
行政院國家科學委員會專題研究計畫 期中進度報告

兆級晶片系統前瞻技術研究--子計畫一：平台式系統晶片
之節能記憶體架構(2/3)

期中進度報告(精簡版)

計 畫 類 別 ：整合型

計 畫 編 號 ： NSC 95-2221-E-002-360-

執 行 期 間 ： 95年 08 月 01 日至 96年 07 月 31 日

執 行 單 位 ：國立臺灣大學資訊工程學系暨研究所

計 畫主持人：楊佳玲

報 告 附 件 ：出席國際會議研究心得報告及發表論文

處 理 方 式 ：期中報告不提供公開查詢

中 華 民 國 96年 05 月 30 日

行政院國家科學委員會補助專題研究計畫成果報告行政院國家科學委員會補助專題研究計畫成果報告行政院國家科學委員會補助專題研究計畫成果報告行政院國家科學委員會補助專題研究計畫成果報告

※※※※※※※※※※※※※※※※※※※※※※※※※※

※ 平台式系統晶片之節能記憶體架構 ※

※※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：□個別型計畫 ■整合型計畫

計畫編號：NSC95－2221－E－002－360－

執行期間： 95 年 8 月 1 日至 96 年 7 月 31 日

計畫主持人：楊佳玲 國立台灣大學資訊工程學系副教授

計畫參與人員：陳依蓉，林仲祥，林業峻，陳彥名，李翰林

執行單位：國立台灣大學資訊工程學系

中 華 民 國 96 年 05 月 27 日

平台式系統晶片之節能記憶體架構

“Energy-Efficient Memory Hierarchy for Platform-based SoC”

計畫編號：NSC95-2221-E-002-360-

執行期間：95 年 8 月 1 日 至 96 年 7 月 31 日

主持人：楊佳玲 台灣大學資訊工程系副教授

一、 中文摘要

隨著製成技術的進步，漏電在單晶片系統

上造成之能源消耗的問題也越來越重要。在一

處理器中，快取記憶體所需之資源佔相當大部

份，因此，有許多針對快取記憶體以減少漏電

之機制被提出。然而，這些機制都會引起無法

預期之效能衰退，因此並不適用於需要絕對遵

守時間限制之硬性即時系統(hard real-time

system)應用程式。在本計畫中，我們利用現有

之減少快取記憶體漏電之電路設計，提出第一

個適用於硬性即時系統之控制漏電機制。此考

量時間限制之減少快取記憶體漏電機制，利用

每個工作(task)之多餘時間(slack time)來決

定是否要將每個工作相對應之快取記憶體區塊

放入低漏電模式，並且保證每個工作可在其時

間限制內完成。實驗數據顯示，我們所提出之

漏電控制機制，與不管時間限制之漏電控制機

制相比，可達到幾乎相同之漏電減少量。

關鍵字: 漏電， 快取記憶體 ，硬性即時系統

英文摘要

Leakage energy consumption is an

increasingly important issue as the technology

continues to shrink. Since on-chip caches

constitute a major portion of the processor’s

transistor budget, several leakage reduction

schemes have been proposed to reduce cache

leakage. However, these schemes introduce

performance unpredictability thereby not suitable

for hard real-time applications that require the

timing constraint is met in all cases. In this paper,

we propose the first approach to apply existing low

leakage circuit techniques on hard real-time

applications. The proposed timing-aware cache

leakage control mechanism exploits task slack

time to turn cache lines into the low-leakage state

provided that the timing constraint is met. The

experimental results show that the proposed

control policy achieves comparable leakage

reduction to the leakage control policy that

aggressively turn cache lines into low leakage

mode without considering the timing constraint.

Keywords: leakage, cache, hard real-time system

二、 計畫的緣由與目的

Power consumption is becoming a critical

design issue of embedded systems due to the

popularity of portable devices such as cellular

phones and personal digital assistants. As the

technology continues to shrink, leakage power is

becoming a dominant factor to overall CPU energy

[13]. Reducing leakage energy can be done by

exploiting task idle time to shut down the CPU

completely [4, 5, 9, 10] or individual micro-

architecture component, for example, caches [7, 19]

and branch predictors [11]. Previous works on

applying shutting down techniques to hard real-

time systems only focus on turning off a CPU

completely [4, 5, 9, 10]. We are not aware of any

research work that applies micro-architectural

leakage reduction techniques to hard real-time

systems. This work is the first attempt to bridge

this gap.

Since On-chip caches constitute a major

portion of the processor’s transistor budget and

account for a significant share of leakage, we

target at reducing on-chip cache leakage in this

project. In fact, leakage is projected to account for

70% of the cache power budget in 70nm

technology [13]. Therefore, reducing cache

leakage power consumption is important for

reducing a processor’s total leakage. Two types of

circuit techniques have been proposed to reduce

cache leakage: Gated-Vdd [19] and drowsy caches

[7]. The gated-Vdd technique turns off a cache line

completely to save maximum leakage power, but

the loss of state exposes the system to incorrect

turn-off decisions which result in significant

performance penalty. The drowsy cache technique

uses a small supply voltage to retain the data in a

memory cell at the low leakage state [7, 14].

Therefore, the drowsy cache technique reduces

leakage less than the gated-Vdd technique, but it

incurs much less penalty when accessing a

memory cell at the low-leakage state. The delay to

switch a memory cell from the low-leakage state to

the active state is called wake-up overhead.

In this project, we propose the first

timing-aware cache leakage control mechanism for

hard real-time systems. To achieve energy savings

with hard real-time guarantee, we exploit both

static and dynamic slack to tolerate delay caused

by accessing low-leakage cache lines. Unlike

previous works that choose between the drowsy

cache or gated-Vdd, our scheme allows joint use

of both techniques. We exploit task-level

information to manage cache lines of idle and

active tasks differently. For cache lines allocated

to an active task, due to short idle period between

accesses, only the drowsy cache technique is

considered. These cache lines are turned into the

drowsy mode periodically, and waken up when

they are accessed. The period to turn all caches

lines to the drowsy mode is referred to as the

drowsy window size. A smaller drowsy window

size leads to higher leakage savings at the cost of

higher wake-up overheads. Our timing-aware

cache leakage control mechanism chooses the

smallest drowsy window size provided that the

timing constraint is met. For cache lines allocated

to idle tasks, we seek opportunities to turn cache

lines off completely to get more leakage gain as

long as the penalty of fetching data from the lower

level memory hierarchy does not cause the

violation of timing constraint.

We evaluate the proposed leakage control

scheme on 8 real applications. The experimental

results show that with tight deadlines, the simple

policy in [7] causes high deadline miss ratio. (e.g.,

with 1% static slack
1
, the deadline miss ratio

2
 is

up to 97.6%.) This confirms our assertion that

existing leakage reduction techniques are not

suitable for hard real-time applications, and a

timing-aware leakage control scheme is a must.

With 1% static slack, the proposed scheme has

leakage reduction ranging from 78.4% to 86.9%

with hard real-time guarantee, while the simple

policy achieves leakage reduction from 89.7% to

90.6% with tasks missing deadlines. This shows

the proposed scheme sacrifices leakage savings to

satisfy the timing constraint. As task slack

1
 Static slack = 1 – ∑ =

n

i ii PW
1

/ , where Wi and Pi are the

WCET and period of a task i among n tasks in a task set.
2
 Deadline miss ratio = (Nmiss tasks /Ntotal task) , where Nmiss tasks

is the number of tasks that missed deadline, and Ntotal tasks is

the total number of executed tasks.

increased, the discrepancy of leakage savings

between the proposed scheme and the simple

policy decreases, and the leakage savings of the

proposed method is approaching that of the simple

policy. With 20% of static slack, our scheme

achieves 1.3% more leakage savings than the

simple policy. Joint use of drowsy caches and

gated-Vdd also leads to more leakage savings.

When the proposed scheme has opportunities to

turn off the cache lines of a idle task, the proposed

scheme achieves 2.8% more leakage reduction

than the one with the drowsy caches only.

三、 研究方法及成果

In this section, we first introduce the system

model we discussed in this project, and then we

describe the proposed timing-aware leakage

control policy.

1. System Model

The system consists of a task set of n periodic real

time tasks. These tasks are independent tasks and

preemptable. Tasks are denoted as T = {τ1, τ2…

τn}, where T denotes the task set andτi denotes

the i-th task of n tasks. Each τ i has its own

period Pi and its WCET Wi. We assume a task’s

deadline is its period. Tasks are scheduled using

the EDF scheduling policy. A task with earlier

deadlines gets higher priority. The scheduler has

two queues: waiting queue (Qwaiting) and ready

queue (Qready). The waiting queue contains the

completed tasks, and the ready queue contains the

running and preempted tasks. The task that is

currently running is the active task, and the

completed and preempted tasks are idle tasks. The

schedualibitlity of a task set is tested by the CPU

utilization U defined ∑ =
=

n

i ii PWU
1

/ . If U is less

than 100%, the task set is said to be schedulable.

