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In this paper, we propose Stochastic Sketching method for global optimization 

based on the simulation of human behavior.  Stochastic Sketching models the thought 
process and strategies of human beings and applying the artificial model to problems.  
We introduce and discuss concepts and components essential to Stochastic Sketching in 
detail, including the sampling guide, zooming controller, sketching model, precision 
threshold, and satisfaction probability.  The mathematical foundations of Stochastic 
Sketching are discussed and a preliminary theoretical base is presented. 
 

 
Keywords: unconstrained optimization, global optimization, Pincus theorem, evolution-
ary computation, evolution strategies, genetic algorithms 

 
   

1. INTRODUCTION 
 

Many practical applications, such as computer-aided design and construction, bio-
logical, chemical, and electrical, medical engineering, and production planning, can be 
formulated as global optimization problems whose objective functions often possess 
many local minima in the region of interest. Usually, it is desired to find the minimum 
among all the local minima of the objective function at which the objective function takes 
its lowest value, i.e., the global minimum. 
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Once a practical application is formulated as an objective function, only certain 
combinations of values of the variables are possible because the coordinate system is a 
mapping of the parameters in the application, and the values are determined by the con-
sidered system features. This means that all possible solutions are restricted to a subre-
gion A ⊆ Rn1, which is called the feasible region. Moreover, objective functions in prac-
tical applications may be multimodal; i.e., they may have several local minima in their 
feasible regions.  The problem of determining not just a local minimum, but also the 
smallest local minimum of the objective function in the domain A is known as the global 
optimization problem. 

Much research has focused on solving global optimization problems because opti-
mization is one of the most important fields in both science and engineering. We briefly 
introduce several methods which are commonly adopted to solve global optimization 
problems in the following paragraphs. 

Several traditional methods applied to global optimization are described first. In or-
der to guarantee that the predescribed accuracy is achieved, the essential Lipschitz con-
stant is needed for covering methods ([1], p. 26).  However, although Lipschitz con-
stants do exist for continuous functions defined on compact sets, they are usually not 
available in practical problems. Even worse, if the objective function is given by a com-
puter procedure, then estimating the Lipschitz constant itself introduces a difficult task. 
Generalizing covering methods to deal with multidimensional objective functions is hard 
because two immediate problems are encountered. First, the combinatorial explosion of 
the number of sampling points may be fatal when n grows to certain amount. Second, the 
Lipschitz constant depends on the scaling of the variable, and the algorithm may be inef-
ficient if the scaling is not proper ([1], p. 30).  Numerous theoretical results for covering 
methods have been published, but various problems still remain unsolved. Applying cov-
ering methods successfully and efficiently to practical problems requires good estimation 
of the bounds of derivatives of objective functions because covering methods are gener-
ally very sensitive to the estimator of the Lipschitz constant. 

The tunneling methods LMGC:TunnelingMethod, GL:TunnelingMethod, and LM: 
TunnelingMethod consist of two phases: local minimizing and tunneling. Levy and 
Montalvo [2] proposed theoretical generalization of the tunneling method to obtain the 
multidimensional objective functions, and experimental results were also presented. 

Clustering methods employ cluster analysis techniques to solve global optimization 
problems. There are three main, common components of clustering methods: a sampling 
method, a grouping technique, and a local optimizer. A general clustering algorithm can 
be found in ([1], p. 112). Mainly because clustering methods combine global and local 
search in an efficient manner, they have succeeded in solving global optimization 
problems. Additionally, since many studies on clustering methods have been done, they 
rest on a sound theoretical base and exploit their talents on practical problems. 

Some global optimization methods are based on the construction of a statistical 
model of the global optimization problem. The assumptions made in such a method are 
usually that the objective function is very expensive to evaluate, and that it is unsuitable 
to apply the method based on a statistical model to solve cheap objective functions. 

______________________________________________ 

1 The symbols used in the paper are listed in the Appendix. 
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Methods based on statistical models of objective functions may be used only for global 
search because the function would be better depicted by a polynomial than by a statistical 
model in certain kinds of intervals. Consequently, a quadratic model was incorporated by 
äilinskas [1] in 1976 as the local model into the global statistical model to depict the ob-
jective function. The algorithms are constructed so as to perform efficiently under aver-
age conditions of practical optimization problems in engineering based on the Bayesian 
philosophy of rationality, and have been successfully applied to difficult practical prob-
lems. 

Unlike traditional methods, Evolutionary Algorithms try to model concepts captured 
from organic evolution and to benefit from implementing those ideas. Simulated Anneal-
ing assumes an analogy between a physical many-particle system and a combinatorial 
optimization problem and tries to solve combinatorial optimization problems by simulat-
ing the annealing process of a solid in a heat bath. We may say that both Evolutionary 
Algorithms and Simulated Annealing look at nature and solve difficult problems based on 
inspiration from the mysterious complex system.  

