
Theoretical Computer Science 389 (2007) 182–189
www.elsevier.com/locate/tcs

A tight analysis of the Katriel–Bodlaender algorithm for online
topological ordering

Hsiao-Fei Liua, Kun-Mao Chaoa,b,c,∗

a Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
b Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan

c Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan

Received 16 April 2006; received in revised form 24 August 2007; accepted 28 August 2007

Communicated by D.-Z. Du

Abstract

Katriel and Bodlaender [Irit Katriel, Hans L. Bodlaender, Online topological ordering, ACM Transactions on Algorithms 2 (3)
(2006) 364–379] modify the algorithm proposed by Alpern et al. [Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney,
F. Kenneth Zadeck, Incremental evaluation of computational circuits, in: Proceedings of the First Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA), 1990, pp. 32–42] for maintaining the topological order of the n nodes of a directed acyclic graph
while inserting m edges and prove that their algorithm runs in O(min{m3/2 log n, m3/2

+ n2 log n}) time and has an Ω(m3/2)

lower bound. In this paper, we give a tight analysis of their algorithm by showing that it runs in time Θ(m3/2
+ mn1/2 log n)1.

c© 2007 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Topological order; Online algorithms; Tight analysis

1. Introduction

A topological order ord of a directed acyclic graph (DAG) G = (V, E) is a linear order of all its vertices such
that if G contains an edge (u, v), then ord(u) < ord(v). In this paper we study an online variant of the topological
ordering problem in which the edges of the DAG are given one at a time and we have to update the order ord each
time an edge is added.

When dealing with DAGs, the topological order of vertices often provides very crucial information for further
algorithm development. Thus online topological ordering is of interest because it is very likely to be required when
one has to develop online algorithms on DAGs. For example, the online topological ordering has appeared in the
following contexts.

∗ Corresponding address: Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt
Road, Taipei 106, Taiwan. Tel.: +886 2 33664888; fax: +886 2 23628167.

E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Chao).
1 In this paper, we assume that m = Ω(n). In fact, our analysis can be easily extended to prove that the algorithm runs in time

Θ(min{m3/2
+ mn1/2 log n, m3/2 log m + n}) without the assumption m = Ω(n).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.08.009

http://www.elsevier.com/locate/tcs
mailto:kmchao@csie.ntu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2007.08.009

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189 183

– Incremental Evaluation of Computational Circuits [2].
– Incremental Compilation [8,11], where dependencies between modules are maintained to reduce the amount of

recompilation performed when an update occurs.
– Local Search [10]. Local search is one of the main approaches to combinatorial optimization and often requires

sophisticated incremental algorithms.
– Online Computation of Strongly Connected Components [12].
– Online Cycle Detection [7,12,13]. Currently the best online cycle detection algorithm for sparse directed graphs

is built upon the Katriel–Bodlaender algorithm and has the same complexity as the Katriel–Bodlaender algorithm.
Thus our analysis improves the upper bound of the online cycle detection problem to O(m3/2

+ mn1/2 log n).
– Source Code Analysis [12,13], where the aim is to determine the target set for all pointer variables in a program,

without executing it.

Alpern et al. [2] give an algorithm which takes O(||δ|| log ||δ||) time for each edge insertion, where ||δ|| measures
the number of edges and nodes of a minimal subgraph that needs to be updated. (For a formal definition of ||δ||, please
see [2,14,15].) Pearce and Kelly [14] propose a different algorithm which needs slightly more time to process an edge
insertion in the worst case than the algorithm given by Alpern et al. [2], but show experimentally that their algorithm
perform well on sparse graphs.

Marchetti-Spaccamela et al. [9] give an algorithm which takes O(mn) time for inserting m edges. Katriel [6] shows
that the analysis is tight. Recently, Katriel and Bodlaender [7] modified the algorithm proposed by Alpern et al. [2],
which is referred to as the Katriel–Bodlaender algorithm in this paper. They prove that their algorithm has both an
O(min{m3/2 log n, m3/2

+n2 log n}) upper bound and an Ω(m3/2) lower bound on runtime for m edge insertions. This
is the best amortized result for sparse graphs so far. They also analyze the complexity of their algorithm on structured
graphs. They show that it runs in time O(mk log2 n) where k is the tree-width of the underlying undirected graph and
can be implemented to run in O(n log n) time on trees. On the other hand, Ajwani et al. [1] proposed an O(n2.75)-time
algorithm, independent of the number of edges inserted. This is the best amortized result for dense graphs so far.

