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Abstract Distributed trust management addresses the
challenges of eliciting, evaluating and propagating trust
for service providers on the distributed network. By
delegating trust management to brokers, individual
users can share their feedbacks for services without
the overhead of maintaining their own ratings. This
research proposes a two-tier trust hierarchy, in which
a user relies on her broker to provide reputation rat-
ing about any service provider, while brokers leverage
their connected partners in aggregating the reputation
of unfamiliar service providers. Each broker collects
feedbacks from its users on past transactions. To ac-
commodate individual differences, personalized trust is
modeled with a Bayesian network. Training strategies
such as the expectation maximization (EM) algorithm
can be deployed to estimate both server reputation and
user bias. This paper presents the design and imple-
mentation of a distributed trust simulator, which sup-
ports experiments under different configurations. In
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addition, we have conducted experiments to show the
following. 1) Personal rating error converges to below
5% consistently within 10,000 transactions regardless of
the training strategy or bias distribution. 2) The choice
of trust model has a significant impact on the perfor-
mance of reputation prediction. 3) The two-tier trust
framework scales well to distributed environments. In
summary, parameter learning of trust models in the
broker-based framework enables both aggregation of
feedbacks and personalized reputation prediction.
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1 Introduction

Trust is an important relationship between individual
entities engaging in any transactions. Each individual
has a belief on certain attributes about the other. In
addition to identification, who the subject entity is, and
qualification, whether the subject entity is capable of
performing the requested service, the trust relationship
gauges consistency, that is, how well/certain the subject
entity is able to deliver a service or a result (Lin, Lu,
Yu, & Tai, 2005).

In the online world, the ability to identify the trust-
worthiness of a target partner/server has become crit-
ically important. For example, how does an eBay buyer
decide which seller will deliver the requested item as
promised? Similarly, how does an enterprise applica-
tion select the web services to help achieve its goals?
While it is relatively easy to be deceitful online due to
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the lack of physical contact, deceptive behaviors will be
discouraged in repeated interactions if experiences may
be captured. The rapid growth of online transactions
and e-business activities suggests that traditional en-
cryption and authentication mechanisms are no longer
sufficient to adequately address the trust issue. It is
imperative to provide trust management through a rep-
utation mechanism based on user feedbacks from past
transactions as in Zacharia and Maes (2000).

Amazon and eBay are successful examples of cen-
tralized reputation systems, which help foster trust for
vendors. With a single trust authority controlling all
reputation information, such systems may be vulnera-
ble, inflexible, and difficult to scale up. When the cen-
tralized reputation system is owned by a single business
entity, one may also raise issues about subjectivity. In
contrast, a software agent working on behalf of its
users may choose to maintain a reputation rating for
every service provider. Building up a distributed trust
relationship can facilitate collaboration in a multi-agent
system. However, eliciting reputation information for
each agent individually can be challenging. Moreover,
when the number of feedbacks collected is small, the
ratings can be easily skewed by potentially biased
agents.

This research proposes a two-tier trust hierarchy, in
which a user relies on its trust broker to provide rep-
utation information about any service provider, while
brokers leverage their connected partners in aggrega-
ting the reputation of unfamiliar services. The software
brokers act as trusted domain experts that manage the
trust relationship for general web users. Trust brokers
are independently maintained and operated; users are
free to choose among many brokers available, much
like people can choose their own CPAs and lawyers.
Each broker is in charge of collecting and aggregating
feedbacks from its users. The broker-based trust frame-
work avoids the pitfalls of the centralized approach,
while ensuring meaningful trust ratings in standard
operations.

Even though all users belonging to the same bro-
ker are assumed to share certain characteristics, e.g.
membership, locations, or common interests, they are
not without personal differences. To accommodate in-
dividual differences, this paper presents a probabilistic
approach to modeling personalized feedback with a
Bayesian network. To tease apart the subjective user
bias from the objective server performance, a broker
may learn the trust model given the only observable
data of user feedback. In our design, model fitting
training strategies such as the expectation maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977) are
used to approximate both the server performance and

user bias by searching for the local maximum of the
likelihood function based on a probabilistic trust model
and observed user feedbacks.