The baseline cache architecture that supports

cache locking described in [11] is shown in Figure

1. The lock_ctrl signal indicates whether a cache

line can be replaced or not. We select instructions

to be locked in the instruction cache based on the

locking algorithm described in [11]. Each cache

line is associated with leakage mode bits to select

the supply voltage. A cache line can be turned into

either the drowsy caches or state-destructive mode

(i.e. the gated-Vdd circuit). We use the terms

drowsy mode and state-preserving mode

interchangeably in this report.

Tag array Data array

Leakage mode

D
eco

d
er

D
eco

d
er

D
eco

d
er

D
eco

d
er

tag indexaddress =

Leakage mode

voltage

controller

voltage

controller

hit

lock_ctrl

Figure 1. Baseline cache architecture of the proposed

scheme.

2. Timing-aware leakage control

The objective of the proposed leakage

management scheme is to determine the drowsy

window size for active tasks and the leakage mode

for idle tasks, provided that the timing constraint is

not violated. The details of the proposed scheme

are described as the follows.

2.1 Leakage Control Scheme for Active Tasks

The leakage control scheme for active tasks is

based on the Drowsy+Simple policy proposed in

[7]. Different from Drowsy+Simple in [7] that

uses fixed drowsy window size, the proposed

leakage control scheme for active tasks adjust

drowsy window size dynamically with hard

real-time guarantee. The drowsy window size

affects the leakage savings and the performance

overhead caused by waking-up drowsy cache lines.

With a shorter window, cache lines are set to the

drowsy mode more frequently thereby achieving

higher leakage reduction. But it also causes higher

wake-up overhead. As illustrated in Figure 2, to

meet the timing constraint, the total wake-up

overhead cannot exceed a task’s slack. Therefore,

our leakage control scheme is to decide the

smallest drowsy window size so as the timing

constraint is met. That is, the wake-up overhead of

all drowsy windows does not exceed the total slack

time. The slack time of a task comes from two

sources. One is called static slack that is computed

based on the WCET. The other is called dynamic

slack which is due to variations of task execution

time. The leakage control scheme for active tasks

contains off-line and on-line phases. Below we

describe two phases in details.

Slack time

Period

With

Leakage

Control

Without

Leakage

Control

Full speed execution

Wakeup overhead

Drowsy window

Figure 2. Illustration of using wake-up overehads to consume

task slack time.

2.1.1 Off-line Phase

Static Slack Allocation

We first allocate static slack to tasks statically

based on their worst case preemption rates.

According to the run-time slack reclamation

algorithm described in the next section, the

additional run-time slack of a low priority task is

less likely to be used by other tasks. Therefore, to

increase the total CPU utilization, we allocate

static slacks to tasks with higher priorities.

Assume for all i; j, if i < j, then Pi < Pj . The

number of preemption PN(τk) of a taskτk in the

worst case is

 ∑
−

=
=

1

1
/)(

k

i ikk PPPN τ

The static slack time, ρk, allocated to a taskτk is

∑ =

−
×−×=

n

i k

k

ik

PN

PN
UP

1
)(/1

)(1
)1(

τ

τ
ρ

Worst Case Active Set Analysis

To estimate the performance overhead by

activating drowsy cache lines in a drowsy window,

we need to predict the number of cache access in a

drowsy window. The number of cache lines that

can be accessed in a drowsy window in the worst

case is all the cache lines that could be accessed in

the future. To obtain this information, we first

construct the CFG (Control Flow Graph) of a

program. In the CFG, each node represents a basic

block, and an edge from node a to node b indicates

that an execution path exits from basic block a to

basic block b.

L(B1)=3

B1

B2
L(B6)=4

B6

L(B7)=5

B7

AS(B2) = 7

AS(B7) = 5

AS(B6) = 4+5 = 9

AS(B1) = max(3+7 , 3+9) = 12

B1,B6,B7 : Normal basic block.

B2,B3,B4,B5 : Merged as one basic block since they are in a loop.

L(Bi): number of locked cache lines touched by Bi.

AS(Bi): Active set size of basic block Bi.

AS(Bi) = max{L(Bi) + Active(Bj)} , where Bj is the child of Bi.

L(B2)=2

L(B3)=3 L(B4)=1

L(B5)=2

B3 B4

B5

Figure 3. Example of the CFG for the worst case active set

analysis.

Figure 3 shows an example of the CFG, and

the worst case active set (WCAS) analysis is

performed on the CFG. In Figure 3, each node is

associated with L(Bi), which is the number of

locked cache lines in basic block Bi. The WCAS

size of each node Bi, which is denoted by AS(Bi),

is the maximal number of locked cache lines that

could be accessed from Bi. Therefore, AS(Bi) is

calculated by

AS(Bi) = max{L(Bi) + AS(Bj)};)(ij BchildB ∈∀

WCAS analysis is performed at compile time.

To convey the WCAS size to the cache controller,

which performs the leakage control, we use a store

instruction to write the WCAS size to the cache

controller, and the cache controller triggers drowsy

window resizing on receiving a WCAS size. To

prevent frequent drowsy window resizing, we

merge basic blocks of a loop into one, and insert

the store instruction at the loop entry point. As

shown in Figure 3, B2, B3, B4 and B5 form a loop,

and the active set size information is recorded on

B2 only.

2.1.2 On-line Phase

Dynamic Slack Reclamation

Dynamic slack is from variations of task

execution time, and the collection of the dynamic

slack time is performed by the OS when a context

switch occurs. The dynamic slack reclamation

process is similar to the one proposed in [15].

Before we detail dynamic slack reclamation, we

first define five notations:

�
CPU

iU : the unused CPU budget of τi.
�

rem

iW :the remaining WCET ofτi.
� Si: the slack time ofτi.
� Ei: the execution time ofτi.
� DS: dynamic slack time

When a task arrives (i.e., removed from the

waiting queue), CPU

iU and rem

iW are initialized

to (WCET + static slack) and WCET, respectively.

During the execution ofτi., CPU

iU is consumed,

and rem

iW decreases. rem

iW is updated by cache

controller during task execution. Since the

wake-up overhead of drowsy cache line does not

estimated in WCET, at every cycle, rem

iW is

decreased by one when there is no drowsy cache

hit. Note that we do not claim the slack time of

preempted tasks as in [15]. In our scheme, a

preempted task could utilize its slack to turn its

cache lines into the low leakage mode during the

idle period. Whenτi is preempted or completes,

we first consume the dynamic slack (DS) from

unused CPU budget of the tasks in Qwaiting with

earlier deadlines. Then, we update CPU

iU of task

τi. DS is estimated by the following equation:

∑ ∈
=

waitingk Q

CPU

KUDS
τ

If DS is greater than Ei, CPU

iU is not consumed.

Otherwise, the CPU budget is updated using the

following formula.
CPU

iU = CPU

iU - (Ei - DS)

Therefore, the slack time that a task can use to

compensate the wake-up overheads is:

Si = (CPU

iU -
rem

iW) + DS

Drowsy Window Resizing

The process of drowsy window resizing is to

decide the smallest drowsy window size such that

the timing constraint is met. Drowsy window

resizing is performed when a context switch

occurs or when the active set changes. To decide

the drowsy window size of the scheduled task, we

have to find the smallest drowsy window size with

the wake-up overhead that is not larger than the

task’s available slack. Therefore, the drowsy

window size is the smallest window size that

satisfies the following inequality:

 iiactive

rem

i SOHSwsizeW <××)(/ (1)

, where wsize denotes the window size, Sactive(i)

denotes the WCAS size of task τ i, and OH

denotes the number of cycles to wake up a drowsy

cache line.

2.2 Leakage Control Scheme for Idle Tasks

For idle tasks, we could turn their cache lines into

the state-preserving or state-destructive mode

depending on the length of the idle period and the

slack time. The leakage control for idle tasks is

performed by the OS when a context switch occurs.

The slack Si and idle period Ii of a completed or

preempted task are given below:

Completed tasks:

Si = ρi
Ii =Tarrive(τi) – Tenter_q(τi)
Preempted tasks

Si =
CPU

iU -
rem

iW

Ii = BCET(τcurr)
, where BCET(τcurr) is the best case execution time

of the current active task, Tarrive(τi) is the next

arrival time ofτi, and Tenter_q(τi) is the timeτi
entering the waiting queue.

To decide the leakage mode of an idle task, we

need to evaluate the performance overhead

(Poverhead(Mi)) and the energy overhead

(Eoverhead(Mi)) of a low leakage mode Mi, where

Mi is either the drowsy or state- destructive mode.

