the original one. 

It is observed in Table 5 that the performance of 
some physicochemical properties has been improved 
after they are split into order/disorder-based 
properties. In other words, purifying the 
physicochemical properties by considering the 
propensity for order or disorder contributes to the 
predicting power of the classifier. HydrophobicO is 
the best property among all of them and gets an 
explicit improvement over Hydrophobic. On the other 
hand, neither PolarD nor PolarO get a better 
performance than Polar. In summary, the 
decomposition of some conventional properties by 
considering the order/disorder propensity brings 
explicit benefit in terms of the uni-variant analysis. 

 

Table 5 The performance of each property in 
the uni-variant analysis on training data 

Property Sens. Spec. MCC Prob. Excess
Hydrophobic 0.633 0.717 0.309 0.350 
HydrophobicO 0.640 0.751 0.350 0.391 
HydrophobicD 0.519 0.723 0.217 0.241 
Polar 0.616 0.734 0.312 0.350 
PolarO 0.603 0.703 0.269 0.306 
PolarD 0.604 0.731 0.299 0.335 
Small 0.553 0.742 0.268 0.295 
SmallO 0.555 0.688 0.214 0.243 
SmallD 0.579 0.759 0.308 0.338 
Aliphatic 0.601 0.748 0.314 0.349 
Aromatic 0.604 0.720 0.288 0.324 
AromaticO 0.602 0.732 0.298 0.334 
AromaticD 0.538 0.660 0.173 0.198 
Positive 0.599 0.678 0.242 0.277 
PositiveO 0.573 0.662 0.204 0.235 
PositiveD 0.583 0.667 0.218 0.250 
Negative 0.586 0.696 0.248 0.282 
Proline 0.564 0.684 0.218 0.248 
Charged 0.614 0.707 0.282 0.320 
ChargedO 0.571 0.664 0.204 0.235 
ChargedD 0.603 0.706 0.272 0.309 
Tiny 0.528 0.732 0.234 0.259 
TinyO 0.577 0.675 0.220 0.252 
TinyD 0.553 0.748 0.274 0.301 
The best performance among each property group is highlighted with bold 
font. 
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Table 6 Performance evaluation on 
Hydrophobic, Aliphatic, and Aromatic 

Property Prob. Excess 

HydrophobicO 0.391

Aliphatic 0.349

AromaticO 0.334

Aliphatic + AromaticO 0.413
The best performance is highlighted with bold font. 

 

Table 7 Performance evaluation on Polar, 
Charged, Positive, and Negative 

Property Prob. Excess 

Polar 0.350 

Charged 0.320 

Positive 0.277 

Negative 0.282 

Positive + Negative 0.321 
The best performance is highlighted with bold font. 

 

Table 8 The result of the stepwise feature 
selection 

Property Prob. Excess

Aliphatic+AromaticO 0.412
Aliphatic+AromaticO+Polar 0.430
Aliphatic+AromaticO+Polar+SmallD 0.437
Aliphatic+AromaticO+Polar+SmallD+Proline 0.435

The best performance is highlighted with bold font. 
 

After the best property for each group has been 
determined, a second level of dependency analysis is 
performed by considering the relations between 
physicochemical properties. The relation of these 
features is derived by incorporating the inheritance 
relationships between the child properties and their 
parent properties. That is, Aliphatic and AromaticO 
are subsets of HydrophobicO, Tiny is a subset of Small, 
Positive and Negative are subsets of Charged, which 
recursively is a subset of Polar. Based on these 
hierarchies, we aim to investigate if a combination of 
two subproperties performs better than the original 
one. According to the results shown in Table 6 and 
Table 7, property features Aliphatic+AromaticO 
performs better than HydrophobicO, but 
Positive+Negative is not superior to Polar. 

After the dependency analysis, the redundancy 
removal step selects the best property from each 

cluster for the next step of feature selection. The 
selected representative properties are sorted by their 
performance in the uni-variant analysis, resulting in 
the following order: Aliphatic+AromaticO, Polar, 
SmallD, and Proline. The stepwise feature selection is 
preformed by adding one candidate property in each 
iteration until the predicting performance cannot be 
improved. The results of the stepwise feature 
selection are shown in Table 8, indicating that the 
four properties, Aliphatic, AromaticO, Polar, and 
SmallD, will be used in constructing the final RBFN 
classifier for predicting protein disorder. We name the 
final feature set of PSSMP with four properties as 
FS-PSSMP-4, the feature set of ten conventional 
physicochemical properties as FS-PSSMP-10, and the 
feature set employing the original PSSM as 
FS-PSSM. 