Evolutionary Algorithms are mainly based on models of biological evolution.  The 
corporate learning and searching process is modeled within a population of individuals, 
each of which not only represents a sampling point in the solution space, but also may be 
a temporal container of current obtained knowledge about the environment [3]. Evolution 
Strategies were first applied to hydrodynamical problems which may be impossible to 
solve analytically, and the primitive method was shown to be practical for some of those 
problems.  

Evolutionary Programming, which focused on automatic programming, was intro-
duced by L. J. Fogel [4] in the 1960’s. Rudimentary Evolutionary Programming applied 
uniform random mutation to the underlying alphabet, and the (µ + λ)-selection scheme 
was used as its selection operator.  In the late 1980’s, D. B. Fogel applied Evolutionary 
Programming to optimization problems whose objective functions were continuous vari-
ables. Evolutionary Programming is analogous to Evolutionary Strategies, but they de-
veloped independently of each other. Researchers in the fields of Evolutionary Program-
ming and Evolution Strategies did not establish contacts until 1992. 

Genetic Algorithms [5] have been extensively applied in many kinds of applications 
[6], such as game-playing [7], biological cell simulation [8, 9], and pattern recognition 
[10] (see also [6], pp. 95-97). Additionally Genetic Algorithms are also applied broadly 
to function optimization problems [11-23] in both theory and practice. Simulated An-
nealing was first introduced by Kirkpatrick, Gelatt, and Vecchi [24] and independently 
by ýerny [25] in the early 1980’s. The concepts of simulated annealing in combinatorial 
optimization are based on a strong analogy between the physical annealing process of 
solids and the problem of solving large combinatorial optimization problems.  
Kirkpatrick, Gelatt, and Vecchi successfully applied Simulated Annealing to several im-
portant combinatorial problems, such as the chip design problem and the traveling sales-
man problem [24]. Sasaki and Hajek derived some theoretical results on time complexity 
[26], and Faigle and Schrader considered convergence of Simulated Annealing algo-
rithms to the global minimum with probability one [27]. 

Generalizations of Simulated Annealing have been used to solve optimization prob-
lems with objective functions of continuous variables. Aluffi-Pentini, Parisi, and Zirilli 
showed that with Simulated Annealing, a rather large number of function evaluations is 
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needed to find a solution [28].  Corana, Marchesi, Martini, and Ridella presented a 
method for optimization of functions of continuous variables based on Simulated An-
nealing [29]. Although the method can find the global minimum of test functions with 
many local minima, it needs a lot of function evaluations. Corana, Marchesi, Martini, and 
Ridella also claimed that Simulated Annealing is very reliable if it is applied to the mini-
mization of multimodal functions at high computational cost, which may linearly with the 
number of dimensions of objective functions.  

In this paper, we propose a new method for global optimization.  Inspired by the 
human sketching process, increase, Stochastic Sketching was developed and designed to 
simulate such a process and is applied to solve global optimization problems in this paper. 
In the beginning, there are only an empty canvas, drawing tools, and a still life. First, we 
usually roughly draw some lines to indicate the size and location of the still life on the 
canvas. Then we refine the sketch iteratively with different levels of likeness between the 
sketch and the still life.  Although the iterations of the sketching process for human be-
ings may not be discrete but rather continuous, in principle, we make our artwork finer 
and finer at each iteration in some sense.  The sketch is not finished until we are satis-
fied with it according to certain criteria or standards we have mind. This sketching proc-
ess appears to be simple and is simulated by Stochastic Sketching.  Components of 
Stochastic Sketching are all created based on the same concept, and so is the controlling 
mechanism of Stochastic Sketching. 

The organization of this paper is organized as follows. Stochastic Sketching, the 
method we propose, is introduced and discussed in detail in Section 2.  Section 3 pre-
sents the mathematical foundations and the connection between Stochastic Sketching and 
the fundamental theorem. The convergence theorem for Stochastic Sketching is also pro-
vided. Finally, discussion and conclusions are given in Section 5.  