In this paper, we prove that the Katriel–Bodlaender algorithm takes Θ(m3/2
+ mn1/2 log n) time for inserting m

edges. By combining this with Ajwani et al.’s result [1], we get an upper bound of O(min{m3/2
+mn1/2 log n, n2.75

})

for online topological ordering. It is an improvement over the previous best upper bound of O(min{m3/2 log n, m3/2
+

n2 log n, n2.75
}).

The rest of this paper is organized as follows. In Section 2, we describe how the Katriel–Bodlaender algorithm
works, define notation and introduce some theorems proved in [7]. Section 3 proves that the Katriel–Bodlaender
algorithm runs in O(m3/2

+ mn1/2 log n) time, and Section 4 shows that it needs Ω(m3/2
+ mn1/2 log n) time. Since

the upper bound matches the lower bound, our analysis is tight. Section 5 summarizes our results and discusses future
work.

2. The Katriel–Bodlaender algorithm

The pseudo code of the Katriel–Bodlaender algorithm is given in Fig. 1.2 The algorithm works as follows. The
topological order of nodes is maintained by an order data structure ORD, which can maintain a total order and
support the following operations in constant time [4,3]:

– InsertAfter(x, y) (InsertBefore(x, y)): Inserts x immediately after (before) y in the total order.
– Delete(x): Removes x from the total order.
– >ord (x, y): Returns true if and only if x follows y in the total order.
– Next(x) (Prev(x)): Returns the element that appears immediately after (before) x in the total order.

Initially the nodes are inserted into ORD in an arbitrary order. Each time a new edge (Source, Target) arrives,
AddEdge(Source, Target) is called to insert the edge (Source, Target) into the graph and update the total order
maintained by ORD to a valid topological order for the modified graph.

2 For the sake of exposition, we slightly modify the way Katriel and Bodlaender present their algorithm. The only nontrivial modifications are
the conditions in lines 8 and 14. However, by Lemma 2.3 in [7], one can verify that the conditions are equivalent to the ones in [7].

184 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189

Function AddEdge(Source, Target)
1 ToS← []; FromT ← [];
2 ToSNeighbors← []; FromTNeighbors← [];
3 ToSIndegree← 0; FromTOutdegree← 0;
4 s ← Source; t ← Target;
5 while s >ord t and s 6= nil and t 6= nil do
6 ms ← ToSIndegree; `s ← Indegree[s];
7 mt ← FromTOutdegree; `t ← Outdegree[t];
8 if ms + `s ≤ mt + `t then
9 ToS.Push(s);

10 foreach (w, s) ∈ E do ToSNeighbors.Insert(w);

11 ToSIndegree← ToSIndegree+ Indegree[s];
12 s ← ToSNeighbors.ExtractMax;
13 end if
14 if ms + `s ≥ mt + `t then
15 FromT.Push(t);
16 foreach (t, w) ∈ E do FromTNeighbors.Insert(w);

17 FromTOutdegree← FromTOutdegree+ Outdegree[t];
18 t ← FromTNeighbors.ExtractMin;
19 end if
20 end while
21 if s = nil then s ← ORD.Prev(Target);
22 if t = nil then t ← ORD.Next(Source);
23 while ToS.NotEmpty do
24 s′← ToS.Pop;
25 ORD.Delete(s′); ORD.InsertAfter(s′, s); s ← s′;
26 end while
27 while FromT.NotEmpty do
28 t ′← FromT.Pop;
29 ORD.Delete(t ′); ORD.InsertBefore(t ′, t); t ← t ′;
30 end while
31 E ← E ∪ (Source, Target); Outdegeree[Source]++; Indegree[Target]++;

Fig. 1. The algorithm proposed by Katriel and Bodlaender [7].

It remains to describe how AddEdge(Source, Target) operates. In each iteration of the first while loop, there is
one node s which is a candidate for insertion into stack ToS (the node with maximal rank in the current topological
order which reaches a node in ToS but is not in ToS) and one node t which is a candidate for insertion into stack
FromT (the node with minimal rank in the current topological order which can be reached from a node in FromT
but is not in FromT). The algorithm always adds at least one of them into the relevant set. The way in which it
decides which candidate(s) to add aims at balancing the number of edges outgoing from nodes in FromT and the
number of edges entering into nodes in ToS. That is, the algorithm always chooses a candidate so that the increase
of max{

∑
v∈T oS Indegree[v],

∑
v∈FromT Outdegree[v]} will be fewer after adding the candidate into its relevant set.