Poverhead(Mi) and Eoverhead(Mi) are:

Poverhead(Mi) = Nwake ×××× Dwake(Mi)

Eoverhead(Mi) = Nwake ×××× Ewake(Mi)

, where Nwake denotes the number of times to wake

up cache lines in low leakage mode, and Dwake(Mi)

and Ewake(Mi) denote the delay and energy

overhead to wake up cache lines in low leakage

mode Mi. For the state-preserving mode, the

wake-up overhead is 2-cycle for putting both tag

and data array into the drowsy mode, and the wake

up energy is the energy required to charge a

drowsy cache line from the drowsy state to the

active state. For the state-destructive mode, the

wake-up overhead is the latency and energy to

access the next level memory hierarchy. To turn an

idle task’s cache lines into a low leakage mode Mi,

the task must have

(1) Poverhead(Mi) ≦ Sidle, and

(2) Eoverhead(Mi) ≦ Eleak reduction(Mi)

, where Eleak reduction(Mi) denotes the leakage

reduction obtained by applying low leakage mode

Mi, and Eleak reduction(Mi) is derived from the

following formula:

Eleak reduction(Mi) =

(Eleak active(Mi) ¡ Eleak low(Mi)) × Iidle - Eoverhead(Mi)

, where Eleak active(Mi) and Eleak low(Mi) denote the

leakage energy of cache lines in the active and low

leakage mode Mi, respectively. Iidle is the idle

length of the idle task.

To determine the leakage mode of idle tasks, we

evaluate the performance overhead and leakage

reduction achieved by both the gated-Vdd and

drowsy cache circuits. We choose the low-leakage

mode with the most leakage reduction while

meeting the timing constraint as the leakage mode

of an idle task.

3. Experimental Results

For cache leakage evaluation, we use the

HotLeakage tool set [23]. HotLeakge is developed

based on the Wattch [3] tool set. HotLeakage

explicitly models the effects of temperature,

voltage, and parameter variations, and has the

ability to recalculate leakage currents dynamically

as temperature and voltage changed at runtime due

to operating conditions. To simulate multi-tasking

workloads, we modified HotLeakage to allow

multiple programs executing simultaneously. We

also implement the EDF scheduler. In our

experiment, cache locking is performed on L1

I-cache. Since we also put the tags into the drowsy

mode, the performance overhead of accessing a drowsy line is set to 2 cycles according to [16].

Table 1. Simulated architecture parameters.

Processor Core

Instruction window 16-RUU, 16-LSQ

Issue width 1 instruction per cycle, in-order issue

Functional units 4 IntALU, 1 IntMult Div, 1 FPALU, 1 FP Mult Div

Memory Hierarchy

L1 I-cache Size 8KB, 2-way, 16B block size

L2 cache Size 32KB, 4-way, 32B block size, 8-cycle access latency

Memory 8-cycle access latency

Energy Parameter

Processor technology 0.07nm

Supply voltage 0.9V

Temperature 353

Table 2. Task set characterization.

Name Description Code size(byte) WCET(cycles)

Small task set (Total code size 7608 bytes)

Jfdctint
JPEG integer implementation of the forward DCT

3296 19087

Crc
cyclic redundancy code example program

1400 142088

Ludcmp
Linear equations by LU decomposition

2336 16607

Matmult
Matrix multiplication

576 12555

Medium task set (Total code size 9192 bytes)

Qurt
Computation of roots of quadradic equations

1200 4038

Minver
Matrix inversion

3656 11281

Jfdctint JPEG integer implementation of the forward DCT 3296 18969

Fft1
FFT Cooly-Turkey algorithm

1040 8685

The detailed processor and memory hierarchy

parameters are shown in Table 1. We implement

two leakage control mechanisms, the

Drowsy+Simple scheme proposed in [7], and the

proposed timing-aware leakage control scheme

(TALC). For the Drowsy+Simple scheme, we

determined the drowsy window size through

exhaustive simulations and chose the best one on

the average, 1000-cycle [7]. The cache lines

allocated to idle tasks are turned into the drowsy

mode immediately when a context switch occurs.

The benchmarks used in this work are from the

SNU real-time benchmark suite [1]. The

benchmark programs are C sources which are

collected from numerical calculation programs and

DSP algorithms. We mix multiple applications

together to form two multi-tasking workloads, the

small task set and the medium task set. Details of

the workloads are listed in Table 2. The WCET of

each task is measured with cache locking. To

generate varying execution time, we use the

method similar to [8]. We assume the BCET of a

task as a percentage of its WCET. In our

experiments, the (BCET/WCET) ratio is set to

0.95. The execution time of each task instance is

generated by a normal distribution with mean μ

= (WCET + BCET)=2 and standard deviation ρ

= (WCET ¡ BCET)=6. The task instance is forced

to terminate once its execution time is expired.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2% 3% 4% 5%

Static slack

M
is

s
ra

ti
o

Small task set Medium task set

Figure 4. Deadline miss ratio of Drowsy+Simple.

We first show the deadline miss ratio of the

Drowsy+Simple scheme to demonstrate the

importance of designing a timing-aware leakage

control algorithm. We adjust the period of each

task to achieve 1%, 2%, 3% , 4% and 5% static

slack. Figure 4 shows the ratio of tasks missing

deadlines with different static slack. For the small

task set, the miss ratio is 86.3% and 0.4% when

the static slack is 1% and 2%, respectively. For the

medium task set, the miss ratio is up to 97.9% and

95.6% when the static slack is 1% and 2%,

respectively. Drowsy+Simple has higher miss ratio

in the medium task set than in the small task set.

The medium task set has larger total code size and

has more instructions locked in the cache than

those of the small task set. Therefore, the

Drowsy+Simple scheme incurs more performance

degradation in the medium task set than in the

small task set. Although Drowsy+Simple only

misses the deadline in the cases with a tight

schedule, this is still not acceptable for a hard

real-time system that requires the system to always

meet the timing constraint. This confirms our

assertion that existing leakage reduction

techniques are not suitable for hard real-time

applications. Our timing-aware leakage control

algorithm is guaranteed to meet the timing

constraints, and the miss ratio is zero in all cases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 5% 10% 15% 20%

Static slack

L
ea

k
ag

e
sa

v
in

g
s

Drowsy+Simple, small TALC, small Drowsy+Simple, medium TALC, medium

Figure 5. Evaluation of leakage reduction.

Figure 5 compares the energy savings

achieved by our TALC scheme vs. the

Drowsy+Simple mechanism with 1%, 5%, 10%,

15% and 20% static slack. Note that for fair

comparison, in this set of experiments, the TALC

scheme turns the cache lines of idle tasks into the

drowsy mode only. We show the experimental

results for the small and medium task sets

separately. When the static slack is 1% where

Drowsy+Simple has 86.3% and 97.6% of tasks

missing their deadlines with the small and the

medium task set, in order to satisfy the timing

constraint, the TALC scheme achieves less energy

savings than drowsy+Simple. From Figure 5, we

also observe that TALC achieves less leakage

reduction with the medium task set than the small

task set. Since TALC assumes the worse case

active set for drowsy window resizing, it could

overestimate the wake-up delay. For the medium

task set, the overestimation is more serious than

the small one since the medium task has larger

code size and longer worst-case execution path. A

more precise active set analysis scheme could help

alleviate this problem. We leave this as the future

work. As slack time increased, the energy savings

achieved by TALC approaches Drowsy+Simple.

With 20% static slack, the proposed scheme has

1.1% and 1.3% more leakage savings that

Drowsy+Simple for the small and medium task set,

respectively. This energy advantage provided by

TALC over Drowsy+Simple comes from run-time

drowsy window resizing. With 20% static slack for

the small task set, the window size ranges from 13

cycles to 979 cycles while Drowsy+Simple fixed

the window size to 1000-cycle.

Table 3. Leakage savings of TALC-drowsy and TALC-dual.

Static slack TALC-drowsy TALC-dual Differences

20% 90.9% 93.3% 2.4%

30% 91.7% 94.2% 2.5%

40% 92.9% 95.6% 2.7%

50% 93.9% 96.6% 2.7%

60% 94.2% 97.0% 2.8%

To evaluate the effect of turning off cache

lines of idle tasks completely, we create a new task

set that has idle periods long enough for the

state-destructive mode. To lengthen the idle period,

we can increase both static and dynamic slack. To

increase static slack, we set 20%, 30%, 40%, 50%

and 60% static slack in this set of experiments. To

increase dynamic slack, we prolong a task’s

WCET by increasing the number of iterations

executed by the task’s major subroutines on the

worst-case execution path. The BCET/WCET ratio

remains 0.95 as the original setup, and the a task’s

dynamic slack increases with its WCET prolonged.

The experimental results of this new task set are

shown in Table 3. In Table 3, TALC-drowsy

denotes the TALC scheme with the drowsy mode

only, and TALC-dual denotes the TALC scheme

with both the drowsy mode and the

state-destructive mode. The results show that

turning off cache lines of an idle task completely

achieves up to 2.8% more leakage saving than that

of TALC-drowsy.

四、結論

In this project, we propose a timing-aware

cache leakage control scheme for hard real-time

system. The basic idea of the proposed algorithm

is to consume system slack by the performance

overhead caused by activating the drowsy cache

lines. The proposed scheme manages cache lines

of active and idle tasks differently. The objective

of the proposed leakage management method is to

determine the drowsy window size for the active

task, and the leakage mode for the idle task

provided that the timing constraints is not violated.