To evaluate the performance of the proposed trust
framework, we have implemented a distributed trust
simulator, and conducted extensive simulations. In par-
ticular, we performed experiments to compare per-
formance of two training strategies under shifted bias
distributions; to examine how different trust models
affect the reputation prediction accuracy; and to illus-
trate scalability of personalized reputation rating us-
ing broker-based trust management in a distributed
environment.

This paper is organized as follows. Section 2 pro-
vides an overview of related research on trust manage-
ment. The broker-based distributed trust framework is
introduced in Section 3. In Section 4, we define the
probabilistic trust model, and describe the procedure
for training such a model with EM. The design of a
distributed trust simulator and the simulation process
are detailed in Section 5, followed by experimental
results in Section 6 and the conclusion in Section 7.

2 Related work

In recent years, the design of trust management frame-
work has gained much attention in e-commerce, online
auctions, peer-to-peer systems, web services and multi-
agent systems. Trust management generally relies
on a reputation mechanism based on user feedbacks
from past transactions. In a comprehensive survey
by Dellarocas and Resnick (2003), approaches to on-
line reputation mechanisms are classified into cen-
tralized (Zacharia and Maes, 2000) and distributed
(Kamvar, Schlosser, & Garcia-Molina, 2003; Yu &
Singh, 2000). For example, Amazon computes the aver-
age of product ratings according to customer reviews in
a centralized fashion. Similarly, eBay utilizes a central-
ized server to keep track of trust scores based on simple
accumulation of user feedbacks of positive, negative,
or neutral. Buyers and sellers have the opportunity
to rate each other after each transaction, and ratings
(with specific comments) over the last six months are
maintained.

For peer-to-peer networked environments, trust rat-
ings are usually collected locally. The Eigentrust algo-
rithm proposed by Kamvar et al. (2003) is based on
the notion of transitive trust, in which all peers in the
file-sharing network cooperate to compute and store
the global trust vector using power iteration. The ap-
proach, similar to the idea of PageRank in Google
search, was shown to be resistant to various attacks. In
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addition to combining feedbacks using simple weighted
average in Zacharia and Maes (2000), a Dempster–
Shafer evidential model based on the word-of-mouth
topology is proposed by Yu and Singh (2002). The
model distinguishes between uncertainty and negative
feedbacks to provide more accurate ratings. A Bayesian
network model is proposed by Wang and Vassileva
(2003) to combine ratings on different aspects of a
server .

A broker framework for web applications was in-
troduced by Lin et al. (2005), where service brokers
manage trust information for their respective users. The
framework combines three levels of trust and utilizes
security broker, trust network, and reputation authority
at each level respectively. By delegating trust man-
agement to brokers, individual users only need to ask
their brokers about the reputation of a service before
engaging in any transaction. Each user only needs to
share her feedback with her broker. Experiments were
conducted to evaluate the performance of the proposed
broker framework. While the proposed broker frame-
work performed effectively with low computational
overhead, there is no guarantee in error convergence,
which motivated the current research.

One important challenge in any reputation mecha-
nism is the difficulty in soliciting feedbacks. In addition
to the general lack of incentives for the users, people
are reluctant to share information for fear that it will
give competitive advantage to others. Rewards are pro-
vided in Fernandes, Kotsovinos, Ostring, and Dragovic
(2004) as an incentives for honest participation. In Ju-
rca and Faltings (2003), an incentive-compatible proto-
col is proposed based on the upper bound of deception
probability from game theory. Pavlov, Rosenschein,

and Topol (2004) proposed supporting privacy as an
incentive for truthful feedbacks, while Jurca and Falt-
ings (2004) designed a broker-based protocol to elicit
truthful feedbacks.

