
Theoretical Computer Science 362 (2006) 162–170
www.elsevier.com/locate/tcs

Improved algorithms for the k maximum-sums problems�

Chih-Huai Chenga, Kuan-Yu Chena, Wen-Chin Tiena, Kun-Mao Chaoa,b,∗
aDepartment of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 106, Taiwan

bGraduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan 106, Taiwan

Received 9 September 2005; received in revised form 29 May 2006; accepted 1 June 2006

Communicated by Ding-Zhu Du

Abstract

Given a sequence of n real numbers and an integer k, 1�k� 1
2 n(n − 1), the k maximum-sum segments problem is to locate

the k segments whose sums are the k largest among all possible segment sums. Recently, Bengtsson and Chen gave an O(min{k +
n log2 n, n

√
k})-time algorithm for this problem. Bae and Takaoka later proposed a more efficient algorithm for small k. In this

paper, we propose an O(n + k log(min{n, k}))-time algorithm for the same problem, which is superior to both of them when k is
o(n log n). We also give the first optimal algorithm for delivering the k maximum-sum segments in non-decreasing order if k�n.
Then we develop an O(n2d−1+k log min{n, k})-time algorithm for the d-dimensional version of the problem, where d > 1 and each
dimension, without loss of generality, is of the same size n. This improves the best previously known O(n2d−1C)-time algorithm,
also by Bengtsson and Chen, where C=min{k+n log2 n, n

√
k}. It should be pointed out that, given a two-dimensional array of size

m×n, our algorithm for finding the k maximum-sum subarrays is the first one achieving cubic time provided that k is O(m2n/ log n).
© 2006 Elsevier B.V. All rights reserved.

Keywords: Maximum-sum subsequence; Maximum-sum subarray; Sequence analysis

1. Introduction

The maximum-sum subarray problem was first surveyed by Bentley in his “Programming Pearls” column of CACM
[5,6]. The one-dimensional case is also called the maximum-sum segment problem and is well known linear-time
solvable using Kadane’s algorithm [5]. In the two-dimensional case, the task is to find a subarray such that the
sum of its elements is maximized. The maximum segment (subarray) problem is widely used in pattern recognition
[12,17], image processing [11], biological sequence analysis [1,8,10,13,15,16,21], data mining [11], and many other
applications.

Computing the k largest sums over all possible segments is a natural extension of the maximum-sum segment problem.
This extension has been considered from two perspectives, one of which allows the segments to overlap, while the
other disallows. Linear-time algorithms for finding all the non-overlapping maximal segments were given in [7,18]. In

� A preliminary version of this work appeared in Proceedings of the 16th International Symposium on Algorithms and Computation, Sanya,
China, 2005.
∗ Corresponding author. Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 106, Taiwan.

Tel.: +886 2 33664888; fax: +886 2 23628167.
E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Chao).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.06.007

http://www.elsevier.com/locate/tcs
mailto:kmchao@csie.ntu.edu.tw

C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170 163

this paper, we focus on finding the k maximum-sum segments whose overlapping is allowed. We will use the terms “k
maximum segments” and “k maximum-sum segments” interchangeably. A naïve approach is to choose the k largest
from the sums of all possible contiguous subsequences which requires O(n2) time. Bae and Takaoka [2] presented
an O(kn)-time algorithm for the k maximum segment problem. An improvement to O(min{k + n log2 n, n

√
k}) was

given by Bengtsson and Chen [4]. Bae and Takaoka [3] later proposed a more efficient algorithm for small k. Their new
algorithm runs in O(n log k+ k2), which is superior to Bengtsson and Chen’s when k is o(

√
n log n). In this paper, we

propose an O(n+ k log(min{n, k}))-time algorithm which is superior to all the previous methods when k is o(n log n).
It should be noted that recently Lin and Lee [14] gave a randomized O(n log n+ k)-time algorithm, which is a better
choice when k is sufficiently large.