 

2. STOCHASTIC SKETCHING 
 
In the section, a new method called Stochastic Sketching is proposed for global op-

timization. We consider the following general unconstrained minimization problem. 
Given an objective function f: Rn → R, find an approximate global minimum of f(.).  
Stochastic Sketching is an optimization algorithm that searches for the global minimum 
stochastically by simulating a specific kind of human behavior − sketching. Stochastic 
Sketching attempts to simulate the process a typical person uses to draw a sketch, and this 
is the reason why the proposed algorithm is called Stochastic Sketching. In the beginning, 
there are only an empty canvas, drawing tools, and a still life. First, we usually roughly 
draw some lines to indicate the size and location of the still life on the canvas. Then we 
refine the sketch iteratively with different levels of likeness between the sketch and the 
still life. Although the iterations of the sketching process for human beings may not be 
discrete but rather continuous, in principle, we make our artwork finer and finer at each 
iteration in some sense. The sketch is not finished until we are satisfied with it according 
to certain criteria or standards we have in mind. This sketching process appears to be 
simple and is simulated by Stochastic Sketching. 
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2.1 One-dimensional Stochastic Sketching 
 
In this subsection, Stochastic Sketching will be discussed in detail and introduced on 

the basis of its essential components. A visualization example of Stochastic Sketching is 
presented in [30]. The one-dimensional algorithm is considered first, and then the multi-
dimensional case will be addressed in the next subsection. The one-dimensional algo-
rithm Stochastic Sketching is given in Algorithm 2.1. An instance of Stochastic Sketching 
mainly consists of several components, including a sampling guide with a sequence of 
zooming controllers, a sketching model, a sequence of precision thresholds, and a satis-
faction criterion. In the following, we will introduce each component. 

2.1.1 Sampling guide 

The sampling guide is a probability density function which is controlled by a zoom-
ing controller and is used to confine and manipulate the distribution of sampling points 
with the value of the zooming controller. 

In order to fulfill the requirements of a sampling guide, we currently a function fam-
ily pf,c(.) defined as follows.  Given a continuous function f: [a, b] → R and a parameter 
c ∈ R+ (i.e., the zooming controller), we define 
                          

 
(1) 

 
To verify whether the function defined above satisfies the requirements of a sam-

pling guide, the reader may refer [30, 31]. Since pf,c(.) represents the distribution of x, it 
“guides” sampling points so that they are spread throughout the regions of interest. 
__________________________________________________ 
Algorithm 2.1 One-dimensional Stochastic Sketching                             
xbest is the best solution that Stochastic Sketching has found yet 
Initialize No, co, cf, cα, ζo, ζb, Ps, and xbest 
c ⇐ co 
ζ ⇐ ζo 
Construct the sketching function s(x) with No + 2 points 
Compute the sampling guide ps,c(x) 
repeat 

repeat 
Generate a sampling point, x0, randomly with the distribution ps,c(x) 
Evaluate f(x0) 
Update s(x) and ps,c(x) according to (x0, f(x0)) 
if  f(x0) < f(xbest) 

xbest ⇐ x0 
endif 

until  satisfaction criterion 
Calculate next c and ζ 

until  termination criteria 
Output (xbest,  f(xbest)) 
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2.1.2 Zooming controller 
 

The role of the zooming controller c in Equation (1) must be identified. Consider the 
following objective function: 

 
 
 

which illustrates the effect of zooming controllers. 
As shown in Fig. 1, when c is high enough, pf,c(.) approaches a uniform distribution, 

which is not biased to any specific region. When c decreases, certain regions with smaller 
function values tend to be sampled with higher probability while other regions with larger 
function values do not.  Hence, pf,c(.) defined in Equation (1) is currently adopted as the 
sampling guide. 

Fig. 1. Sampling guides with different zooming controllers. 
 
Certainly the zooming controller plays the most crucial role in the sampling guide 

pf,c(.) and even in the whole process of Stochastic Sketching. Since a higher value of the 
zooming controller results in less bias to regions with smaller function values and vice 
versa, it is rational to set the zooming controller high enough at the beginning of optimi-
zation and to decrease it during the process. A straightforward principle for setting the 
zooming controller is discussed below. 

It is assumed that fl and fu represent the possible lower bound and upper bound of f(.), 
respectively. Thus, for a given zooming controller c, the corresponding probability densi-
ties for fl and fu are  

 
(2) 

 
and 

 
(3) 
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which are the possible upper bound and lower bound of the probability density function 
pf,c(.), respectively. 
 
(A) Initial Value 

Because of the property of the zooming controller, we may expect its value to be so 
high that there is no bias at first. Let c0 denote the initial value of the zooming controller.  
For a given tolerance of the initial sampling probability density ratio (0, 1), the following 
equation should be satisfied: 

 
(4) 

 
which means that the difference between the highest probability density and the lowest 
one must be as small as possible. 

Hence, by Equation (2) and Equation (3), 
 
 

(5) 
 

is expected to hold. 
Therefore, we can have that 
 
 
 
 
 
 
 

and finally, 
 

(6) 
 
Although in practical problems, fl and fu may be not available, Equation (6) presents 

a primitive guideline for setting the initial value of the zooming controller and indicates 
that c0 should be as high as possible so as to eliminate the sampling bias. 
 