If a tie occurs, then both s and t will be added into their relevant sets. If s is added to its relevant set ToS, all nodes
which can reach s by one edge will be inserted into ToSNeighbors and then s will be reset to the max element in
ToSNeighbors. ToSNeighbors is a priority queue maintaining all nodes which can reach nodes in ToS by one edge
but is not in ToS. ToSNeighbors is implemented by Fibonacci heaps [5] which can support insertions and extractions
in O(1) and O(log n) amortized time respectively. ToSNeighbors determine the ranks of its elements according to
the total order maintained by ORD. Similarly, if t is added to FromT , then all nodes which are reachable from t
by one edge will be inserted into FromTNeighbors and then t will be reset to the min element in FromTNeighbors.

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189 185

FromTNeighbors is a priority queue maintaining all nodes which can be reached from nodes in FromT by one edge
but is not in FromT . FromTNeighbors is also implemented by Fibonacci heaps and determine the ranks of its elements
according to the total order maintained by ORD. The first while loop stops when t >ord s or any one of ToSNeighbors
and FromTNeighbors is empty. If ToSNeighbors (FromTNeighbors) is empty when the first while loop stops then s (t)
will be reset to ORD.Prev(Target) (ORD.Next(Source)) before we update ORD. The update of ORD is carried out by
fulfilling the following two tasks. First, delete all nodes in ToS from ORD and then insert them, in the same relative
order among themselves, immediately after s. Secondly, delete all nodes in FromT from ORD and then insert them, in
the same relative order among themselves, immediately before t . After the update of ORD, the edge (Source, Target)
is inserted into the graph.

In the following, we shall define some notations. Let n and m be the number of nodes and edges in the DAG
G = (V, E) respectively. Let Gi = (V, Ei) be the graph after the i th edge insertion. Let Indegreei [v] (Outdegreei [v])

be the indegree (outdegree) of v in Gi . Let FromT i (ToSi) denote the set of nodes in the stack FromT (T oS) at
the end of the first while loop upon the insertion of the i th edge. Let si (ti) denote the value of the variable s
(t) at the end of the first while loop upon the insertion of the i th edge. Let Ti =

∑
v∈FromT i

Outdegreei−1[v] and
Si =

∑
v∈ToSi

Indegreei−1[v]. Let xi denote max{Ti , Si } and yi denote max{|ToSi |, |FromT i |}. Let >ordi be the total
order maintained by ORD after the i th edge insertion. The following three theorems are proved in [7].

Theorem 1. The Katriel–Bodlaender algorithm needs O(m3/2
+

∑
1≤i≤m yi log n) time to insert m edges into an

initially empty n-node graph.

Theorem 2. The Katriel–Bodlaender algorithm needs Ω(m3/2) time to insert m edges into an initially empty n-node
graph.

Theorem 3. Indegreei−1[si] + Si ≥ xi and Outdegreei−1[ti] + Ti ≥ xi , for all i in [1, m].

3. The O(m3/2 + mn1/2 log n) upper bound

In this section, we shall prove that the algorithm runs in time O(m3/2
+mn1/2 log n). By Theorem 1, we know that

the algorithm runs in time O(m3/2
+

∑
1≤i≤m yi log n), so we only have to show that

∑
1≤i≤m yi is O(mn1/2). For

simplicity, we assume that xi ≥ yi for all i in [1, m], although it should be xi ≥ yi − 1 for all i in [1, m].
An edge e = (u, v) is called to be in front of (behind) a node w in Gi if and only if there is a path from v (w) to w

(u) in Gi . A pair (e, w) ∈ E × V is called to be ordered in Gi if and only if e is either in front of or behind w in Gi .
In the following proofs, we adopt one of the potential functions defined in [7]: The number of ordered pairs in E × V .
Let Φi denote the set {(e, w) ∈ E × V | (e, w) is ordered in Gi }, φi denote |Φi | and 4φi denote φi − φi−1.

Lemma 4. For all edges e incoming into ToSi in Gi−1 and for all nodes w in FromT i , e is not in front of w in Gi−1.