It is not difficult to see that a lower bound of the k maximum segment problem is �(n + k). There is still a gap
between the trivial lower bound and our method. However, if the k maximum segments are requested in non-decreasing
order, we give an �(n+ k log k)-time lower bound for the k�n case. A simple variant of our algorithm can deliver the
k maximum segments in non-decreasing order in O(n+ k log k) time, which is optimal if k�n.

To avoid misunderstanding, we will use the term “subarray” instead of “segment” in the multiple-dimensional cases.
In the two-dimensional case, we are given an m × n array of real numbers. The fastest algorithm for the maximum
subarray problem stayed at O(m2n) time for a long period of time. In 1998, the first subcubic-time algorithm was
proposed by Tamaki and Tokuyama [20]. The time complexity of the latest algorithm for the maximum subarray
problem is O(m2n(log log m/ log m)1/2), which was given by Takaoka [19]. Clearly, it is still close to O(m2n).

Our goal for the two-dimensional case is to find the k maximum-sum subarrays in the array. Bae and Takaoka
[2] gave an O(m2nk)-time algorithm for this problem. Bengtsson and Chen [4] presented an improved algorithm in
O(min{m2C, m2n2}) time, where C = min{k + n log2 n, n

√
k}. Recently, Bae and Takaoka [3] gave an O(n3 log k +

k2n2) algorithm for the problem whose input is an n × n array. It runs in cubic time when k is O(
√

n). We propose
an O(m2n+ k log(min{n, k}))-time algorithm, which is superior to the previous results for every value of k. Note that
our algorithm is the first cubic-time algorithm for the k maximum subarray problem when k is O(m2n/log n). For the
d-dimensional case, the best previously known algorithm, by Bengtsson and Chen [4], runs in O(n2d−1C) time, where
C = min{k + n log2 n, n

√
k}. We propose an improved O(n2d−1 + k log min{n, k})-time algorithm.

The rest of the paper is organized as follows. Section 2 gives a formal definition of the k maximum segment (subarray)
problem. In Section 3, we give the algorithm for the k maximum segment problem based on an iterative partial-table
building approach and discuss the issue of reporting the k maximum segments in non-decreasing order. We then extend
the results to the multiple-dimensional cases in Section 4. Finally, we close the paper by mentioning a few open
problems.

2. Problem definitions and notations

Given a sequence of n real numbers A[1 . . . n], a segment is simply a contiguous subsequence of that sequence.
Let P denote the prefix-sum array of A where P [i] = a1 + a2 + · · · + ai for i = 1, . . . , n. Let A[i . . . j] denote the
segment 〈ai, ai+1, . . . , aj 〉. Let S(i, j) be the sum of A[i . . . j], i.e. S(i, j) = ai + ai+1 + · · · + aj . It is easy to see
that S(i, j) = P [j] − P [i − 1]. Let [i, j] denote the set {i, i + 1, . . . , j} for i�j .

Problem 1. k maximum-sum segments.
Input: a sequence of n real numbers A = 〈a1, a2, . . . , an〉 and an integer k, 1�k� 1

2n(n− 1).
Output: k maximum-sum segments such that the sums of these segments are the k largest among all possible segment

sums.
We also consider the k maximum-sum problem in higher dimensions.

Problem 2. k d-dimensional maximum-sum subarrays.
Input: a d-dimensional array of real numbers and a positive integer k.
Output: k d-dimensional subarrays such that the sums of these subarrays are the k largest among all possible subarray

sums.

In particular, the two-dimensional problem is sometimes referred to as the k maximum-sum subarray problem.

164 C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170

3. The k maximum-sum segment problem

Finding the k largest elements of a sequence is essential in the construction of our algorithm for the k maximum-sum
segment problem. Thus, we first describe how to find the k largest elements in Lemma 1.

Lemma 1. Given a sequence of numbers, the k maximum (or minimum) elements can be found in linear time.