(B) Final value 

In the final iteration, it is rational to expect that sampling points will be dedicated to 
some specific regions which possibly contain global minimum points. To realize such an 
intention in Stochastic Sketching, a similar criterion defined in the following should be 
satisfied: 

 
 

(7) 
 

where cf denotes the final value of the zooming controller and εf is also the tolerance of 
the sampling probability density ratio. 
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After analogous operations, we obtain the guideline for setting the final value of the 
zooming controller: 

 
                                                  (8) 

 
Equation (8) shows that the final value should be low enough to search some regions 

thoroughly and to locate the best solution that has been found. 
 

(C) Updating rule 
Having determinded the initial and final values, we will now discuss the rule for 

modifying the zooming controller. We also start with the sampling probability density 
ratio. For a given zooming controller c, we define  

 
 

(9) 
 

for convenience. As a result, we can easily obtain 
 

 
(10) 

 
Because γc represents the ratio of the lowest sampling probability density to the 

highest sampling probability density and is in some sense more meaningful to us, a simple 
rule is adopted here: 

 
 

 
where α ε (0, 1) denotes the decreasing rate. It must be noted and admitted that the above 
rule is based on no firm theoretical foundation with respect to Stochastic Sketching and is 
taken from other existing methods. 

Let         which means that the change of c reflects the change made to γc. That 
is, according to Equation (10), given a decreasing rate α ε (0, 1), 
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Because the zooming controller is always greater than zero, the inverse of the result in 
Equation (11) is used for further operations: 
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(12) 
 

 
Let 

 
(13) 

 
which is called the decreasing factor of the zooming controller. Then, Equation (12) 
yields 
 

(14) 

 

We finally obtain the updating rule of the zooming controller: 

 
(15) 

 
Note that fu and fl are not really used in the derivation, but fu − fl which represents the 

possible range of function values on [a, b] is used. This means that if cα should be calcu-
lated after the determination of α, an estimator of the value range of f(.) is needed.  Cur-
rently, cα is directly regarded as a parameter of Stochastic Sketching, and we set it as an 
initial parameter of the Stochastic Sketching Method. 
 
2.1.3 Sketching model 

 
The sketching model is used as the canvas and drawing tools, and the information 

obtained from function evaluations during the sketching process is stored in it. Functions 
(i.e., sketches of objective functions) constructed by the sketching model are called 
sketching functions, dented by s(x). The following requirements are needed for a sketch-
ing model: 

 
1. Sketching functions constructed by the model are continuous on [a, b]. 
2. Values of a sketching function are available for all x ∈ [a, b]. 
3. Values of the sampling probability density function that is determined by s(x) and 

controlled by c ∈ R+ (i.e., ps,c(.)) are also available for all x ∈ [a, b]. 
 
In the present work, a polynomial spline of order 1 with simple knots is used as the 

sketching model, and we will simply call it the line model in the rest of the paper. For 
instance, if the feasible region [a, b] = [0, 20], and the sampling points are {(0, 2), (4, 9), 
(8, 5), (16, 5), (20, 7)}, then the sketching function constructed with the line model is a 
piecewise continuous function consisting of straight line segments and is shown in Fig. 2. 
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Fig. 2. Sketching function constructed with the line model. 

 
It is obvious that the first two requirements of a sketching model, that it be continu-

ous and evaluable, are satisfied when the line model is adopted. Because each part of the 
sketching function s(x) is a line segment, the sampling guide defined in Equation (1) can 
be easily computed. The main problem for computing the sampling guide is the integral 
part. Based on the property of integration, only a line segment in one interval [u, v] de-
termined by any two adjacent sampling points, where [u, v] ⊆ [a, b], needs to be consid-
ered. It is assumed that the line segment on [u, v] is denoted by g(x), and we will discuss 
two possible cases. 

First, let g(x) = sx + t, where x ∈ [u, v], and s ≠ 0. Given a zooming controller c, the 
definite integral can be solved analytically: 

 
 
 
 
 

  (16) 
 
 
 
 
 

 

For a degenerate case g(x) = t, 

 
 

(17) 
 
 
Hence, we can see that the line model can be used as a sketching model. It has been 

used to implement the algorithm with good computational results as reported in [31]. 
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2.1.4 Precision threshold 
 
Since the sketch is sketched from coarsely to delicately, the standard of satisfaction  

we have in mind varies during the whole sketching process. The precision threshold, de-
noted by ζ, is used to model such an implicit standard on the basis of individual sampling 
points. 
 
Definition 2.1 (Satisfying Point). Given an objective function f(.), a sketching function 
s(.), and a precision threshold ζ ∈ R+, a sampling point x0 is called a satisfying point if 
|s(x0) – f(x0)| < ζ. 
 