Experimental results show that, although our

scheme achieves less leakage savings than

Drowsy+Simple with tight schedule, our scheme

provides the timing constraint is met in all cases

while Drowsy+Simple has tasks miss deadlines.

With task slack increased, the discrepancy between

leakage savings of our scheme and Drowsy+

Simple decreases. With 20% static slack, our

scheme even achieves 1.3% more leakage savings

than Drowsy+Simple. This energy advantage

provided by the proposed scheme comes from

run-time drowsy window resizing. With the task

set that has opportunities to put cache lines into

state-destructive mode for idle tasks, the proposed

scheme achieves 2.8% more leakage savings than

the proposed scheme with the drowsy mode only.

This research work has been submitted to the 2007

International Conference on Compilers,

architecture and Synthesis for Embedded Systems

(CASES 2007).

五、參考文獻

1. Snu real-time benchmarks. In

http://archi.snu.ac.kr/realtime/benchmark/index.html.

2. ARM946E-S.

http://www.samsung.com/products/semiconductor/asic/i

pcorelibrary/intellectureproperties/processorcores/armco

res/ddi0201 a946es.pdf.

3. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

framework for architectural-level power analysis and

optimizations. In Proceedings of the 27th annual

international symposium on Computer architecture

(ISCA’00), 2000.

4. J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware

energy-efficient scheduling of real-time tasks in

multiprocessor systems. In Proc. the 12th IEEE

Real-Time and Embedded Technology and Applications

Symposiums (RTAS ’06), 2006.

5. J.-J. Chen and T.-W. Kuo. Procrastination for

leakage-aware rate-monotonic scheduling on a dynamic

voltage scaling processor. In Proc. of Conference on

Languages, Compilers, and Tools for Embedded

Systems 2006(LCTES ’06), 2006.

6. A. Cortex-R4F. http://www.arm.com/pdfs/cortex-r4f

7. K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T.

Mudge. Drowsy caches: Simple techniques for reducing

leakage power. In Proceedings of the 29th annual

international symposium on Computer architecture

2002(ISCA’ 02), 2002.

8. R. Jejurikar and R. Gupta. Integrating preemption

threshold scheduling and dynamic voltage scaling for

energy efficient real-time systems. In RTCSA, 2004.

9. R. Jejurikar and R. Gupta. Dyanmic slack reclamation

with procrastination scheduling in real-time embedded

systems. In Proceedings of the 42nd annual conference

on Design automation, 2005.

10. R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware

dynamic voltage scaling for real-time embedded systems.

In Proc. the 41st Design Automation Conference

(DAC ’04), 2004.

11. P. Juang, K. Skadron, M. Martonosi, Z. Hu, D. W. Clark,

P. W. Diodato, and S. Kaxiras. Implementing

branch-predictor decay using quasi-static memory cells.

ACM Transactions on Architecture and Code

Optimization (TACO), 1.

12. S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:

Exploiting generational behavior to reduce cache

leakage power. In Proceedings of the 28th annual

international symposium on Computer architecture

2001(ISCA’ 01), 2001.

13. N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner,

J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan.

Leakage current: Moore’s law meets static power. IEEE

Computer, 36. 16

14. N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge.

Drowsy instruction caches: Leakage power reduction

using dynamic voltage scaling and cache sub-bank

prediction. In Micro-35, 2002.

15. W. Kim, J. Kim, and S. Min. A dynamic voltage scaling

algorithm for dynamic-priority hard real-time systems

using slack time analysis. In Proceedings of the

conference on Design, automation and test in Europe

(DATE ’02), 2002.

16. Y. Li, D. Parikh, and Y. Zhang. State-preserving vs.

non-state-preserving leakage control in caches. In

Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, 2004.

17. S. Martin, K. Flautner, T. Mudge, and D. Blaauw.

Combined dynamic voltage scaling and adaptive body

biasing for lower power microprocessor under dynamic

workloads. In ICCAD, 2002.

18. L. Niu and G. Quan. Reducing both dynamic and

leakage energy consumption for hard real-time systems.

In Proceedings of the 2004 international conference on

Compilers, architecture, and synthesis for embedded

systems (CASES ’04), 2004.

19. M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.

Vijaykumar. Gated-vdd: A circuit technique to reduce

leakage in deep-submicron cache memories. In

Proceedings of the 2000 International Symposium on

Low Power Electronics and Design (ISLPED00), 2000.

20. I. Puaut and D. Decotigny. Low-complexity algorithms

for static cache locking in multitasking hard realtime

systems. In Proceedings of the 23rd IEEE REAL-TIME

SYSTEMS SYMPOSIUM (RTSS02), 2002.

21. S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, and T. N.

Vijaykumar. An integrated circuit/architecture approach

to reducing leakage in deep-submicron

high-performance i-caches. In Proceedings of the 7
th

International Symposium on High-Performance

Computer Architecture (HPCA ’01), 2001.

22. W. Zhang and J. S. Hu. Compiler-directed instruction

cache leakage optimization. In Proc. the 35th Annual

International Symposium on Microarchitecture

(MICRO ’02), 2002.

23. Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron,

and M. Stan. Hotleakage: A temperature-aware model of

subthreshold and gate leakage for architects.

出席國際學術會議報告

報 告 人

姓 名
楊佳玲

服 務 機 構

及 職 稱

台灣大學資工系

副教授

會 議 時 間

地 點

Nice, France

April 16 – 20, 2007

會議名稱 Design Automation & Test in Europe

發表論文題目 Energy-Efficient Real-Time Task Scheduling with Task Rejection

一、參加會議經過

 2007 Design Automaton and Test in Europe於 2007/4/16 ~ 2007/4/20於法國尼斯舉

行。Date乃為歐洲最大之 EDA (Electronics and Design Automation)會議， 與會人數眾

多， 此次會議共含 11 session 及 5 tutorials 。本人於 Session 11: Real-Time Methodology

發表論文 “Energy-Efficient Real-Time Task Scheduling with Task Rejection” ，此篇論文

之發表，於會中廣獲好評，於 paper presentation 之後，與多位學者進行深入之討論。 本

人除參與論文發表外，並和與會研究人員進行意見交流，獲益良多。

二、與會心得

1. System-level design 仍為當今SOC design methodology 研究上一主要課

題。此次會議的兩個 keynotes 皆指出其重要性。

2. Process variation 是 nano-technology 下 一重要設計要素 ，此次會議中有多

篇論文討論 process variation 對architectural design 之影響。

3. System-wide power management 是未來 ubiquitous communication device

ㄓㄧ重要發展環節。

三、攜回資料名稱之內容

2007 Date 會議論文集光碟片一片。

四、結語

非常感謝國科會提供補助，使得我得以成行。也使得我們有機會與國

外同領域的學者交換 low power embedded system design發展及研究的心

得。

Energy-Efficient Real-Time Task Scheduling with Task Rejection ∗

Jian-Jia Chen, Tei-Wei Kuo, Chia-Lin Yang

Department of Computer Science and
Information Engineering

National Taiwan University Taipei, Taiwan.
Email:{r90079, ktw, yangc}@csie.ntu.edu.tw

Ku-Jei King

xSeries Development
IBM Systems Technology Group (STG)

Email: kujei@tw.ibm.com

Abstract
In the past decade, energy-efficiency has been an important system
design issue in both hardware and software managements. For mo-
bile applications with critical missions, both energy consumption
reduction and timing guarantee have to be provided by system en-
gineers to extend operation duration and maintain system stability.
This research explores real-time systems composed of homogeneous
multiple processors with the capability of dynamic voltage scaling
(DVS), in which a given task can be rejected with a specified value
of rejection penalty. The objective is to minimize the summation of
the total rejection penalty for the tasks that are not completed in
time and the energy consumption of the system. This study provides
analysis to show that there does not exist any polynomial-time ap-
proximation algorithm for the studied problem, unless P = NP .
Moreover, we propose algorithms for systems with ideal and non-
ideal DVS processors. The capability of the proposed algorithms is
provided with extensive evaluations. The evaluation results reveal
that our proposed algorithms could derive effective solutions of the
energy-efficient scheduling problem with task rejection considera-
tions.

Keywords: Energy-Efficient Scheduling, Task Rejection, Real-
Time Task Scheduling.

1. Introduction
Along with the low-power demands in electronic circuit designs, a
modern processor can now operate at different supply voltages to
balance its power consumption and performance. Different supply
voltages lead to different execution speeds on a dynamic voltage
scaling (DVS) processor. Well-known DVS processors for embed-
ded systems are Intel StrongARM SA1100 processor [17] and Intel
XScale [18]. Moreover, technologies, such as Intel SpeedStep R© and
AMD PowerNOW!TM, provide dynamic voltage scaling for laptops
to prolong the battery lifetime.