Proof. According to [9], the kth maximum element of a sequence can be found in linear time. Suppose ai denotes
the kth maximum element. To obtain the k maximum elements, we simply compare ai with all the elements of the
sequence. We first output those elements whose values are greater than ai . Then, we append additional elements equal
to ai to the output so that k elements are yielded. �

A naïve quadratic-time solution to the k maximum segment problem is to build a table of size n× n, storing all the
possible segments. By Lemma 1, the k maximum segments can be retrieved from the table in O(n2) time. To speed up,
we introduce a partial-table building method for the k maximum segment problem.

3.1. An iterative partial-table building approach

Instead of building the entire table at once, we adopt an iterative strategy, in the sense that in each iteration we build
only a partial table. Before introducing our main algorithm, let us define some notations first.

Definition 1. Let Ri,j denote the segment ending at index i such that Ri,j is the j th largest among those segments that
end at i. That is, Ri,j = A[p . . . i] where S(p, i) is the j th largest among S(q, i) for all q ∈ [1, i].
Definition 2. Let Ti,j denote the set of segments Ri,1, Ri,2, . . . , Ri,j . In other words, Ti,j contains all the j largest
segments ending at index i.

The naïve approach, described at the beginning of this section, compares all the segments in T1,n, T2,n, . . . , Tn,n,
each of which contains at most n segments. However, we know that if Ri,j is not one of the k maximum segments of
A, then neither are Ri,j+1, Ri,j+2, . . . , Ri,n since each of them has a smaller sum than Ri,j by definition. Furthermore,
given an integer �, there are only two possible cases for every index as follows:
1. For some index i, if not all the segments in Ti,� belong to the k largest segments retrieved from T1,�, T2,�, . . . , Tn,�,

then we need not consider segments Ri,�+1, Ri,�+2, . . . , Ri,n anymore.
2. Conversely, for some index i′, if all the segments inTi′,� belong to the k largest segments retrieved fromT1,�, T2,�, . . . ,

Tn,�, then we need to consider Ri′,�+1, Ri′,�+2, . . . , Ri′,n since they are still candidates for the k maximum segments
of A.

In conclusion, by comparing segments in T1,�, T2,�, . . . , Tn,�, we can bypass the indices in case 1, and only have to
consider the indices in case 2 since they may contribute more than � segments to the k maximum-sum segments. We
call those indices in case 2 the “qualified right ends”.

Algorithm 1 (KMaxSums).
1: Q← {1, 2, . . . , n}, ns ← n, K ← �;
2: repeat
3: find � such that ns × (�− 1) < 2k�ns × �;
4: if � > n then
5: �← n;
6: end if
7: for all i ∈ Q do
8: compute Ti,�;
9: end for

10: K ← the k largest segments from K ∪⋃
i∈Q Ti,�;

11: Q← {i | Ti,� ⊆ K ∀ i ∈ Q};
12: ns ← |Q|;
13: until ns = 0 or � = n
14: output the segments in K;

C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170 165

Iteration 1 Iteration 2 Iteration 3 Iteration 4

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

1,1

2,1

3,1

4,1

1,2

2,2

1,4

5,4

5,8

5,2

7,2

5,1

6,1

7,1

8,1

1,8

2,8

3,8

4,8

5,8

6,8

7,8

8,8

Fig. 1. An illustration of the partial-table building approach in our algorithm. As you can see, in each iteration a partial table of some fixed size is
built. Only those rows with all their entries being selected will be extended in the next iteration. The algorithm terminates when the width of the
partial table (solid lines) matches with the width of the virtual complete table (dashed lines).