Instead of deception, this research focuses on the
problem of potentially biased feedbacks due to indi-
vidual differences. Some people tend to give negative
feedbacks, while others are more positive. Some people
tend to have extreme opinions, while others are more
moderate. In fact, the general distributed trust frame-
work that will be introduced below can be extended to
model other factors affecting user feedbacks.

3 Distributed trust framework

This research proposes a two-tier broker-based dis-
tributed trust management framework for online ser-
vice transaction systems. Figure 1 shows the overall
structure of the proposed framework consisting of two
types of agents, the brokers and the users. A broker
typically works for multiple users who share (localized)
common features, and are willing to share information
among the group.

Each user may function as either a service provider
(e.g. server) or a service requester (e.g. client) in a
transaction. In e-commerce scenarios, a client user is
often called a buyer, and a server user is called a seller.
When a user acts as a seller, its server performance is
dictated by a consistency factor (CF) or server reputa-
tion that controls the probability of a successful service
delivery. Let’s assume CF is an inherent and consis-
tent property of the server (similar to the reliability
of a hardware) with a real value ranging from 0 to 1.

Fig. 1 Users and brokers in a
two-tier distributed trust
framework
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For example, a CF value of 0.8 means that the server
has an 80% chance to deliver a satisfactory service as
requested.

In this framework, a client user relies on its respec-
tive broker to maintain server reputation ratings for all
service providers that have engaged in transactions with
any user managed by the same broker. For each trans-
action, the client user u j requests its broker Brokeri to
provide a reputation rating about a specific server user
uk, and initiates the transaction provided that the rating
is above a configurable threshold representing u j’s risk-
taking attitude. When the transaction is over, Brokeri

collects the feedback rating f on the server user uk from
the client user u j based on the success or failure of the
current transaction.

Figure 2 shows the components of a broker, in which
the Reputation Manager collects all feedback ratings
generated by all its users, and the Trust Manager ex-
changes reputation ratings with other connected bro-
kers when necessary. By aggregating feedbacks from
all its users, a broker has the opportunity to accumulate
enough rating information about any server. In the case
when a broker does find its local trust database to be
inadequate for making a confident recommendation,
it will request additional reputation information from
neighboring brokers.

In the proposed framework, we assume that the bro-
kers are connected according to some pre-defined prop-
erties, e.g. physical proximity, social connections or
business relationships. Brokers communicate through
standard protocols (e.g. SOAP) in a peer-to-peer fash-
ion. Based on its past performance, each broker is
assigned a trust rating, which will be used in aggregating
the server reputation ratings from multiple brokers. A
simple weighted sum of all ratings from neighboring
brokers will be returned to the requesting client user,
who then decides whether to carry out the transaction
with the specific server. Given that trust brokers are
independently operated, they may not always be coop-
erative and truthful in providing reputation information

Fig. 2 Trust broker architecture

and feedback when requested by other brokers. The
EigenTrust mechanism is deployed to reward good
behaviors and minimize malicious attacks by some bro-
kers (Kamvar et al., 2003).

The reputation and trust management broker frame-
work introduced in Lin et al. (2005) assumes users and
brokers to be diligent in providing honest feedbacks.
The ad hoc aggregation methods can compute trust
ratings efficiently, but there is no guarantee of conver-
gence. On the other hand, the computation defined by
EigenTrust converges nicely to a global trust vector,
and it meets the demand at the broker level satisfacto-
rily. However, a global trust value may not be the right
choice at the individual user level. For example, a small
retailer may provide speedy delivery and great service
in its local geographical area, but it may be limited in
logistics and does not perform satisfactorily globally. In
addition to variation in ratings due to locality or other
factors, a client user may have her own personal bias,
either positively or negatively. As a result, a broker
needs to learn both the server performance and the user
bias from feedback data collected over time. In the fol-
lowing section, we will present a Bayesian network trust
model for biased user feedback, and explain how the
EM algorithm can be adopted to train the probabilistic
trust model.