In the past decade, energy-efficient designs have received a lot
of attention in industry and academics. For systems with real-time
demands, energy-efficient task scheduling has been studied to min-
imize the energy consumption with timing guarantee, especially for
uniprocessor systems with DVS supports. Due to the convexity of
the power consumption function, implementations in multiproces-
sor systems are often more energy-efficient [2]. Moreover, since
many chip makers, such as Intel and AMD, are releasing multi-core
chips, multiprocessor energy-efficient scheduling is becoming more
and more important. Various heuristics were proposed for energy
consumption minimization under different task models in multipro-
cessor environments, e.g., [1, 4–7, 15, 19] for independent real-time
tasks and [9, 20] for real-time tasks with precedence constraints.

Due to the increase of leakage power consumption in technology,
researchers have started exploring energy-efficient scheduling with

∗ Support in parts by research grants from ROC National Science Coun-
cil NSC-95-2752-E-002-008-PAE, Aim for Top University Plan 95R0062-
A100-07, and IBM Faculty Award.

the considerations of the non-negligible power consumption of leak-
age current [12]. For uniprocessor scheduling, Irani et al. [10] pro-
posed approximation algorithms for aperiodic real-time tasks. For
periodic real-time tasks in uniprocessor systems, Jejurikar et al. [12],
Lee et al. [14], and Chen et al. [8] provided scheduling algorithms
with task procrastination to decide when to turn the processor into a
dormant mode. Moreover, Chen et al. [6] developed approximation
algorithms for multiprocessor leakage-aware scheduling.

However, most studies for energy-efficient real-time task schedul-
ing do not take task rejection into considerations. Most heuristics
for multiprocessor energy-efficient scheduling cannot guarantee the
schedulability of the derived schedules. Chen et al. [6] applied the
constraint violation approach to augment the highest available speed
with a 4

3
factor. However, resource augmentation might not be pos-

sible since it is hardware-dependent. Hence, some tasks might be
rejected to guarantee the schedulability of the selected tasks.

This research explores systems with the possibility to reject a
task for execution with a specified cost (penalty). If a task is more
important than another, its rejection penalty should be specified
with a greater value. We consider a homogeneous multiprocessor
system with continuously available speeds or discretely available
speeds. The objective is to minimize the summation of the total
rejection cost for the tasks that are not completed in time and the
energy consumption of the system. The contribution of this paper
is on two folds. Firstly, we show the NP-hardness of the studied
problem, and provide analysis on the non-existence of polynomial-
time approximation algorithms, provided that P �= NP. Secondly,
we propose a branch-and-bound approach and heuristic algorithms.
The proposed algorithms are evaluated by extensive experiments.
The evaluation results reveal that our proposed algorithms could
derive effective solutions of the energy-efficient scheduling problem
with task rejection considerations.

The rest of this paper is organized as follows: Section 2 defines
the energy-efficient task scheduling problem with task rejection and
provides the hardness analysis. Section 3 presents our algorithms.
Experimental results for the performance evaluation of the proposed
algorithms are presented in Section 4. Section 5 is the conclusion.

2. Problem Definition and Hardness Analysis
Processor models This paper explores energy-efficient scheduling
on M homogeneous DVS multiprocessors, where the power con-
sumption function of each task is the same on every processor. The
power consumption function P (s) of the adopted processor speed on
a DVS processor can be divided into two parts Pd(s) and Pind, in
which Pd(s) is dependent (Pind is independent, respectively) upon
the processor speed s [21]. The speed-dependent power consump-
tion function is mainly contributed by the dynamic power consump-
tion resulting from the charging or discharging of CMOS gates and
the short-circuit power consumption, while the leakage power con-
sumption contributes the major of the speed-independent power con-
sumption. The algorithms proposed in this paper can be adopted with
many power consumption function formulations, such as those in

978-3-9810801-2-4/DATE07 © 2007 EDAA

[16, §5.5]. We consider systems with Pd(s) as a convex and increas-
ing function, e.g., Pd(s) ∝ sα for any α > 1.

The number of CPU cycles executed in a time interval is linear of
the processor speed. That is, the number of CPU cycles completed
in time interval (t1, t2] is

R t2
t1

s(t)dt, where s(t) is the processor

speed at time t. The energy consumed in (t1, t2] is
R t2

t1
P (s(t))dt.

We first target ideal processors, in which a processor may operate
at any speed in [Smin, Smax]. We also show the extension to cope
with non-ideal processors with discrete speeds. For non-ideal pro-
cessors, there are H available speeds indexed by s1, s2, . . . , sH in
an increasing order. For non-ideal processors, for brevity, sH+1 and
P (sH+1) are both assumed∞, Smin is s1, and Smax is sH .

When needed, turning the processor into a dormant mode (or
turning the processor off) might further reduce the energy consump-
tion. However, turning off or waking up a processor takes time and
has energy overheads. For processors with non-negligible overheads
to be turned off, the overheads could be treated as part of the over-
heads to turn on the processor [6, 10]. We denote Esw (tsw, re-
spectively) as the energy (the time, respectively) requirement of the
switching overheads for the whole process on turning off the proces-
sor and then turning on the processor.

Task models Tasks considered in this paper are periodic and inde-
pendent in execution. A periodic task is an infinite sequence of task
instances, referred to as jobs, where each job of a task comes in a
regular period. Each task τi is associated with its initial arrival time
(denoted as ai), its computation requirement in CPU cycles (denoted
as ci), and its period (denoted as pi). The relative deadline of each
task τi is equal to its period pi. That is, the arrival time and dead-
line of the j-th job of task τi are ai + (j − 1) · pi and ai + j · pi,
respectively. We assume that all the tasks arrive at time 0, but ex-
tensions can be achieved easily for tasks with different arrival times.
Given a task set T, the hyper-period of T, denoted by L, is defined
as the minimum L so that L/pi is an integer for any task τi in T.
For example, L is the least common multiple (LCM) of the periods
of tasks in T when the periods of tasks are all integers. Without loss
of generality, we only consider tasks τis with ci

pi
≤ Smax, since it is

not possible to complete any task τj with
cj

pj
> Smax in time.

This research explores systems with the possibility to reject a
task for execution with a specified cost (penalty) provided by system
designers. If a task is more important than another, its rejection cost
should be specified with a greater value. If a task instance of task
τi is not completed in time, the system receives χi penalty, where
χi > 0. (If a task can be rejected without penalty, we can reject the
task directly.) If a task is very important and cannot be rejected, its
rejection cost should be specified as∞. If the rejection costs of all
the tasks are infinite, all the tasks are asked to be completed in time.

Problem definition This paper explores the problem on the min-
imization of the energy consumption of the system and the rejec-
tion cost at the same time. We pursue the objective on the linear
combination of the energy consumption and the rejection cost, i.e.,
(1 − α)E + αΠ, where α is a non-negative factor no more than 1
specified by the system designer, E is the energy consumption of
the system in the hyper-period, and Π is the total rejection penalty
of the task instances missing their deadlines in the hyper-period. If
energy consumption minimization is more important than task rejec-
tion penalty minimization, α should be specified as close to 0, and
vice versa.

For notational brevity, we normalize the rejection penalty of task
τi as αχi, the power consumption function P () as (1− α)P (), the
energy switching overheads as (1 − α)Esw. Hence, the objective
of the linear combination can be treated as the summation of the
(normalized) penalty and the (normalized) energy consumption.

The problem explored in this paper is defined as follows:

DEFINITION 1. Energy-eFFicient schEduling with rejeCting Tasks
(EFFECT):

Consider a task set T of N independent tasks over M identical
processors with a common power consumption function P (s). Each
periodic task τi ∈ T arrives at time 0 and is associated with a com-
putation requirement in ci CPU-cycles, a rejection cost (penalty) χi,
and a period pi, where the relative deadline of task τi is pi. The en-
ergy consumption and timing of the switching overheads are Esw

and tsw, respectively. The problem is to derive a schedule of T to
minimize the summation of the penalty (cost) of the task instances
that miss their deadlines and the energy consumption of the system
in the hyper-period L of tasks in T, in which a job of task τi is
executed entirely on a processor.

For brevity, for the rest of this paper, the objective function of the
EFFECT problem is called as energy-penalty (EP for abbreviation).

Hardness analysis Since most previous studies on multiprocessor
energy-efficient scheduling did not take task rejection penalty into
considerations, the schedulability of the derived schedules cannot be
guaranteed, e.g., [4, 9]. As shown in [6], it is NP-hard to derive
a schedule with the minimum energy consumption to complete all
the tasks in time without rejecting any real-time task. The following
lemma shows that the EFFECT problem is still NP-hard even if we
have the flexibility to reject some tasks for execution.

LEMMA 1. The EFFECT problem isNP-hard in a strong sense even
when Esw is 0, and all the tasks have the same rejection penalty.

Proof. It can be proved by a reduction from the leakage-aware
multiprocessor energy-efficient rejection problem [6] with the same
period p. The rejection cost of each task is a constant greater than
P (Smax) · p. The detail is omitted due to space limitation.

Due to the NP-hardness of the EFFECT problem, polynomial-
time approximation algorithms might be pursued for the provision of
approximated solutions with worst-case guarantees. A polynomial-
time β-approximation algorithm for the EFFECT problem must have
polynomial-time complexity of the input size and could derive a
solution with an objective value at most β times of an optimal
solution, for any input instance. However, in addition to the NP-
hardness of the EFFECT problem, the following theorem shows the
hardness on the approximability of polynomial-time algorithms.