The pseudo-code for the problem of k maximum-sum segments is given in Algorithm 1. Let Q denote the list
of ns distinct qualified right ends, which are initially the n positions of A and Q[1], Q[2], . . . , Q[ns] refer to the
ns right ends in Q, respectively. We let K , initially empty, denote a list of candidate segments for the k maximum
segments. The algorithm repeats the following procedure. In each iteration, we choose � = 2�k/ns� and then compute
TQ[1],�, TQ[2],�, . . . , TQ[ns],� which contain around 2k segments. We next retrieve the k largest segments from the set
of segments, obtained by incorporating segments in TQ[1],�, TQ[2],�, . . . , TQ[ns],� with the segments in K . It should be
noted here that the k largest segments retrieved in this manner are not certainly the k maximum-sum segments of A

because we only consider the � largest segments ending at Q[1], Q[2], . . . , Q[ns]. Since only k largest segments are
retrieved, there would be at most half qualified right ends left over for the next iteration. (Imagining k balls are thrown
into an ns × � table, ns × ��2k, we know that there would be at most half rows full of balls.) Meanwhile, the value of
� will at least double in the next iteration. We set Q the qualified right ends, set ns the size of Q, and then restart the
procedure. The procedure will terminate either when the number of qualified right ends decreases to zero or � increases
to n. Fig. 1 illustrates the above idea.

Lemma 2. Algorithm KMaxSums terminates in at most log n+ 1 iterations.

Proof. Suppose algorithm KMaxSums terminates in the ith iteration, and the values of � in each iteration are denoted
by �1, �2, . . . , �i , respectively. Our goal is to prove that i� log n+ 1. For any two consecutive iterations j and j + 1,
suppose that n

j
s and n

j+1
s are the corresponding values of ns in the j th iteration and the (j + 1)th iteration. We have

n
j
s × (�j − 1) < 2k�n

j
s × �j and n

j+1
s × (�j+1 − 1) < 2k�n

j+1
s × �j+1. By definition, n

j+1
s is the number of

166 C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170

solution 1 solution 2 solution p-1 solution p

…

…

l1 q+l2 q+l3 q+lp

i1 i2 i3 ip-1 ip

Fig. 2. An illustration of computing Ti1,q , Ti2,q , . . . , Tip,q . To compute Tij ,q where j ∈ [2, p], we find q minimum values from q+�j prefix sums.

qualified right ends with all their �j largest segments being retrieved, so it is clear that n
j+1
s �
k/�j �. This yields

2k�n
j+1
s × �j+1 �
k/�j � × �j+1 �k/�j × �j+1. We conclude that �j+1 > 2�j .

Next we show by induction that �i �2i−1. The basis holds since �1 �20 = 1. For any j we know �j+1 �2�j , so by
inductive hypothesis, �j �2j−1, we can deduce that �j+1 �2j . Thus, �i �2i−1 by induction. Moreover, since �i is at
most n, it follows that n��i �2i−1, which leads to i� log n+ 1. �

Lemma 3. Given p distinct increasing indices i1, i2, . . . , ip , 1�p�n, and a positive integer q, 1�q �n, we can
compute Ti1,q , Ti2,q , . . . , Tip,q in O(n+ pq) time.

Proof. Basically, we adopt a dynamic approach (see Fig. 2 for an illustration). The input sequence A is partitioned into
p+ 1 contiguous subsequences, A[1 . . . i1], A[i1+ 1 . . . i2], . . . , A[ip−1+ 1 . . . ip], and A[ip + 1 . . . n]. Let �j denote
the length of the j th contiguous subsequence, i.e. �j is the length of A[ij−1 + 1 . . . ij]. Note that �1 + �2 + · · · + �p is
at most n.

To compute Tij ,q , it suffices to find the q minimum values in the prefix-sum array P [0 . . . ij] for all j ∈ [1, p].
So, in the first step we find the q minimum values among P [0 . . . i1], which can be done in O(�1 + 1) time by
Lemma 1. Let Q record these q minimum values. In the second step, the q minimum values among P [0 . . . i2] is
found by retrieving the q minimum values from Q and P [i1 + 1 . . . i2]. This requires O(�2 + q) time by Lemma 1.
Proceeding in this manner, we compute the Tij ,q for each index ij in O(�j + q) time. Therefore, the total running
time is (�1 + 1) + (�2 + q) + (�3 + q) + · · · + (�j + q) + · · · + (�p + q) = (�1 + �2 + · · · + �p) + (p − 1)q + 1
= O(n+ pq). �

Lemma 4. Algorithm KMaxSums runs in O((n+ k) log n) time.