All the experiments described above have been 
conducted with different window sizes of 11, 35, and 
59, and the resulted feature sets are the same as 
reported. However, though they turn out the same 
result on feature selection, it is observed that larger 
window sizes such as 35 and 59 are favourable when 
prediction accuracy is considered. The current version 
of DisPSSMP adopts a window size of 47 and thus 
employs in total 4 × 47 = 188 attributes in the feature 
vector for a query residue. 

In this subsection, we compare the performance 
of three feature sets, FS-PSSM, FS-PSSMP-10, and 
the proposed FS-PSSMP-4 on the independent testing 
data, which consists of three datasets, R80, U79, and 
P80. In the following discussions, the results on 
datasets U79 and P80 are always combined when 
they are reported, because U79 contains only fully 
disordered proteins and P80 comprises only 
completely ordered proteins. The results reveal that 
larger window sizes deliver better performance for all 
the feature sets on the dataset R80, and the 
performance of FS-PSSMP-4 and FS-PSSMP-10 are 
generally better than FS-PSSM. 

In this subsection we investigate the performance 
of twelve web servers or packages in protein disorder 
prediction, some of which were included in 
comparison with the work of Yang et al. in their paper 
[14]. The predictors for comparison here are RONN 
[14], IUPred(short) [40, 41], IUPred(long) [40, 41], 
DISpro [42], DISOPRED2 [12, 36], PONDR® [25], 
DisEMBL(hot) [7], DisEMBL(465) [7], FoldIndex 
[23, 43], PreLink [22], GlobPlot [44], and 
DisEMBL(coils) [7]. DISOPRED2 has a limit of 
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1000 residues per protein, so 1HN0, 1FO4, and 1PS3 
in dataset R80 and the u15 protein in dataset U79 
have been removed from the blind testing data when 
testing DISOPRED2. IUPred provides two choices of 
predicting short or long disordered regions, and 
DisEMBL provides three choices: DisEMBL(hot), 
DisEMBL(465), and DisEMBL(coils). The results 
show the results in the way of specificity versus 
sensitivity, and the plots are rotated anticlockwise by 
45° to be equivalent to the plot of probability excess 
= sensitivity + specificity − 1. 

When compared with the other packages, 
DisPSSMP performs the best when probability excess 
is considered (with a probability excess of 0.60). 
DisPSSMP shows its ability in identifying the 
boundaries of ordered and disordered regions. The 
predictors IUPred(long), DISpro, DISOPRED2, 
DisEMBL(465), and PreLink have a specificity of 
more than 95% but a sensitivity of less than 50%, 
which show the tendency of predicting order more 
than disorder. In contrast, the predictor 
DisEMBL(coils) with a sensitivity of less than 50% 
but a specificity of more than 70% has the tendency 
of predicting disorder more than order. It depends on 
the users to select the predictors IUPred(long), 
DISpro, DISOPRED2, DisEMBL(465), and PreLink 
for under-prediction of disorder and DisEMBL(coils) 
for over-prediction. 

The main purpose of the experiment on datasets 
U79 and P80 is checking whether a method is 
under-predicting or over-predicting protein disorder.  
The results of all the methods except IUPred(long) 
and FoldIndex are similar to that in the main blind 
testing dataset R80. The sensitivity of IUPred(long) 
and FoldIndex have an improvement of more then 
20% in this experiment, and they are ranked as the 
first and the fourth among all methods. Since 
IUPred(long) has been designed for predicting 
context-independent global disorder that encompasses 
at least 30 consecutive residues in the predicted 
disordered regions and adopts a large window size 
like 101 [40, 41], it is suitable for the recognition of 
the fully globular proteins and the totally unstructured 
proteins. On the other hand, the training data of 
FoldIndex contains 91 totally unfolded proteins and 
275 globular proteins, resulting in its good 
performance in discriminating fully ordered proteins 
from fully disordered proteins [23, 43]. Nevertheless, 
due to the lack of information about the boundaries 
between ordered regions and disordered regions, 

FoldIndex does not have a good performance in R80. 
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