THEOREM 1. There does not exist any polynomial-time approxima-
tion algorithm for the EFFECT problem unless P = NP .

Proof. This theorem can be proved by a gap reduction from the
NP-complete PARTITION problem: Given a set of N non-negative
numbers, denoted by o1, o2, . . . , oN , the PARTITION problem is to
answer whether there is a partition of these N numbers into two sets,
so that the sum of the numbers in each set is the same. Suppose for
contradiction that there is a polynomial-time (1 + ε)-approximation
algorithm, denoted by Algorithm A, with ε > 0 for the EFFECT
problem. We will show that we can use Algorithm A to answer
the PARTITION problem in polynomial time, which contradicts the
assumption on P �= NP .

To solve the PARTITION problem by applying Algorithm A, we
have to create an input instance for the EFFECT problem. For each

number oi, a unique task τi is created with ci as oi, pi as
PN

j=1 oj

2
,

and χi as (1 + ε)(
PN

j=1 oj), where P (s) = s3 and Esw = 0.
Moreover, Smax is 1, and Smin is no more than 1. If the input
instance of the PARTITION problem admits a positive answer, the
optimal solution for the constructed input instance is

PN
j=1 oj . By

the construction, there exists no feasible solution with EP more thanPN
j=1 oj and no more than (1 + ε)

PN
j=1 oj . Since Algorithm A

is a (1 + ε)-approximation algorithm, Algorithm A guarantees to
derive a solution whose EP is

PN
j=1 oj . If the input instance of the

PARTITION problem does not admit a positive answer, the solution
answered by Algorithm A must be greater than

PN
j=1 oj .

Since the construction of the input instance of the EFFECT prob-
lem takes O(N) time, and Algorithm A is with polynomial-time

complexity, we can determine whether an input instance of the PAR-
TITION problem admits a positive answer in polynomial time by ver-
ifying the solution of Algorithm A, which is a contradiction.

3. Our Algorithms
By Theorem 1, it is impossible to derive optimal solutions or ap-
proximated solutions with worst-case guarantee for the EFFECT
problem in polynomial time, unless P = NP . This section pro-
vides a branch-and-bound approach and heuristics to derive solu-
tions. We first partition tasks into M + 1 task sets, denoted by
T1,T2, . . . ,TM ,TM+1, so that the tasks in task set Tm are exe-
cuted on the m-th processor for m ≤M and the tasks in TM+1 are
rejected. The off-line derivation is obtained by assuming negligible
switching overheads. Whether a rejected task instance determined
in the off-line phase can be executed for performance improvement
is done in an on-line fashion.

If a task has high computation requirement but low rejection
penalty, it should be a good candidate to be rejected to reduce the
EP, and vice versa. For the rest of this section, tasks are sorted
non-increasingly according to χi

ci
. We will consider the execution

or rejection of tasks in the sorted order. Moreover, throughout this
section, the earliest-deadline-first (EDF) schedule will be applied
for task scheduling on each processor. By [3], a task set Tm is
schedulable on a processor if and only if

P
τi∈Tm

ci
pi
≤ Smax.

3.1 Off-line derivation of task partitions with negligible
switching overheads

Although the power consumption function P (s) is a convex and
increasing function, the energy consumption at speed s, which is
P (s)

s
, might be not. For example, if P (s) = s3 + γ, P (s)

s
is a de-

creasing function for s in (0, 3
p

γ
2
] and an increasing function for

s in (3
p

γ
2
, Smax]. If the switching overheads are negligible, there

is a lower-bounded execution speed for tasks, referred to as the
critical speed s∗ as in [6, 8, 12]. For ideal processors, the critical
speed s∗ can be derived by solving d(P (s∗)/s∗)

ds∗ = 0 [6]. By the
definition, if s∗ is greater than Smin, the critical speed s∗ is re-
vised as Smin. If s∗ > Smax, s∗ is Smax. For non-ideal proces-
sors, the critical speed s∗ is sh with P (sh+1)/sh+1 > P (sh)/sh

and P (sh−1)/sh−1 ≥ P (sh)/sh for h = 1, 2, . . . , H by taking
P (s0)/s0 and P (sH+1)/sH+1 as∞ for boundary checking.

For clarity, we first focus on systems with ideal processors. The
extensions to systems with non-ideal processors will be shown by
the end of this subsection. A task partition is said a feasible solution
if all the selected tasks for execution can meet their deadlines.

3.1.1 A branch-and-bound approach for ideal processors

For a given task partition (T∗
1,T

∗
2, . . . ,T

∗
M ,T∗

M+1) with �m de-
fined as

P
τi∈T∗

m

ci
pi

. If �m ≤ Smax for all m = 1, 2, . . . , M ,
the earliest-deadline-first (EDF) schedule on each processor by
executing all the tasks in Tm at speed min{s∗, �m} can make
all the tasks in T∗

m complete in time with the minimum energy
consumption for the task partition [3]. Therefore, we can apply
the depth-first search in a search tree to obtain the task parti-
tion (T∗

1,T
∗
2, . . . ,T

∗
M ,T∗

M+1) with the minimum EP in O((N +
M)NM+1) time.

The branch-and-bound (BB) approach can be adopted to reduce
the time complexity on exploration of the solution space. Since
homogeneous multiprocessor systems are under considerations, we
can restricted τ1 to be executed on the first processor by symmetry
or to be rejected. In our BB approach, we visit the search tree rooted
from τ1, and the k-th level represents the selection of task τk to a
task set Tm with m = 1, 2, . . . , M, M + 1.

Suppose that we are at the n-th level in the search tree. The basic
pruning condition is on the schedulability test. If cn

pn
+
P

τi∈Tm

ci
pi

is greater than Smax, the BB approach can eliminate all subsets
containing the infeasible subset. The lower-bounded elimination is

Algorithm 1 : LEP

Input: T†, T�, n;
1: T� ← {τi | n < i ≤ N};
2: yi ← 0,∀τi ∈ T�, U1 ←P

τi∈T†
ci
pi

;
3: for (i← n + 1; i ≤ N ; i← i + 1) do
4: Let yi be the value between 0 and 1 which minimizes

P ∗(

ci
pi

yi+U1

M
)M + (1 − yi)

χi
pi

with ci
pi

yi + U1 ≤M · Smax;
5: if (yi < 1) then

6: return L · (P ∗(

ci
pi

yi+U1

M
)M + (1 − yi)

χi
pi

+
P

τj∈T�
χj

pj
+

PN
j=i+1

χj

pj
);

7: else
8: U1 ← U1 + ci

pi
;

9: return L · (P ∗(U1
M

)M +
P

τj∈T�
χj

pj
) ;

Algorithm 2 : BB
Procedure: DFSBB(n, X)

Input: n, X, where Xi is an integer between 1 and M + 1 for i < n;
1: for m← 1; m ≤M + 1; m← m + 1 do
2: if m ≤M and cn

pn
+

P
i:1≤i≤n−1 and Xi is m

ci
pi

> Smax then
3: continue;
4: Xn ← m;
5: if n is equal to N then
6: evaluate the EP by executing τi at the Xi-th processor with Xi ≤

M and rejecting task τis with Xi = M + 1;
7: save this task partition if the EP is better than the best solution so

far;
8: else
9: T† ← {τi | 1 ≤ i ≤ n and Xi ≤M};

10: T� ← {τi | 1 ≤ i ≤ n and τi /∈ T†};
11: EPm ← LEP(T†, T�, n);
12: if EPm is greater than the best solution so far then
13: continue;
14: else
15: call DFSBB(n + 1, X)

Procedure: BB()
1: sort tasks in T non-increasingly according to χi

ci
;

2: initialize X with Xi ←M + 1, for i = 1, 2, . . . , N ;
3: call DFSBB(1, X) to obtain the task partition;

applied by verifying whether the lower bound of the EP of the
feasible solutions for the subsets of solutions rooted at the n-th level
is lower than the best solution derived so far. If the lower bound
is greater than the best solution derived so far, we can prune all
the subsets rooted at the n-th level. For a specified partition of set
{τi | 1 ≤ i ≤ n} into two disjoint sets T† and T� by rejecting all
the tasks in T� and executing all the tasks in T†, Algorithm LEP,
shown in Algorithm 1, can be applied to calculate a lower bound of
the EP of feasible solutions, where P ∗(s) in Steps 4, 6, and 9 is

P ∗(s) =

P (s), when s > s∗, and
s

s∗ P (s∗), otherwise. (1)

The proof for the correctness on the provision of the lower-bounded
EP of Algorithm LEP is omitted due to space limitation.

The branch-and-bound approach is presented in Procedure DFSBB
in Algorithm 2, in which the search space is pruned with the feasi-
bility test in Step 2 and Step 3 and the lower-bounded elimination
between Step 9 and Step 13. The solution in this phase is obtained
by calling DFSBB(1, X) with initialization shown in Procedure BB
in Algorithm 2.