Proof. Since ns × (�− 1) < 2k�ns × �⇒ 2k�ns × � < 2k + ns �2k + n, we can derive that ns × � = O(n+ k).
By Lemma 3, the time required for computing the l largest segments ending at ns qualified ends is O(n + ns × �) =
O(n + k). Retrieving k largest segments from O(ns × �) segments takes only O(k) time by Lemma 1. So, it takes
O(n+k) time in each iteration. Since there are at most log n+1 iterations by Lemma 2, we conclude that the total time is
O((n+ k) log n). �

If k�n, we can write the time complexity of KMaxSums as O(k log n). If k < n, we can write the time complexity
as O(n log n). In what follows, we show that in the k < n case, we can further reduce the running time to O(n+k log k),
which leads to Theorem 1.

Theorem 1. The problem of finding the k maximum-sum segments can be solved in O(n+ k log(min{n, k})) time.

As we will see, the O(n) term in O(n + k log k) comes from the time needed to compress the input sequence, and
the O(k log k) term comes from the time of executing k iterations, each of which costs O(log k) time.

3.2. Improving on the time complexity in the k < n case

The strategy is to compress the input sequence A into a sequence of size at most 2k by preprocessing A in O(n)

time. We can find k distinct positions containing all the right ends of the k maximum segments. Similarly, we find

C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170 167

k distinct positions containing all the left ends. To find the k maximum segments, we only have to consider these
2k positions.

Specifically, let r1, r2, . . . , rk denote the right ends of the k largest segments retrieved from R1,1, R2,1, . . . , Rn,1.

Lemma 5. There exists an optimal solution S∗ of the k maximum-sum segments such that all the right ends of S∗
belong to {r1, r2, . . . , rk}.
Proof. Suppose that S1, S2, . . . , Sk is an optimal solution of the k maximum segments. If all the end points of
S1, S2, . . . , Sk belong to {r1, r2, . . . , rk}, the proof is done. Otherwise, without loss of generality, we assume S1, S2,

. . . , Sp do not end at indices in {r1, r2, . . . , rk}. Let � denote the set of the right ends of S1, S2, . . . , Sk . We find p

distinct indices r∗1 , r∗2 , . . . , r∗p ∈ {r1, r2, . . . , rk} − �. We replace Si by segment Rr∗i ,1 without decreasing the sum
for 1� i�p. Therefore, we obtain another optimal solution whose end points are all in r1, r2, . . . , rk and the proof is
completed. �

Similarly, we find the largest segments starting at each index of A. To do so, we scan the suffix sum array in the
reverse order and keep the minimum value on the fly. Let us use a similar notation to refer to these segments, say
L1,1, L2,1, . . . , Ln,1. Let l1, l2, . . . , lk denote the left ends of the k largest segments retrieved from L1,1, L2,1, . . . ,

Ln,1. It can be shown in the same way that the k maximum segments of A must start at l1, l2, . . . , lk .
We construct a compressed sequence recording the prefix sums of l1, l2, . . . , lk and r1, r2, . . . , rk . Algorithm KMax-

Sums takes this compressed sequence as input and runs in O(k log k) time. Since we use O(n) time to compress A, the
total time is O(n+ k log k).

3.3. Finding k maximum-sum segments in order

The problem of k maximum segments has a trivial lower bound �(n + k). Note that the k maximum segments are
not sorted. Lemma 6 states that if we want to output k maximum segments in non-decreasing order, the lower bound
becomes �(n+ k log k) when k is no more than n.

Lemma 6. When k�n, it requires �(n+ k log k) time to output the k maximum segments in non-decreasing order.