4 Probabilistic trust model

One of the most important and challenging issues in
trust management is the problem of trust rating predic-
tion. A broker needs to provide accurate predictions to
keep its users informed, even with a small rating data-
base at the beginning of the broker’s operation (e.g.
during startup time) or when a new service has become
available recently. What makes trust rating prediction
especially hard is that the rating database may consist
of subjective ratings from various users. Consequently,
the predictive trust rating must be personalized to fit
the subjective views of various users while maximizing
the satisfaction from each individual.

Much previous work uses graphical models to repre-
sent existing interactions among users. In their models,
each user is expressed as a node. A feedback rating f
that client/buyer u j gives server/seller uk is recorded as
a directed link from node u j to node uk with weight f .
To predict the trust of u j on another server ul, those
models compute the weighted average rating based on
all the ratings on all paths from u j to ul. The common
underlying assumption for computing weights is that, if
u j trusts uk based on the performance of uk, u j and uk

are likely to give similar ratings to the same servers.
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However, those methods do not provide satisfactory
solutions to our concerns. First, it is hard to predict
the ratings between client and server at startup time
or for a new server. The number of links is usually not
enough to compose paths between two arbitrary nodes
except for some special topologies. Second, although
the weighted average mechanism gives personalized
prediction, it does not take subjectivity into better con-
sideration. For example, a server that always performs
perfectly may give strict ratings on others, using its own
performance as the rating standard. In this case, the
ratings tend to be underestimated by the strict user.

This research proposes handling the problems by
modeling server performance and client subjectivity
explicitly. The rating that client u j would give to server
uk comes from a function that takes the subjectivity of
u j and the performance of uk as parameters. Such a
model considers the subjectivity issue and is beneficial
to the startup time issue since ratings can be computed
even if there is no direct path from u j to uk.

A Bayesian network trust model is adopted by the
proposed distributed trust management system. Our
trust model is distinct from previous work in that it
models the relation between a client and server within
a transaction. Section 4.1 describes the details of the
model. In this work, the subjectivity of rating bias is
considered, namely, a client’s tendency to give strict
or generous ratings. Section 4.2 shows how the model
computes biased trust. Finally, we present the EM al-
gorithm (Dempster et al., 1977) for training our model.

4.1 A sample model

Figure 3 shows the Bayesian network trust model con-
sisting of five random variables, the client user (C),
server user (S), user bias (B), server reputation (R)
and the feedback rating (F) for a given transaction. The
links in Fig. 3 represent causal dependencies among the
random variables. Given the natural variations in server
reputation and user bias, we introduce hidden nodes R
and B as intermediate random variables to determine

Fig. 3 Bayesian network trust model with bias

the rating. For each transaction, the server reputation
is decided by the objective server performance (link
from S to R), while the user bias is decided by the
subjective view of the client (link from C to B). For
any transaction, the feedback rating a seller receives
is based on both server performance and client bias
(links from B and R to F). Throughout this paper, we
sometimes use buyers to refer to client users, and sellers
to refer to servers.

Let us examine the variables and distributions in
more detail. The values of C and S are the unique user
IDs. Multinomial distributions P(C) and P(S) are used
to represent their transaction frequency. Each buyer
has its own bias distribution P(B|C), and each seller
has its own performance distribution P(R|S). While
buyer, seller, and rating for each transaction are ob-
servable, the actual server performance and user bias
are unknown to the trust brokers. That is, R and B are
latent variables. Intuitively, performance and bias can
be expressed as real values. To reduce the complexity
in computation, our implementation discretizes perfor-
mance and bias into nR and nB bins, respectively. The
degree of user bias or server performance is approx-
imated by its expected value. The value of B falls within
a lower bound bl and an upper bound b u. The value
of R is within 0.0 and 1.0. It follows that P(B|C) and
P(R|S) are also multinomial distributions.