The precision threshold decreases in each iteration by the linear the currently 
adopted updating rule of  

 
ζ′ = ζβ· ζ,                                                      (18) 

 
where ζβ ∈ (0, 1) is the decreasing rate of the precision threshold. The initial value ζ0 and 
the decreasing rate may depend on the objective function, but we use a fixed valued in 
our software implementation. 
 
2.1.5 Satisfaction criterion 

 
The satisfaction criterion models the standard we have in mind from a global view-

point though it is partially based on the precision threshold. 
 

Definition 2.2 (Satisfying Sketch). Given an objective function f(.), a sketching function 
s(.), a precision threshold ζ, and a satisfaction probability Ps ∈ (0, 1), the sketching func-
tion s(.) is said to be satisfying if the next sampling point is a satisfying point with prob-
ability P such that P > Ps. 
 

Hence only when the sketch is fine enough in certain regions, determined by the 
zooming controller, of the domain of the current iteration terminates. The satisfaction 
criterion controls the quality of the sketch and, hence, the solution quality. 

 
2.1.6 Satisfaction factor 

 
First, the sampling process can be viewed as a Bernoulli process with the parameter 

P according to the definition that a trial is labeled as a “success” if the corresponding 
sampling point is a satisfying point, and is labeled as a “failure” if the sampling point is 
not satisfying. It must be noted that P is fixed in a Bernoulli process but not in Stochastic 
Sketching. Nevertheless, the arguments are valid because under the same condition, P in 
Stochastic Sketching tends to increase due to the increase in the number of sampling 
points, while the critical region gets smaller. As a consequence, the result of the test that 
will be constructed is still valid. 

Then, assume that we can tolerate a type I error size of up to 0.01 when testing the 
null hypothesis 
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H0 : P = Ps 
 
against the alternative 

 
H1 : P > Ps. 
 

A statistical sample is defined as repeating trails until a failure is encountered, and the 
critical region is now parameterized by an integer N which represents the number of con-
tinual successful trails (i.e., the test statistic). If the test statistic of a sample is greater than 
or equal to N, the sample is in the critical region and H0 is rejected. Otherwise, H0 is not 
rejected. When H0 is rejected, this means that the probability of success is greater than Ps 
with a significance level of 0.01. That is, the satisfaction criterion in Definition 2.2 is 
satisfied statistically with such a significance level. 

Because H0 : P = Ps, the size of the critical region (i.e., the probability type I error) 
can be calculated as follows. The probability of a statistical sample whose number of con-
tinual successful trails is exactly k is  

 
P Ps

k
s⋅ −( )1  

 
because the last trail fails, while others are all successful. Therefore, the size of the 

critical region is obviously  
 

 
 
 

(19) 
 

Because the tolerance of the size of the type I error is 0.01, we should choose N accord-
ing to Equation 19: 
 
The size of type I error = Ps

N = 0.01 
 
 
 
 
Thus, we can calculate N, which is called the satisfaction factor in Stochastic Sketching, 

for a given Ps. In practice, we do not need to repeat trails until a failure occurs. If N contin-
ual trails are all successful, it is surely that H0 should be rejected. The rejection of H0 means 
that H1 is accepted, and that the satisfaction criterion can be satisfied with a significance 
level of 0.01. The criterion is easy to implement and certainly practical. 

 
2.2 Multidimensional Case 

 
In our present work, generalization of Stochastic Sketching to the multidimensional 

case employs a dimensionality reduction technique called space-filling curves, which 
maps a multidimensional domain to a one-dimensional interval. Some other possible ap-
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proaches still need to be explored by using space-filling curves, which is intuitive and 
theoretically valid. 

 
2.2.1 Space-filling curves 

 
Space-filling curves have fascinated mathematicians for over a century. George Can-

tor in 1878 demonstrated that any two finite-dimensional smooth manifolds have the 
same cardinality. This means that a square [0, 1]2 may have a one-to-one and onto con-
tinuous mapping to a interval [0, 1]. In 1879, E. Netto showed that such a one-to-one and 
onto mapping is necessarily discontinuous. Nevertheless, an onto continuous mapping 
does exist from [0, 1] to [0, 1]2. G. Peano constructed the first such curve in 1890. Fur-
ther examples by D. Hilbert (in 1891), E. H. Moore (in 1900), H. Lebesgue (in 1904), W. 
Sierpinski (in 1912), G. Pólya (in 1913), and others followed. 

Assume that En denotes the n-dimensional Euclidean space, which is Rn with the 
Euclidean norm defining the metric. We will now briefly introduce some concepts and 
definitions of space-filling curves ([32], pp. 4-5). 