Proof. If there exists an o(n + k log k)-time algorithm for computing the k maximum segments in non-decreasing
order, we show that sorting k random numbers can be done in o(k log k) time. Assume to the contrary that there exists
an algorithm � computing the k sorted maximum segments in o(n+ k log k) time. Given k random numbers, we obtain
a new sequence of length 2k−1 as follows. For each two consecutive random numbers, we augment a negative number
whose absolute value is larger than them. That way the k maximum segments in this new sequence are all atomic
elements. The output of � on this new sequence is equivalent to the k sorted random numbers. The running time of
� is o((2k − 1) + (2k − 1) log(2k − 1)) = o(k log k). However, the lower bound of sorting k random numbers is
well-known to be �(k log k) which contradicts to our assumption. �

Corollary 2. A simple variant of algorithm KMaxSums yields an optimal solution to the problem of finding the k
sorted maximum segments when k�n.

Proof. We first run algorithm KMaxSums to find the k maximum segments in O(n+ k log k) time. We next sort the
k maximum segments by sum, which requires O(k log k) time. �

It is not difficult to see that when k > n, algorithm KMaxSums also leads to an O(k log k)-time solution to the
problem of finding the k sorted maximum segments. However, we do not know if �(k log k) is the actual lower bound
of this sorted problem when k > n.

4. Multiple-dimensional cases

It is helpful to introduce the two-dimensional case before extending the results to the multiple-dimensional cases.
Recall the definition of the k maximum-sum subarray problem in d dimensions. Its goal is to find k d-dimensional
subarrays such that the sums of those subarrays are the k largest among all possible d-dimensional subarray sums.

168 C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170

4.1. Two-dimensional case

The input sequence is replaced by a two-dimensional array X = [xij]1� i �m,1� j �n. We define X[p . . . q, r . . . s]
as the subarray expanded by the four corners (p, r), (p, s), (q, r) and (q, s). The idea is to transform the input
array X[1 . . . m, 1 . . . n] into a pile of one-dimensional sequences. The k maximum subarray problem is then reduced
to finding the k largest segments from these one-dimensional sequences. Using similar techniques presented in the
previous sections, we can solve the k two-dimensional maximum subarrays problem. Let us show the transformation
in detail. Given two indices i and j where 1� i�j �m, we convert the subarray X[i . . . j, 1 . . . n] into a new sequence
Xi,j [1 . . . n] such that Xi,j [q] = ∑j

p=i xpq for q = 1, . . . , n. Clearly, each segment Xi,j [p . . . q] corresponds to the

subarray X[i . . . j, p . . . q], respectively. The maximum-sum subarray problem is equivalent to finding k maximum
segments from the O(m2) converted sequences, Xi,j for 1� i�j �m.

Given an integer �, observe that each converted sequence’s � maximum segments are the � local maxima with respect
to the k maximum subarray problem. Obviously, the k maximum subarrays of X are the k global maxima. A naïve
approach is to find every converted sequence’s k local maxima, and the k maximum subarrays are the k largest among
the O(m2k) local maxima. Instead of finding O(m2k) local maxima at once, we adopt the same trick to speed up the
computation. That is, in each iteration we compute only 2k local maxima and eliminate half of them.

The pseudo-code for the k maximum-sum subarray problem is given in Algorithm 2. Let ns denote the number of
“qualified sequences”, which will be defined later, and ns is initialized as O(m2). In each iteration, we use algorithm
KMaxSums to find � maximum segments, � = 2�k/ns�, from ns converted sequences and then retrieve the k largest
which are the candidates of the k maximum subarrays. Clearly, if the �th largest local maximum is not one of the
candidates, neither is the (� + 1)th largest local maximum. We call the sequences whose �th largest local maximum
belongs to the k candidates the “qualified sequences”, and the rest the unqualified sequences. Only the qualified
sequences need to be considered in the next iteration. The algorithm terminates when all the sequences are unqualified.