Proof. Let e = (u, v). Suppose for the contradiction that there is a path from v to w in Gi−1. It implies that
w >ordi−1 v. There are three cases to consider. Case 1: The iteration in which variable s was assigned v is before
the iteration in which variable t was assigned w in the i th call of AddEdge. Since the nodes were assigned to variable
s in decreasing order, we had t >ordi−1 s after variable t was assigned w and then left the loop. It contradicts the
assumption that w is in FromT i . Case 2: The iteration in which variable t was assigned w is before the iteration in
which variable s was assigned v in the i th call of AddEdge. Since the nodes were assigned to variable t in increasing
order, we had t >ordi−1 s after the variable s was assigned v and then left the loop. It contradicts the assumption that
v is in ToSi . Case 3: Variable s and variable t was assigned v and w respectively at the same iteration in the i th call of
AddEdge. Since w >ordi−1 v, we had t >ordi−1 s after variable t was assigned w and then left the loop. It contradicts
the assumption that w is in FromT i and v is in ToSi . �

Lemma 4 states that all the Si edges incoming into ToSi are not in front of FromT i in Gi−1. Because all these Si
edges became in front of FromT i after the i th edge insertion, we know that 4φi ≥ Si × |FromT i |. To pave the way
for proving Lemma 8, we have to show that y2

i ≤ 4φi when yi = |FromT i |. If Si was always larger than or equal
to yi when yi = |FromT i |, then we could jump to prove Lemma 8 directly. Since it is not the case, we need more
lemmas. There are two cases to consider: First, w <ordi−1 si for all w in FromT i , i.e., si is after FromT i in the total

186 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189

order <ordi−1 . Second, some nodes in FromT i are after si in the total order <ordi−1 . The following lemma deals with
the first case.

Lemma 5. If w <ordi−1 si for all w in FromT i and yi = |FromT i |, then y2
i ≤ 4φi .

Proof. Since w <ordi−1 si for all w in FromT i , we can deduce that all edges incident to si in Gi−1 are not in
front of w in Gi−1 for all w in FromT i . By combining this result with Lemma 4, we know that there are at least
Indegreei−1[si]+ Si edges not in front of w in Gi−1 for all w in FromT i . Because all these Indegreei−1[si]+ Si edges
are in front of w in Gi for all w in FromT i and yi = |FromT i |, we can deduce that (Indegreei−1[si]+ Si)× yi ≤ 4φi .
By Theorem 3 and the assumption yi ≤ xi , we have y2

i ≤ xi × yi ≤ (Indegreei−1[si] + Si)× yi ≤ 4φi . �

The following lemma is used in the proof of Lemma 7 which deals with the second case.

Lemma 6. If there exists w in FromT i such that w >ordi−1 si , then, in the i th call of AddEdge, the iteration in which
variable t was assigned ti is not after the iteration in which variable s was assigned si .

Proof. Suppose for the contradiction that the iteration in which variable s was assigned si is before the iteration in
which variable t was assigned ti . Let t̂ be the last element pushed into FromT i . Consider the iteration in which variable
t was assigned ti . At the beginning, the value of variable s was si and the value of variable t was t̂ . Since t̂ >ordi−1 si ,
we failed in the test condition and left the loop. Thus, t̂ was not pushed into FromT i , a contradiction. �

Lemma 7. If there exists w in FromT i such that w >ordi−1 si and yi = |FromT i |, then y2
i ≤ 4φi .

Proof. Consider the iteration in which variable t was assigned value ti in the i th call of AddEdge. The value of
mt + `t was equal to Ti . By Lemma 6, we know that the value of variable s was not si when line 6 was executed,
so ms + `s ≤ Si . Since variable t was selected to be assigned a new value, we know that mt + `t ≤ ms + `s . By
combining the results above, we get Ti ≤ Si . It implies that Si = xi . By Lemma 4, we know that there are at least
Si = xi edges not in front of w in Gi−1 for all w in FromT i . Because all these xi edges are in front of w in Gi for all
w in FromT i and yi = |FromT i |, we can deduce that xi yi ≤ 4φi . By the assumption xi ≥ yi , we have y2

i ≤ 4φi . �

Lemma 8.
∑

yi=|FromT i | y2
i ≤ mn.

Proof. By Lemmas 5 and 7, we know that y2
i ≤ 4φi if yi = |FromT i |. Since φ0 = 0, φm ≤ mn, 4φi ≥ 0, and

y2
i ≤ 4φi if yi = |FromT i |, we can deduce that

∑
yi=|FromT i | y2

i ≤
∑

1≤i≤m4φi ≤ mn. �

The following lemma can be proved by an argument similar to the one for proving Lemma 8.

Lemma 9.
∑

yi=|ToSi | y2
i ≤ mn.