3.1.2 Polynomial-time algorithms for ideal processors

This section presents efficient algorithms, i.e., in polynomial time,
for the determination of the task partition. The rationale behind the
proposed algorithms is to select tasks with higher χi

ci
for execution

Algorithm 3 : SGA

Input: T, M ;
1: sort tasks in T non-increasingly according to χi

ci
;

2: let y∗
i be the value of yi of task τi after calling LEP(∅,∅, 0);

3: T† ← {τi | y∗
i = 1}, T� ← T \T†;

4: let (T†
1,T†

2, . . . ,T†
M) be the task partition of T† on M processors

derived from Algorithm LA+LTF in [6];
5: for m← 1; m ≤M ; m← m + 1 do
6: while

P
τi∈T

†
m

ci
pi

> Smax do

7: let τj be the task with the minimum
χj

pj
in T†

m;

8: T†
m ← T†

m \ {τj}, T� ← T� ∪ {τj};
9: return (T†

1,T†
2, . . . ,T†

M ,T�) as the task partition;

and tasks with lower χi
ci

for rejection. Let T† be the set of tasks

decided to be executed on these M processors. Initially, T† is ∅.
For scheduling the selected tasks on these M processors in poly-

nomial time, we apply Algorithm LA+LTF (Leakage-Aware Largest-
Task-First) in [6] to partition these tasks into M disjoint sets. Algo-
rithm LA+LTF sorts these selected tasks in a non-increasing order of
their loads, in which the load of a task τi is defined by its compu-
tation requirement divided by its period, i.e., ci

pi
. Then, Algorithm

LA+LTF assigns tasks according to the sorted order to the processor
with the least load so far.

The first algorithm is Algorithm SGA, stands for Standard Greedy
Algorithm. For each iteration, we consider the selection of task
τi according to the non-increasing order of

χj

cj
for tasks τj in T.

Algorithm SGA applies Algorithm LEP for the determination. Let
(y∗

1 , y∗
2 , . . . , y∗

N) be the vector of yis of tasks τis after calling
LEP(∅, ∅, 0). Algorithm SGA then first attempts to execute all the
tasks in T† ← {τi | y∗

i = 1} on these M processors. By apply-
ing Algorithm LA+LTF to assign tasks in T† to M processors, we
can have a task partition (T†

1,T
†
2, . . . ,T

†
M). However,

P
τi∈T

†
m

ci
pi

might be greater than Smax, and, hence, we must reject some tasks
in T†. Algorithm SGA then repeatedly evicts the task with the mini-
mum

χj

pj
from T†

m until the schedulability is guaranteed on the m-th
processor. Algorithm SGA is summarized in Algorithm 3. The time
complexity is O((N + M) log(N + M)).

Algorithm EGA, stands for Enhanced Greedy Algorithm, is an
enhancement of Algorithm SGA. The difference is on the derivation
of (y∗

1 , y∗
2 , . . . , y∗

N) in Algorithm LEP. Instead of returning the result
when yi < 0 in Step 6 in Algorithm 1, the revised Algorithm
LEP continues the loop by setting yi to 0. The time complexity of
Algorithm EGA is the same as that of Algorithm SGA.

Algorithm ES+EGA (Enhanced Greedy Algorithm with Esti-
mated Schedule) applies Algorithm LA+LTF on the fly to verify
whether the execution of task τi can reduce the EP by evaluating the
EP of the derived schedule.1

Both Algorithms SGA and EGA evict those tasks τis with y∗
i < 1,

and Algorithm ES+EGA evicts a task τi if executing τi and the se-
lected tasks has greater EP . However, execution of some of these
tasks with eviction on some selected tasks might reduce the EP. Al-
gorithm TE+EGA (Enhanced Greedy Algorithm with Task Eviction)
is the revision of Algorithm ES+EGA with the possibility of evictions
of tasks already in T†. If applying Algorithm LA+LTF to execute
T†∪{τi} is not a feasible solution or with greater EP than that to ex-
ecute T†, Algorithm TE+EGA first finds the index m′, in which T†

m′
is the task set T†

m of the task partition of T† derived from Algorithm
LA+LTF with the smallest

P
τj∈T

†
m

χj

pj
−P ∗(

P
τj∈T

†
m

cj

pj
). That is,

m′ is the index, in which evicting all the tasks in T†
m′ increases no

greater EP than any other index. Then, if Algorithm LA+LTF can

1 The pseudo-code of Algorithm ES+EGA is to eliminate the steps between
Step 6 and Step 10 in Algorithm 4.

Algorithm 4 : TE+EGA

Input: T, M ;
1: sort tasks in T non-increasingly according to χi

ci
;

2: T† ← ∅, T� ← T;
3: for i← 1; i ≤ N ; i← i + 1 do
4: if applying Algorithm LA+LTF to execute T†∪{τi} has a feasible so-

lution with less EP than the EP to execute T† by applying Algorithm
LA+LTF then

5: T† ← T† ∪ {τi}, T� ← T� \ {τi};
6: else
7: let (T†

1, T†
2, . . . , T†

M) be the task partition of T† on M proces-
sors derived from Algorithm LA+LTF;

8: let m′ be the index m with the smallest
P

τj∈T
†
m

χj

pj
−

P ∗(
P

τj∈T
†
m

cj

pj
);

9: if Algorithm LA+LTF can have a feasible task partition for task set
T† \T†

m′ ∪ {τi} with less EP than the EP by applying Algorithm

LA+LTF to T† then
10: T† ← T† \T†

m′ ∪ {τi}, T� ← T� \ {τi} ∪T†
m′ ;

11: return (T†
1,T†

2, . . . ,T†
M , T�), where T†

m is the task set on the m-th
processor by applying Algorithm LA+LTF for T†;

have a feasible task partition for task set T† \T†
m′ ∪ {τi} with less

EP than the EP by applying Algorithm LA+LTF to T†, we update
T† as T† \ T†

m′ ∪ {τi}. The detail procedure is shown in Algo-
rithm 4. Algorithm TE+EGA has the same time complexity as Algo-
rithm ES+EGA, which is O(N(N + M) log(N + M)).

3.1.3 Extensions to non-ideal processors

Algorithms in Sections 3.1.1 and 3.1.2 are designed for ideal proces-
sors. With slight modifications, they can be applied to systems with
discretely available speeds. As shown in [11, 13], if a task is going
to execute for t time units to complete C cycles, we can execute the
task at two speeds sh and sh+1, in which sh < C

t
≤ sh+1, for th

and th+1 time units so that th +th+1 is t and thsh +th+1sh+1 is C.
Therefore, what we have to do is to re-define the power consumption
function P ∗ in Equation (1) as follows:

P ∗(s) =

8>><
>>:

sh+1−s

sh+1−sh
P (sh)+

s−sh
sh+1−sh

P (sh+1)

!
, when sh < s < sh+1,

P (s), when s = sh, for some h
s

s∗ P (s∗), otherwise.
(2)

All the algorithms in Sections 3.1.1 and 3.1.2 can be applied to non-
ideal processors according to the revision of P ∗(s) in Equation (2).

3.2 Systems with non-negligible switching overheads

For systems with non-negligible switching overheads, we first apply
the first-fit strategy to re-assigned the tasks selected for execution
to reduce the number of processors executed at the critical speed
[6]. Then, each processor determines its schedule independently
by applying the procrastination algorithm in [12]. Due to space
limitation, we only sketch the ideas here.

Suppose that at time instant t, there is no task instance in the
ready queue on a processor. By the procrastination algorithm [6, 12],
the processor is either turned off or idle at the lowest available speed.
The determination of the switching can be done by verifying whether
the idle interval is longer than max{tsw, Esw/P (Smin)}. If the
processor is turned off, the scheduler has to decide when to turn
on the processor, and the energy consumption in the idle interval is
Esw. Suppose that the procrastination schedule decides to turn off
the processor at time instant t, and turn on the processor at time
instant t∗ by applying the procrastination algorithm [12]. We then
evaluate whether there is a task instance which is decided to be
rejected in the off-line phase and be done before the time instant t∗.
If such a task instance exists and the EP obtained in the estimated

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(a) M = 2, proportional model

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(b) M = 2, inverse model

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(c) M = 2, independent model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(d) M = 4, proportional model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(e) M = 4, inverse model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(f) M = 4, independent model

Figure 1. Average normalized energy-penalty (EP) for the evaluated algorithms under different models.

schedule is less than that by turning off the processor before t∗, we
can execute the task instance instead of turning off the processor.
On the other hand, we can also have a similar approach when the
processor is determined to be idle before the next task instance
assigned on the processor arrives.

4. Performance Evaluations
This section provides evaluation results of the proposed algorithms.
Algorithms under simulations are Algorithm SGA, Algorithm EGA,
Algorithm ES+EGA, and Algorithm TE+EGA. Due to space limita-
tion, we only present the evaluation results for ideal processors. The
results for non-ideal processors are similar.