Assume B and R are instantiated as b and r in a spe-
cific transaction involving client c and server s, we can
define the feedback rating to be f = b + r. However,
the real-numbered rating cannot be obtained by sum-
ming up discretized performance and bias directly. In
order to handle both discrete-number and real-number
ratings with a single model, we define P(F|B, R) as a
normal distribution with μ = B + R:

P(F|B, R) ∝ exp

(
− (F − (B + R))2

2σ 2

)
, (1)

where σ is a constant. Rating f = b + r has the highest
probability to appear in this distribution, which is adap-
tive to the model training.

4.2 Biased trust

The probabilistic trust model can be used to make pre-
diction about a buyer’s biased trust, or the subjective
trust, in a given seller. We compute the estimated repu-
tation (i.e. consistency factor or expected performance)
of seller s as follows.

R̂s =
∑

r

P(R = r|S = s) · r. (2)
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Then, the estimated bias B̂c of client/buyer c can be
calculated in a similar way.

B̂c =
∑

b

P(B = b |C = c) · b . (3)

Finally, B̂c + R̂s is returned as the personalized reputa-
tion rating back to client c.

4.3 Model training

Given a set of T transactions D = {dt | 1 ≤ t ≤ T}, the
parameters of a trust model can be trained using a
model fitting method. The t-th transaction dt consists
of a client ct, a server st, and the feedback rating ft for
the specific transaction.

For any transaction, the participants, client C and
server S, are observable. As a result, the probability
distributions P(C) and P(S) can be estimated easily
by normalizing their frequency of occurrences. Let Nc

and Ns be the numbers of transactions with client c
and server s, respectively. We have P(C = c) = Nc

T and
P(S = s) = Ns

T . The conditional distribution P(F|B, R)

is defined for all circumstances in Eq. 1, and no update
is needed. The distributions of latent variables B and R
are estimated by employing the EM algorithm.

The EM algorithm is a general algorithmic frame-
work that searches for local maxima of data likelihood
function in the parameter space of probabilistic mod-
els. It consists of repeated applications of the E-step
and the M-step. The E-step estimates the posterior
distributions of the latent variables using the current
model. The M-step updates the current model with the
results from the E-step. The EM algorithm terminates
at a local maximum of the likelihood function or the
maximum number of iterations.

In our work, the E-step computes P(B, R|dt), the
joint probability distribution of the latent variables
given each transaction:

P(B = b , R = r|dt) = P(b , r, ct, st, ft)∑
b ′,r′ P(b ′, r′, ct, st, ft)

.

Let pb ,t denote
∑

r P(b , r|dt), and pr,t denote
∑

b
P(b , r|dt). In the M-step, P(B|C) and P(R|S) are up-

dated by calculating the expected number of occur-
rences as follows.

P(B = b |C = c) =
∑

{t|ct=c} pb,t∑
b ′,{t|ct=c} pb ′

,t
,

P(R = r|S = s) =
∑

{t|st=s} pr,t∑
r′,{t|st=s} pr′

,t
.

It should be noted that there are a number of meth-
ods for searching in the parameter space to maximize
data likelihood function. For example, simple average
or gradient ascent may work fine in finding a solution,
even in the presence of latent variables. Different meth-
ods may stop at different local maxima, so will the same
search method with different initial points. In general,
good model design may have a stronger impact on the
overall search result than the choice of search methods.
The most important advantage of adopting EM is in its
ease of implementation (or flexibility) to deal with new
models, and its ability to learn from a relatively small
set of data.