Algorithm 2 (KMaxSums2D).
1: Q← {(i, j) | 1� i�j �m}, ns ← m(m− 1)/2, K ← �;
2: Compute a new array, Y = [yij] of order m× n, where yij =∑i

h=0 xhj

3: for each i and j , 1� i�j �m do
4: Compute sequence Xi,j [1 . . . n] such that Xi,j [h] = yjh − yih for h = 1, 2, . . . , n

5: end for
6: repeat
7: find � such that ns × (�− 1) < 2k�ns × �;
8: if � > n(n− 1)/2 then
9: �← n(n− 1)/2;

10: end if
11: for all (i, j) ∈ Q do
12: Li,j ← � maximum segments of Xi,j computed by KMaxSums;
13: end for
14: K ← the k largest segments from K ∪⋃

(i,j)∈Q Li,j ;
15: Q← {(i, j) | Li,j ⊆ K ∀ (i, j) ∈ Q};
16: ns ← |Q|;
17: until ns = 0 or � = n(n− 1)/2
18: output the segments in K;

Now we turn to the time complexity analysis. In lines 2–4, it takes O(m2n) time to transform the two-dimensional
input array into O(m2) one-dimensional sequences. Recall that at most half of the qualified sequences are left over
after each round. We know that finding the � maximum segments takes O(n + � log(min{n, �})) time by Theorem 1.
Below, we discuss it in two possible cases. When k�n, the number of qualified sequences is reduced to k in the second
iteration. So, in the worst case the entire while-loop takes O(m2 × (n + 1 log 1) + k) + O(k × (n + 2 log 2) + k) +
O(k/2 × (n + 4 log 4) + k) + · · · + O(1 × (n + k log k) + k) = O(m2n + k log k) time. When k > n, the total time
becomes O(m2 × (n + � log �) + k) + O(m2/2 × (n + 2� log 2�) + k) + O(m2/4 × (n + 4� log 4�) + k) + · · · +

C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170 169

O(m2/min{m2, k}× (n+ (� min{m2, k}) log(� min{m2, k})+ k) = O(m2n+ k log n) where � = 2�k/m2�. Therefore,
we have the following theorem.

Theorem 3. Algorithm KMaxSums2D finds the k maximum-sum subarrays in O(m2n+ k log(min{n, k})) time.

4.2. Higher-dimensional cases

Without loss of generality, we assume each dimension is of equal size n. Given a d-dimensional array X =
[xi1i2...id]1� i1,i2,...,id �n, we wish to find k d-dimensional subarrays with maximum sums. Similar techniques in the
two-dimensional case are used here. We transform the d-dimensional input array into sequences first, where each
element of a converted sequence stores (d − 1)-dimensional values in X. That is, the converted sequence is defined as
follows

Xi2,j2,i3,j3,...,id ,jd
[q] =

j2∑

p2=i2

j3∑

p3=i3

. . .
jd∑

pd=id

xqp2p3...pd
∀1�q �n.

Because there are O(n2) combinations in every dimension, the number of the converted sequences is O(n2d−2). A
similar analysis to the two-dimensional case yields the following theorem.

Theorem 4. The k d-dimensional maximum-sum subarrays can be found in O(n2d−1 + k log min{n, k}) time.

5. Conclusions

We close this paper by mentioning a few open problems. First, is there an algorithm running in o(k log k) time for
finding the k maximum segments in non-decreasing order when k > n? Second, it would be interesting to find a tight
lower bound for the multiple-dimensional k maximum subarray problem.

Acknowledgements

Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien and Kun-Mao Chao were supported in part by NSC Grants
92-2213-E-002-059 and 93-2213-E-002-029 from the National Science Council, Taiwan.