Environment Setup We perform evaluations for systems with
multiple Intel XScale processors. There are five available speeds
(0.15, 0.4, 0.6, 0.8, 1) GHz with corresponding power consumption
(80, 170, 400, 900, 1600) mW [18] in Intel XScale. For ideal pro-
cessors, we approximate the power consumption of processor speed
s on XScale as P (s) = 0.08 + 1.52s3 W with Smin as 0.15 and
Smax as 1. The energy Esw of switching overheads is 483µJ [12].

For each task τi, the number of jobs arriving in the hyper-period
is determined by an integral variable bi in the range of [1, 20], where
the period of task τi is L

bi
for any specified positive real number L.

Each task τi has two weights µi,1 and µi,2 to determine the amount
of CPU cycles of tasks on the DVS processors and the rejection
penalty. For input instances with N tasks on M processors, the exe-
cution cycles ci on the processor of task τi is set as

µi,1
PN

j=1 µj,1
Mpi,

and rejection penalty of τi is
µi,2

PN
j=1 µj,2

3Mpi. The linear combina-

tion in the objective of the EFFECT problem is 0.2E + 0.8Π, where
E is the energy consumption of the system in the hyper-period, and
Π is the total rejection penalty of the task instances missing their
deadlines in the hyper-period. The value of µi,1 is a random variable
in (0, 1]. We explore different types of distribution of µi,2 depend-
ing on the relationships to µi,1. In the independent model, µi,2 is
a random variable in (0, 1]; in the inverse model, µi,2 is a random
variable in (0, 1

µi,1
]; in the proportional model, µi,2 is a random

variable in (µi,1, µi,1 + 0.1].
The normalized energy-penalty (EP) for an algorithm of an input

instance is the energy-penalty of the derived solution divided by the
optimal solution of the input instance. For greater numbers of tasks
and processors, instead of normalizing to the optimal solution, the

relaxed normalized energy-penalty is defined as the energy-penalty
of the derived solution divided by the lower bound derived from
LEP(∅, ∅, 0). We perform independent tests for each configuration,
and their average values are reported.

Evaluation Results The average normalized energy-penalty (EP)
for the evaluated algorithms when M = 2 (M = 4, respectively)
is shown in Figures 1(a), 1(b), and 1(c) (Figures 1(d), 1(e), and
1(f), respectively) for the proportional, inverse, and independent
models. Since Algorithm EGA always outperforms Algorithm SGA,
the results for Algorithm SGA are omitted for clarity. We only plot
results whose normalized EP is no more than 2 in Figure 1 for
clearance. When the number of tasks is quite close to the number
of processors, i.e., N ≤ 5 when M = 2 or N ≤ 9 when M = 4,
under the proportional model, Algorithm TE+EGA can significantly
beat both Algorithms EGA and ES+EGA. This is because Step 10 in
Algorithm 4 can be reached by rejecting one or two tasks with higher
ratio in their penalty divided by their computation requirement in the
task model. When the number of tasks increases, Algorithm TE+EGA
and Algorithm ES+EGA have almost the same performance. This is
because Step 10 is seldom reached since rejecting more than two
tasks in the task model increases a lot of penalty. As in these figures,
Algorithm TE+EGA can effectively derive solutions to the EFFECT
problem.

Table 1 shows the running time of the branch-and-bound ap-
proach under different pruning methods when M is 4 running on a
machine with Intel Pentium4 3GHz CPU and 512M RAM. The LB
pruning method uses Algorithm LEP as the lower bound for prun-
ing as shown in Procedure DFSBB in Algorithm 2. The UB pruning
method accumulates the EP of the tasks decided so far instead of
applying Algorithm LEP in Step 11 in Procedure DFSBB in Algo-
rithm 2. The feasibility pruning method eliminates the steps between
Step 9 and Step 14 in Procedure DFSBB in Algorithm 2. As shown
in Table 1, applying LB pruning can effectively reduce the running
time of the branch-and-bound approach.

We also evaluate the performance of the proposed polynomial-
time algorithms for larger input instances. For a given ratio K of N
to M , the number of processors is an integral random variable in
[4, 16], and the number of tasks in T is
KM�. Figure 2(a) and
Figure 2(b) show the average relaxed normalized EP by varying
the ratio of M to N when the proportional and the inverse models
are applied, respectively. Algorithm TE+EGA is the best among the
proposed polynomial-time algorithms. The reason why Algorithm

���������������Pruning methods

Number of tasks
10 11 12 13 14 15 16 17 18 19

LB pruning 0.19 0.42 1.2 3.9 20.1 80.1 177 988 3621 17232
UB pruning 0.33 0.75 2.80 10.5 59.5 263 797 4507 26140 > 1day

Feasibility pruning 0.8 3.91 20.3 111 521 2352 14261 50134 > 1day > 1day

unit: sec

Table 1. Running time for different pruning methods in the branch-and-bound approach for M = 4.

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3A
ve

ra
ge

 r
el

ax
ed

 n
or

m
al

iz
ed

 E
P

N/M

EGA
ES+EGA
TE+EGA

(a) proportional model

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3A
ve

ra
ge

 r
el

ax
ed

 n
or

m
al

iz
ed

 E
P

N/M

EGA
ES+EGA
TE+EGA

(b) inverse model

Figure 2. Average relaxed normalized energy-penalty (EP) for the
evaluated algorithms under different models.

EGA outperforms Algorithm ES+EGA when N to M is small (≤ 1.6)
for the proportional model in Figure 2(a) is because Algorithm EGA
performs task eviction for overloaded processors in Step 5 to Step
8 in Algorithm 3 but Algorithm ES+EGA does not. (It also explains
the relation between Algorithms EGA and ES+EGA when M = 4
and N = 6 in Figure 1(d).) The reason why the average relaxed
normalized EP in Figure 2(a) is much greater than that in Figure 2(b)
is due to the precision of the derived lower bound by Algorithm LEP.

As shown in Figure 1 and Figure 2, Algorithm TE+EGA and
Algorithm ES+EGA have better performance when N to M is higher
in most cases, but Algorithm SGA might not. Algorithm TE+EGA is
the best among the evaluated algorithms.

5. Conclusion
This research explores systems with the possibility for task rejec-
tion in a homogeneous multiprocessor system with continuously
available speeds or discretely available speeds. The objective is to
minimize the linear combination of the total rejection cost for the
tasks that are not completed in time and the energy consumption
of the system. We show the NP-hardness of the studied problem,
and provide analysis on the non-existence of polynomial-time ap-
proximation algorithms, provided that P �= NP . We also pro-
pose branch-and-bound and efficient algorithms. The proposed algo-
rithms are evaluated by extensive experiments, in which the branch-
and-bound approach reduce the running time effectively and Al-
gorithm TE+EGA is shown to provide very effective solution for
energy-penalty minimization.

For future research, we will consider systems with heterogeneous
multiprocessors.

References
[1] T. A. Alenawy and H. Aydin. Energy-aware task allocation for rate

monotonic scheduling. In Proceedings of the 11th IEEE Real-time and
Embedded Technology and Applications Symposium (RTAS’05), pages
213–223, 2005.

[2] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of
periodic task systems upon identical multiprocessor platforms. In
Proceedings of the 24th International Conference on Distributed
Computing Systems, pages 428–435, 2004.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages
95–105, 2001.

[4] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of 17th International Parallel and
Distributed Processing Symposium (IPDPS), pages 113 – 121, 2003.

[5] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo. Multiprocessor energy-efficient scheduling with task
migration considerations. In EuroMicro Conference on Real-Time
Systems (ECRTS’04), pages 101–108, 2004.

[6] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In IEEE Real-
time and Embedded Technology and Applications Symposium, pages
408–417, 2006.

[7] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling
for real-time tasks. In International Conference on Parallel Processing
(ICPP), pages 13–20, 2005.

[8] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor. In
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages 153–162, 2006.

[9] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low energy
systems using variable supply voltage processors. In Proceedings of
Asia South Pacific Design Automation Conference, pages 449–455,
2001.

[10] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 37–46, 2003.

[11] T. Ishihara and H. Yasuura. Voltage scheduling problems for
dynamically variable voltage processors. In Proceedings of the
International Symposium on Low Power Electronics and Design, pages
197–202, 1998.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the Design
Automation Conference, pages 275–280, 2004.

[13] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. In Proceedings of the 40th
Design Automation Conference, pages 125–130, 2003.

[14] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In 15th Euromicro
Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[15] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy
aware scheduling for distributed real-time systems. In International
Parallel and Distributed Processing Symposium, page 21, 2003.

[16] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2nd edition, 2002.

[17] INTEL. Strong ARM SA-1100 Microprocessor Developer’s Manual,
2003. INTEL.

[18] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.

[19] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. In Proceedings of
the 8th Conference of Design, Automation, and Test in Europe (DATE),
pages 468–473, 2005.

[20] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection
for energy minimization. In Annual ACM IEEE Design Automation
Conference, pages 183–188, 2002.

[21] D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In IEEE Real-time and Embedded
Technology and Applications Symposium, pages 397–407, 2006.