5 Implementation

We have designed and implemented a working proto-
type of the trust broker, which can run in either sim-
ulation mode or deployment mode. For performance
evaluation of the proposed broker-based trust frame-
work, a configurable trust simulator has been im-
plemented. This section presents the details of both
designs, with a detailed description of the simulation
process. The updated and robust implementation in
Python is produced to replace the previous Java im-
plementation that was used in Lin et al. (2005). This
implementation adopts a completely distributed design,
in which all brokers and users can be independently
running on any networked machines. Each broker or
user is assigned a unique Universal Resource Identifier
(URI), and all communications use standard SOAP
APIs for enhanced interoperability and flexibility. A
series of experiments using the trust brokers and sim-
ulator have been conducted and the results are reported
in Section 6.

5.1 Trust broker

Trust brokers form the core of the proposed two-tier
trust management framework. In particular, a trust
broker performs the following functions:

1. Collecting feedback from its user after each
transaction.
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Fig. 4 Trust broker UML
diagram

2. Maintaining ratings of all servers engaged in trans-
actions with its users.

3. Aggregating seller reputation ratings from con-
nected brokers.

4. Managing personal bias of its users.
5. Providing personalized estimation of server perfor-

mance with confidence to its client user.

As was shown in Fig. 2, there are two main compo-
nents in a trust broker: the reputation manager and the
trust manager. Fig. 4 depicts a more detailed design of
the trust broker processes and APIs.

The broker module provides two interfaces to the
users: GetUserReputation and SendFeedback. A
client user checks the target server’s reputation
from its broker using GetUserReputation. A trans-
action is initiated only if the client is satisfied
with the server rating. After each transaction, the

client user is obligated to provide a feedback on
the server performance to its broker via Send-
Feedback. Our implementation handles two types
of feedback rating: continuous, which is a real value
between 0.0 and 1.0.; and binary, which is either 0
or 1.

A broker utilizes ReputationManager to manage user
information based on feedbacks collected from past
transactions. Given that server reputation and client
bias are not directly observable to the broker, the
TrainingStrategy module attempts to find the optimal
fitting of the data collected to the probabilistic user
model. In particular, we have implemented two model
fitting strategies, ExpectationMaximization and Simple
Method for our experiments. The EM algorithm has
been detailed in Section 4.3. The Simple Method es-
timates the reputation (or CF) of a specific seller by
computing the average of all feedbacks on the seller

Fig. 5 Trust simulator
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collected by a broker, and it estimates the bias of a user
by computing the average over the difference of any
feedback with the seller’s estimated CF.

Additionally, the TrustManager module maintains
the trust values of all brokers. The EigenTrust mech-
anism (Kamvar et al., 2003) has been adopted to per-
form peer-to-peer trust management among brokers.
A broker aggregates reputation ratings from connected
brokers by summing the ratings weighted by their trust
values. EigenTrust offers the advantages of global con-
vergence as well as resistance from attacks by mali-
cious, incompetent, or disagreeing neighbors.

5.2 Trust simulator

In order to validate the proposed probabilistic user
model and to evaluate the performance of specific pa-
rameter learning strategies, e.g. EM, a trust simulator is
designed to conduct experiments under various system
and environmental configurations. The trust simulator
is in charge of starting the broker processes, initializing
each simulated user with an inherent CF and bias,
generating the set of simulated transactions, configur-
ing the training strategy and schedule, sampling and
calculating the prediction errors in reputation and bias.
Figure 5 shows the overall structure and the sequence
of operations performed by the trust simulator.

The simulator synthesizes each transaction by ran-
domly selecting a buyer and a seller, and the transaction
proceeds just like a real transaction. All communica-
tions among buyers, sellers, brokers, and the simulator
are conducted with SOAP APIs. The seller perfor-
mance (or client bias) is sampled based on a Gaussian
distribution of the user’s inherent CF (or bias). For
example, given a seller CF of 0.8 and a buyer bias of
+0.05, the probability of a successful transaction is 0.8
with an expected value of 0.85 for the feedback rating.
Continuous feedbacks range from 0.0 to 1.0, and binary
feedbacks can be generated with the continuous rating
as the probability of positive feedbacks.