References

[1] L. Allison, Longest biased interval and longest non-negative sum interval, Bioinformatics 19 (2003) 1294–1295.
[2] S.E. Bae, T. Takaoka, Algorithms for the Problem of k Maximum Sums and a VLSI Algorithm for the k Maximum Subarrays Problem, in:

Proc. Seventh Internat. Symp. Parallel Architectures, Algorithms and Networks, 2004, pp. 247–253.
[3] S.E. Bae, T. Takaoka, Improved Algorithms for the K-Maximum Subarray Problem for Small K, in: Proc. 11th Annual Internat. Computing

and Combinatorics Conference, 2005, pp. 621–631.
[4] F. Bengtsson, J. Chen, Efficient algorithms for k maximum sums, in: Proc. 15th Internat. Symp. on Algorithms and Computation, Lecture Notes

in Computer Science, Vol. 3341, 2004, pp. 137–148.
[5] J. Bentley, Programming pearls: algorithm design techniques, Commun. ACM (1984) 865–871.
[6] J. Bentley, Programming pearls: perspective on performance, Commun. ACM (1984) 1087–1092.
[7] K.-Y. Chen, K.-M Chao, On the range maximum-sum segment query problem, in: Proc. 15th Internat. Symp. Algorithms and Computation,

Lecture Notes in Computer Science, Vol. 3341, 2004, pp. 294–305.
[8] K.-Y. Chen, K.-M. Chao, Optimal algorithms for locating the longest and shortest segments satisfying a sum or an average constraint, Inform.

Process. Lett. 96 (2005) 197–201.
[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., The MIT Press, Cambridge, 1999, pp. 185–196.

[10] T.-H. Fan, S. Lee, H.-I. Lu, T.-S. Tsou, T.-C. Wang, A. Yao, An optimal algorithm for maximum-sum segment and its application in
bioinformatics, in: Proc. Eighth Internat. Conf. on Implementation and Application of Automata, Lecture Notes in Computer Science,
Vol. 2759, 2003, pp. 251–257.

[11] T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama, Data mining using two-dimensional optimized association rules: scheme, algorithms, and
visualization, in: Proc. 1996 ACM SIGMOD Internat. Conf. on Management of Data, 1996, pp. 13–23.

[12] U. Grenander, Pattern Analysis, Springer, New York, 1978.
[13] X. Huang, An algorithm for identifying regions of a DNA sequence that satisfy a content requirement, Comput. Appl. Biosci. 10 (1994)

219–225.

170 C.-H. Cheng et al. / Theoretical Computer Science 362 (2006) 162 –170

[14] T.-C. Lin, D.T. Lee, Randomized algorithm for the sum selection problem, in: Proc. 16th Internat. Symp. on Algorithms and Computation,
Lecture Notes in Computer Science, Vol. 3827, 2005, pp. 515–523.

[15] Y.-L. Lin, X. Huang, T. Jiang, K.-M. Chao, MAVG: locating non-overlapping maximum average segments in a given sequence, Bioinformatics
19 (2003) 151–152.

[16] Y.-L. Lin, T. Jiang, K.-M. Chao, Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular
sequence analysis, J. Comput. System Sci. 65 (2002) 570–586.

[17] K. Perumalla, N. Deo, Parallel algorithms for maximum subsequence and maximum subarray, Parallel Process. Lett. 5 (1995) 367–373.
[18] W.L. Ruzzo, M. Tompa, A linear time algorithm for finding all maximal scoring subsequences, in: Proc. Seventh Internat. Conf. on Intelligent

Systems for Molecular Biology, 1999, pp. 234–241.
[19] T. Takaoka, Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication, Electronic Notes in Theoretical

Computer Science, Vol. 61, 2002, pp. 1–10.
[20] T. Tamaki, T. Tokuyama, Algorithms for the maximum subarray problem based on matrix multiplication, in: Proc. Ninth Annu. ACM-SIAM

Symp. on Discrete Algorithms, 1998, pp. 446–452.
[21] L. Wang, Y. Xu, SEGID: identifying interesting segments in (multiple) sequence alignments, Bioinformatics 19 (2003) 297–298.