 
Definition 2.3 (Direct Image). If f is a function from a subset of Em into En, then 

 
f • (A) = {f(x) ∈ R (f) : x ∈ A ∩ D(f)}. 
 

where A ⊆ Em, is called the direct image of A under f. D(f) denotes the domain, and R(f) 
the range of the function f. 

The term curve is defined as follows: 
 
Definition 2.4 (Curve). If f: A → En, where A = [0, 1], is continuous, then the image f•( A) 
is called a curve.  f(0) is called the beginning point of the curve, and f(1) is called its 
endpoint. 

 
Then, space-filling curves are defined in the following: 
 

Definition 2.5 (Space-filling Curve). If f : A → En, A = [0, 1], n ≥ 2, is continuous and 
Jn(f•(A)) > 0, then f•(A) is called a space-filling curve. Jn(.) denotes the n-dimensional 
Jordan content (area, volume) of a Jordan measurable subset of En such as in J3([0, 1]3) 
= 1. 

 
In the present work, the space-filling curve constructed by Peano is adopted. Peano 

defined a map fp from [0, 1] to [0, 2]2 in terms of the operator$, 
 
$tj = 2 – tj,                                                       (20) 
 

where tj = 0, 1, 2, as follows: 
 
 

(21) 
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where $i denotes the ith iterate of the operator $, X̂ t is the transpose of a vector X̂, and 
 

 
 

 
denotes ternaries. An illustration of the Peano curve is shown in Fig. 3, where the dashed 
line indicates the order of the squares traversed. 

 
Fig. 3. First and second approximating polygon for the Peano Curve. 

 
Definition 2.6 (Coordinate Functions). The Peano Curve is a mapping from [0, 1] to [0, 
1]2 and can be written as 

 
 (22) 
 

where ψ1(· ) and ψ2(· ) are the coordinate functions. 
The Peano Curve is a two-dimensional space-filling curve. In order to generate an 

n-dimensional space-filling curve, the Steinhaus’ result is used. 
 

Definition 2.7 (Stochastically Independent). Given n measurable functions 
 
ψ1,…,ψn : A → R, 
 

where A = [0, 1], which are called stochastically independent with respect to the Lebes-
gue measure if, for any n measurable sets E1, …, En ⊆ R, 

 
 
 
 
If such functions are also continuous and non-constant, an n-dimensional 

space-filling curve can be determined by them. 
 

Theorem 2.1 (Steinhaus’ Theorem). If  ψ1,…,ψn : A → R, A = [0, 1], are continuous, 
non-constant, and stochastically independent with respect to the Lebesgue measure, then 
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(23) 
 
 

 
is a space-filling curve. 

To connect the Steinhaus’ theorem and known two-dimensional space-filling curves, 
the concept of uniform distribution is needed. 

 
Definition 2.8 (Uniformly Distributed).  A function ψ : A → R, A = [0, 1], is said to be 
uniformly distributed with respect to the Lebesgue measure if for any measurable set E ⊆ 
R, 

 
µ [ψ • (E)] = µ(E). 
 
If  ψ1, ψ2: [0,1] → [0,1] are continuous, non-constant, stochastically independent, 

and uniformly distributed, and if we let 
 
 
 

 
 
 
 
then fs(t) is a four-dimensional space filling curve as shown by Steinhaus. 

Furthermore, an n-dimensional space-filling curve can be constructed as follows:  
 
 
 

(24) 
 
 

 
 
where t ∈ [0, 1] and the operator ° denotes the composition of the functions. This has 
been proven in Milne [33]. 
 
2.2.2 Mapping into R1 

 
Therefore, with space-filling curves, one-dimensional Stochastic Sketching can be 

used to solve multidimensional objective functions without modification. Given a multi-
dimensional objective function f: A ⊆ Rn → R, n ≥ 2, a one-dimensional objective func-
tion F(.) is constructed for Stochastic Sketching as follows:  
The function value is determined by 
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where                     defined as 
 
 
 
 
 
 
 
 

for a given t ∈ A s = [0, 1], and δi(.), i = 1, …, n, are appropriate scaling functions. Then, 
 
F: As → R, 
 

where As = [0, 1], is the function that is actually solved by means of Stochastic Sketching.  
The Stochastic Sketching method can be generalized to solve problems with multidimen-
sional objective functions. 
 

3. MATHEMATICAL FOUNDATIONS 
 
To examine and analyze Stochastic Sketching, many experiments have been per-

formed on several objective functions. The performance of the Stochastic Sketching on 
the test functions and a set of recommended parameter settings, and preliminary com-
parisons with related methods, including Evolution Strategies, Evolutionary Programming, 
and Genetic Algorithms, were given in [31].  We will only cite a small portion of them.  
In this section, the mathematical foundations and the theoretical side of Stochastic 
Sketching is presented. The Pincus theorem, the basis of the Stochastic Sketching is pre-
sented. 