The simulation process is summarized in Algorithms
1 and 2. For each simulation run, a global configura-
tion object Config is specified to define the number of
brokers n, the number of users m, the total number of
transactions T, distribution (uniform or normal) and
parameters for server reputation and user bias, con-
fidence threshold θc, reputation threshold θr, training
size, and sampling points � for prediction error calcu-
lation. Each user ui is initialized with a reputation ri

and a bias bi, which are uniformly sampled between 0.0
and 1.0 for the former, and between a lower bound bl

Algorithm 1 Trust Simulation
Require: Config: a global configuration object

1: Initialize a set of brokers O = {o1, . . . , on}, each
with a feedback repository Fi ← ∅;

2: Initialize a set of users U = {u1, . . . , um}, each with
an inherent reputation ri and bias bi;

3: for t = 1 to T do
4: ct ← u j, where j ← Random(m); {randomly se-

lect a client u j}
5: st ← uk, where k ← Random(m); {randomly se-

lect a server uk}
6: Simulate the transaction by Broker(i, ct, st); {ct =

u j is managed by Brokeri}
7: if t ∈ � then
8: Record the current R̂u and B̂u for all u ∈ U ;
9: end if

10: end for
11: Compute and output the average of εR and the

average of εB;

Algorithm 2 Broker
Require: a transaction t with client ct and server st

1: if GetUserReputation(ct, st, θc) ≥ θr then
2: Calculate user feedback rating rt;
3: Update feedback repository Fi ← F ∪ {rt};
4: end if
5: if |Fi| == σ then
6: Perform EM training with data in the feedback

repository EM(Fi);
7: Reset the feedback repository Fi;
8: end if

and an upper bound b u for the latter. Such user para-
meters remain constant throughout a simulation run.

6 Experiments

This section presents the results of three sets of sim-
ulation experiments that were designed to evaluate the
performance of the proposed trust framework. The first
set compares performance of two training strategies,
EM and Simple, under shifted bias distributions. The
second set examines how different trust models af-
fect the reputation prediction accuracy. The third set
illustrates scalability of personalized reputation rating
using broker-based trust management in a distributed
environment.

In each simulation, every user is initialized with an
inherent CF and bias, which are uniformly sampled
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from a given value range. All simulation experiments
reported in this paper set the range for CF to be be-
tween 0.0 and 1.0. Each simulation is repeated under
shifted bias distribution. The range for “Bias shift β” is
defined as [0.β − 0.2, 0.β + 0.2]. For example, the value
of bias ranges in [−0.2, 0.2] for “Bias shift 0”, [0.0, 0.4]
for “Bias shift 2”, and [−0.4, 0.0] for “Bias shift −2”.

Both CF and bias remain constant throughout a given
simulation run. The confidence threshold, reputation
threshold, and training size are constants empirically
selected for the experiments. While they have impacts
on the speed of convergence, the overall performance
trend remains the same regardless of their specific
values.

Fig. 6 Performance with
different training strategies
(n = 1, m = 100, T = 35, 000)
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Fig. 7 Bayesian network trust model without bias

Performance is measured in terms of the prediction
error, which is defined as the root mean-squared error
in the estimation. One of the most commonly used
measures of success for numeric prediction, the mean-
squared error is computed by taking the average of the
squared difference between the estimated and correct
values. Taking the square root gives the error value the
same dimensionality as the actual values. In particular,
we use reputation error to denote the error in predicting
server reputation, and personal rating error to denote
the error in predicting the summation of server reputa-
tion and client bias. In the following experiments, per-
formance is measured at exponentially growing number
of transactions. Namely, the sampling points � is {128,
256, . . . , 32768}.