Theorem 10.
∑

1≤i≤m yi is O(mn1/2).

Proof. By Lemma 8 and Lemma 9, we know that
∑

1≤i≤m y2
i ≤ 2mn. Since

∑
yi <n1/2 yi ≤ mn1/2, we only have

to show that
∑

yi≥n1/2 yi is O(mn1/2). Since n1/2 ∑
yi≥n1/2 yi ≤

∑
yi≥n1/2 y2

i ≤
∑

1≤i≤m y2
i ≤ 2mn, we have∑

yi≥n1/2 yi ≤ 2mn1/2
= O(mn1/2). �

Theorem 11. The Katriel–Bodlaender algorithm needs O(m3/2
+mn1/2 log n) time to insert m edges into an initially

empty n-node graph.

Proof. Theorem 1 states that the Katriel–Bodlaender algorithm needs O(m3/2
+

∑
1≤i≤m yi log n) time to insert m

edges into an initially empty n-node graph. Theorem 10 states that
∑

1≤i≤m yi is O(mn1/2). By combining these two
results, we know that the Katriel–Bodlaender algorithm needs O(m3/2

+ mn1/2 log n) time to insert m edges into an
initially empty n-node graph. �

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189 187

4. The Ω(m3/2 + mn1/2 log n) lower bound

In this section, we shall prove that the algorithm runs in time Ω(m3/2
+ mn1/2 log n).

Theorem 12. The Katriel–Bodlaender algorithm needs Ω(m3/2
+mn1/2 log n) time to insert m edges into an initially

empty n-node graph.

Proof. It is equivalent to showing that the algorithm needs Ω(max{m3/2
+ mn1/2 log n}) time to insert m edges into

an initially empty n-node graph. Theorem 2 states that the algorithm needs Ω(m3/2) time to insert m edges into an
initially empty n-node graph. Since m3/2

≥ mn1/2 log n if and only if m ≥ n log2 n, we only have to show that
the algorithm needs Ω(mn1/2 log n) time if m ≤ n log2 n. Without loss of generality we assume that m ≥ n. In the
following, we describe an input which takes the algorithm Ω(mn1/2 log n) time to process if n ≤ m ≤ n log2 n. For
simplicity, we assume that both n and m are exact powers of 16.

Let {v0, v2, . . . , vn−1} be the nodes of the DAG sorted by the order maintained by ORD before edge insertions. Let
ui = v n

4+i for i = 0, . . . , 3n
4 − 1. Define Pi to be (v (i−1)n1/2

4

, v (i−1)n1/2
4 +1

, . . . , v in1/2
4 −1

), for i = 1, . . . , n1/2. Define

Qi to be (u(i−1)n1/4 , u(i−1)n1/4+1, . . . , uin1/4−1), for i = 1, . . . , m
2n1/2 . Let Sourcei = uin1/4−1, i.e., the last node of Qi ,

for i = 1, . . . , m
2n1/2 . Let Targeti = v (i−1)n1/2

4

, i.e., the first node of Pi , for i = 1, . . . , n1/2.

The input is composed of four parts.

Part 1. Construct n1/2 identical subgraphs as in Fig. 2(a) by inserting the edge (v (i−1)n1/2
4

, v (i−1)n1/2
4 + j

) for all

i = 1, . . . , n1/2 and j = 1, . . . , n1/2

4 − 1. There are n/4 − n1/2 < n/4 ≤ m/4 edge insertions in this
part.

Part 2. Construct m
2n1/2 identical subgraphs as in Fig. 2(b) by inserting the edge (u(i−1)n1/4+ j , uk) for all i ∈

[1, m
2n1/2], j ∈ [0, n1/4

− 2] and k ∈ ((i − 1)n1/4
+ j, in1/4). There are m

2n1/2 ×
n1/2
−n1/4

2 < m/4 edge
insertions in this part.

Part 3. This part is composed of n1/2 rounds and there are m
2n1/2 edge insertions in each round. In

the i th round, the following edges are inserted in their listed order: {(Source1, Targeti), (Source2,
Targeti), . . . , (Source m

2n1/2
, Targeti)}. There are m/2 edge insertions in this part. Fig. 2(c) illustrates how

the total order maintained by ORD will change when Part 3 arrives.
Part 4. Insert edges without causing cycles until there are m edges in the DAG.