 
3.1 Pincus Theorem 

 
In 1968, Pincus [34] derived a formula representing the coordinates of the point that 

maximizes a given function f(.) over the closure of a bounded domain A in n-dimensional 
Euclidean space. The main assumption is that f(.) attains a global maximum at exactly one 
point of A. The Pincus theorem will be introduced in the section, and the proof given by 
Pincus [34] will be sketched here. 

Given a function f: A ⊆ En → R, the maximization problem of f(.) was considered by 
Pincus.  Let X̂* and f* denote the optimal point and the optimal function value, respec-
tively.  We will now present the lemma that will be needed in the proof of the Pincus 
theorem. 

 
Lemma 3.1. Let f: A ⊆ En → R be a continuous function. Assume that f(.) attains a global 
maximum at exactly one point X̂* ∈ A. For ε > 0, let 
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Then, given ε > 0, there exists δ > 0 such that 
 
 
 

Proof. For the proof, we assume that 
 

 
 

and then derive a contradiction. It follows that there exists a sequence {X̂i}, X̂i ∈A–Nε, 
such that 

 
 
 

Since A – Nε is compact, there exists a subsequence {� }Xi j
 that converges.  Let 

 
 
 

Then, Ŷ ∈ A– Nε, and by continuity of f(.), we have 
 
 
 

Since f(.) attains its global maximum at only one point, it follows that Xˆ* = Ŷ. This is a 
contradiction since Ŷ ∈ A – Nε. 

Then, the Pincus theorem will be presented in the following and a proof is also given 
by Pincus, please see [34].  

 
Theorem 3.2 (Pincus Theorem). Let f: A ⊆ En → R be a continuous function. Assume 
that f(.) attains a global maximum at exactly one point              of A. Then 

 
 

(25) 
 

3.2 Mathematical Interpretation of Stochastic Sketching 
 
We will now can discuss the connection between Stochastic Sketching and the Pin-

cus theorem. Starting with the Pincus theorem, the following corollary seems obvious. 
 

Corollary 3.3. Let f: A ⊆ En → R be a continuous function. Assume that f(.) attains a 
global minimum at exactly one point               of A. Then 
 

 
(26) 
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Proof. Since the identity 
 

 
 

holds, the corollary is proved. 
Given a one-dimensional objective function f: [a, b] → R, according to Equation 

(26), we have the global minimum point located at 

 
(27) 

 
 
Let λ = 1/c; through a simple substitution of variables, we obtain 

 
(28) 

 
 
Also, by the Mean Value Theorem for Definite Integrals, we can obtain η ∈ [a, b], such 
that 

 
 
 

Therefore, the sampling guide we have defined in Equation (1) is written as 

 
 
 

(29) 
 
 
 
 

 
where Ec(x) denotes the expected value of x with the probability density function pf,c(x) 
for a given c > 0. 

Taking the limit and by formula [35], we finally obtain 

 
 

(30) 
 

 
with the probability density function pf,c(x). 

Hence, it is known that the coordinate of the global minimum point is the expected 
value of x according to the probability density function pf,c(x) when c approaches 0 from 
the right hand side. From this standpoint, Stochastic Sketching is the method that can be 

max{ ( � ): � } min{ ( � ): � }f X X A f X X A∈ = − − ∈

x
x f x dx

f x dx
a
b

a
b* lim

exp( ( ))

exp( ( ))
.=

⋅ −I

−I→∞λ

λ
λ

x
x f x c dx

f x c dxc

a
b

a
b* lim

exp( ( ) / )

exp( ( ) / )
.=

⋅ −I

−I→ +0

exp( ( ) / ) exp( ( ) / ) .− =
− I −f c

b a
f x c dxa

bη 1

a
b

a
b a

b

a
b

a
b

a
b

f c

c

x f x c dx

f x c dx
x

f x c

b a f c
dx a b

x
f x c

f z c dz
dx

x p x dx

E x

⋅ −I
−I

= −
− ⋅ −

�

!
 

"

$
# ∈I

= I
−
−I

�

!
 

"

$
#

= I ⋅

=

exp( ( ) / )

exp( ( ) / )

exp( ( ) / )

( ) exp( ( ) / )
, [ , ]

exp( ( ) / )

exp( ( ) / )

( )

( ),

,

η
η

x
x f x c dx

f x c dx

E x

c

a
b

a
b

c
c

* lim
exp( ( ) / )

exp( ( ) / )

lim ( )

=
⋅ −I

−I
=

→

→

+

+

0

0



STOCHASTIC SKETCHING FOR GLOBAL OPTIMIZATION 

 

65 

 

used to track the expected value of x stochastically in order to find the global minimum 
point of f(.). 
 