6.1 Training strategies

This experiment explores the effectiveness of learning
under shifted bias distribution. The simulations com-
pare performance of two training strategies, Simple and

EM. A broker uses the Simple method to estimate
server reputation by computing the average rating of
all feedbacks collected about the server, and to esti-
mate client bias by computing the average difference
between any feedback rating by the user and the cor-
responding estimated server reputation. Alternatively,
a broker may use EM to fit the trust model for pre-
dicting server reputation and client bias as described in
Section 4.3.

The simulations are set up with a single broker, 100
simulated users, and 35,000 transactions. The results
in Figs. 6(a) and 6(b) show that both strategies per-
formed reasonably well, and the personal rating error
converges to less than 5% around 10,000 transactions
under different bias distributions. With the relatively
simple trust model in Fig. 3, we do not observe much
performance advantage of EM except that it is less sen-
sitive to bias shift. Given a good trust model, this exper-
iment demonstrates that the choice of training strategy
does not have significant impacts on performance.

6.2 Performance due to trust models

A major benefit of EM is its flexibility in handling
different models. While the Simple method needs to
be re-coded, EM can take a new model without much
effort. In this experiment, the Bayesian network trust
model without bias in Fig. 7 is adopted.

Figure 8 shows the simulation results for both Sim-
ple and EM under different bias distributions. The

Fig. 8 Performance based on
trust model without bias
(n = 1, m = 100, T = 35, 000)
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reputation error converges to less than 5% within 1,000
transactions when there is no bias shift. However, the
error remains above 17% when the bias shift is either
0.2 or −0.2. This experiment highlights the importance
of adopting the right model. Performance suffers when
the notion of bias is not included in the model.

6.3 Distributed trust management

The last experiment evaluates the performance of the
two-tier broker-based trust framework in a real distrib-
uted environment. The simulations are set up with 10
brokers, 1,000 simulated users, and 10,000 transactions.

Fig. 9 Performance in a
distributed environment
(n=10, m=1,000, T=10,000)
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Each broker manages 100 users, and the processes can
run on any number of networked machines. The trust
model in Fig. 3 is used. The EigenTrust mechanism is
deployed at the broker level with a threshold of 0.05
and a maximum iteration of 50.

Figures 9(a) and 9(b) show the simulation results of
both Simple and EM under different bias distributions.
This experiment illustrates the scalability of trust man-
agement to multiple brokers running in a real distrib-
uted environment. As in the single-broker case, the
Personal Rating Error falls below 5% within 10,000
transactions. The two-tier trust management works well
in a distributed environment.

7 Conclusion

This paper presents a two-tier broker-based framework
for distributed trust management. A Bayesian network
is defined to model the combined trust from objec-
tive server performance and subjective user bias. The
probabilistic personalized trust model can be learned
using expectation maximization or alternatives training
strategies.

The trust brokers aggregate feedbacks from local
users while supporting personalized services. When the
number of feedbacks collected by a given broker is
insufficient to make justifiable recommendations, the
broker may request for additional information from
trusted brokers. Instead of combining trust ratings from
multiple brokers as in Lin et al. (2005), the EigenTrust
mechanism (Kamvar et al., 2003) is adopted to compute
a global trust vector. At the broker level, such a P2P
trust mechanism avoids malicious attacks from unco-
operative brokers. At the individual level, the broker-
based trust mechanism fosters user community and
their willingness to share feedbacks.

Research presented in this paper has improved over
previous work in several ways. First, a general two-
tier broker-based trust management framework is pro-
posed. Second, Bayesian networks can be used to
model personalized trust. Third, a robust implementa-
tion of the distributed trust simulator, which is config-
urable for a wide range of simulations, has been built.
In addition, our experiments have demonstrated that
personal rating error converges to below 5% consis-
tently within 10,000 transactions (i.e. 10 transactions
per user or 1,000 transactions per broker) regardless
of the specific training strategy or bias distribution.
However, the choice of trust model has a significant
impact on the performance of reputation prediction.
We’ve also shown that the two-tier trust framework

scales well to distributed environments without much
overhead.
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