Upon the insertion of edge (Sourcei , Target j) in Part 3 for all i and j , all nodes in Pj will be inserted into
FromTNeighbors at the same iteration and then extracted. Since there are n1/2/4 nodes in Pj for all j , each edge
insertion in Part 3 takes the algorithm Ω(n1/2 log n) time to process. Because there are m/2 edges in Part 3, the total
complexity is Ω(mn1/2 log n). �

Theorem 13. The Katriel–Bodlaender algorithm needs Θ(m3/2
+mn1/2 log n) time to insert m edges into an initially

empty n-node graph.

Proof. It follows directly from Theorems 11 and 12. �

5. Concluding remarks

We give a tight analysis of the Katriel–Bodlaender algorithm by proving that it runs in Θ(m3/2
+ mn1/2 log n)

time. By combining this with the result in [1], we get an upper bound of O(min{m3/2
+ mn1/2 log n, n2.75

}) for
online topological ordering. It is an improvement upon the previous best upper bound of O(min{m3/2 log n, m3/2

+

n2 log n, n2.75
}). The only nontrivial lower bound is due to Ramalingam and Reps [15], who show that any algorithm

needs Ω(n log n) time while inserting n − 1 edges in the worst case if all labels are maintained explicitly. Bridging
the large gap between the lower bound and the upper bound remains an open problem.

188 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189

Fig. 2. An input which requires Ω(mn1/2 log n) time if n ≤ m ≤ n log2 n.

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 389 (2007) 182–189 189

Acknowledgments

We thank Irit Katriel for reading our manuscript carefully and providing numerous valuable comments. We thank
Chia-Jung Chang for verifying our proof.

References

[1] Deepak Ajwani, Tobias Friedrich, Ulrich Meyer, An O(n2.75) algorithm for online topological ordering, in: Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT), 2006, pp. 53–64.

[2] Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, F. Kenneth Zadeck, Incremental evaluation of computational circuits, in:
Proceedings of the First Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), 1990, pp. 32–42.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, Jack Zito, Two simplified algorithms for maintaining order in a
list, in: Proceedings of the 10th Annual European Symposium on Algorithms (ESA), 2002, pp. 152–164.

[4] Paul F. Dietz, Daniel D. Sleator, Two Algorithms for maintaining order in a list, in: Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC), 1987, pp. 365–372.

[5] Michael L. Fredman, Robert E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM 34
(3) (1987) 596–615.

[6] Irit Katriel, On algorithms for online topological ordering and sorting, Research Report MPI-I-2004-1-003, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, 2004.

[7] Irit Katriel, Hans L. Bodlaender, Online topological ordering, ACM Transactions on Algorithms 2 (3) (2006) 364–379.
[8] Alberto Marchetti-Spaccamela, Umberto Nanni, Hans Rohnert, On-line graph algorithms for incremental compilation, in: Proceeding of

International Workshop on Graph-Theoretic Concepts in Computer Science (WG), 1993, pp. 70–86.
[9] Alberto Marchetti-Spaccamela, Umberto Nanni, Hans Rohnert, Maintaining a topological order under edge insertions, Information Processing

Letters 59 (1) (1996) 53–58.
[10] Laurent Michel, Pascal Van Hentenryck, A constraint-based architecture for local search, in: Proceedings of the 17th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2002, pp. 83–100.
[11] Stephen M. Omohundro, Chu-Cheow Lim, Jeff Bilmes, The sather language compiler/debugger implementation, Technical Report TR-92-

017, International Computer Science Institute, Berkley, 1992.
[12] David J. Peace, Some directed graph algorithms and their application to pointer analysis, Ph.D. Thesis, Imperial College of Science,

Technology and Medicine, University of London, 2005.
[13] David J. Pearce, Paul H.J. Kelly, Chris Hankin, Online cycle detection and difference propagation: Applications to pointer analysis, Software

Quality Journal 12 (4) (2004) 309–335.
[14] David J. Pearce, Paul H.J. Kelly, A dynamic algorithm for topologically sorting directed acyclic graphs, ACM Journal of Experimental

Algorithms 11 (1.7) (2007) 1–24.
[15] Ganesan Ramalingam, Thomas W. Reps, On competitive on-line algorithms for the dynamic priority-ordering problem, Information

Processing Letters 51 (3) (1994) 155–161.

	A tight analysis of the Katriel--Bodlaender algorithm for online topological ordering
	Introduction
	The Katriel--Bodlaender algorithm
	The O(m3/2+mn1/2logn) upper bound
	The Omega(m3/2+mn1/2logn) lower bound
	Concluding remarks
	Acknowledgments
	References