3.3 Convergence of Stochastic Sketching 

 
A lot of work has been devoted to deriving the sufficient conditions for convergence 

of the general global random search algorithms. The formal scheme of global random 
search algorithms is introduced in Algorithm 3.1, and the description is based on Zhigl-
javsky’s book ([36], p. 85). 
 
Algorithm 3.1 Global Random Search Algorithm 

/* A is the region of interest.*/ 
t ⇒ 1 
Choose a probability distribution P1 on A. 
repeat 

Generate sampling points,         , with the distribution Pt 
Evaluate  
Construct a probability distribution Pt on A based on a fixed rule 
t ⇐ t + 1 

until termination criterion 
 
Let Nt = 1, ∀t ∈ N; Stochastic Sketching is certainly an instance of global random 

search algorithm. Thus, general results for the convergence of global random search al-
gorithms can be applied to Stochastic Sketching. For convenience, the probabilistic con-
vergence criterion that is needed in the convergence theorem is taken from Torn and 
Zilinskas’ book ([1], p. 78) and described as follows: 

 
Definition 3.1 (Convergence with Probability One). The sequence    converges to 
the random vector X̂ with probability one if 

 
 
The following convergence theorem was proposed by Zhigljavsky ([36], p. 88). The 

version and the proof presented below are from Bäack ([3], p. 50). It is also known as the 
Borel-Cantlli lemma. 
 
Theorem 3.4 (Convergence of Global Random Search Algorithms). Let f(.) be con-
tinuous in the vicinity of X̂ and assume that 

 
 (31) 

where 
(32) 

 
and Uε(X̂*) denotes a hypersphere of radius ε, centered around Xˆ*. Then for any δ > 0, the 
sequence of random vectors Xˆ 1, X̂ 2,… generated by Algorithm 3.3 with ∀t : Nt = 1 falls 
infinitely often into the level set Lf*+δ with probability one. 
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Proof. Fix δ > 0 and find ε = ε(δ) > 0 such that Uε(X̂        *) ⊆  Lf+δ. Determine the sequence of 
independent random variables {χt} on the two-point set {0, 1} such that 

 
(33) 

 
Then, Prob                        and the theorem is proved if one can show that 
{ χt} infinitely often takes a value of one. The latter follows from Equation (31) and 
Borel’s zero-one law, which completes the proof. 

As a consequence, the convergence of Stochastic Sketching can be described by 
Theorem 3.4. 

 

4. SUMMARY EXPERIMENTAL RESULTS 
 
To examine and analyze Stochastic Sketching, many experiments were preformed on 

several objective functions.  We list two difficult objective functions in this paper for the 
experimental results of other objective functions, please see [31] 

 
1. One-dimensional Test Function [1, 37, 38]: 
 

 
 
 
 
• Number of local minima = 39 
• Number of global minima = 7 
•  

x* f* 
-19.3409 
-13.0578 
-6.7746 
-0.4914 
5.7918 

12.0750 
18.3582 

-12.0312 
-12.0312 
-12.0312 
-12.0312 
-12.0312 
-12.0312 
-12.0312 

2. Two-dimensional Restringing Function [1, 38, 37]: 
 
 
 

• Number of local minima = 961 
• Number of global minima = 1 
• [X̂, f*] ≅ [(0.0, 0.0), -2.0] 
Based on many experimental results, Table 1 shows the recommended settings for 

the essential parameters of Stochastic Sketching.  Under the same successful rate, by 
adopting the parameter setting 
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Table 1. Recommended parameter settings for stochastic sketching. 

Parameter Notation Range 
Initial Value of the Zooming Controller c0 [1500,2000] 
Decreasing Factor of the Zooming Controller cα [3.25, 3.50] 
Initial Value of the Precision Threshold ζ0 [5, 10] 
Decreasing Rate of the Precision Threshold ζβ [0.45, 0.50] 
Satisfaction Probability Ps [0.4, 0.6] 

 

Table 2. Comparison with evolution strategies. 

Stochastic Sketching Evolutional Strategies 
Function 

Succ. Rate Avg. Eval. Succ. Rate Avg. Eval. 
f1 1.0 126.67 1.0 310.50 
f2 1.0 4050.41 0.9 1645.83 

   
Stochastic Sketching can find the global optimum with about 1836.58 function evalua-
tions and is definitely comparable in performance to the Evolution Strategies. 

 

5. DISCUSSION AND CONCLUSIONS 
 
The resolution of random numbers are a serious problem that Stochastic Sketching 

has yet been encountered. A uniform random number generator that is capable of gener-
ating random numbers with better resolution is necessary when Stochastic Sketching is 
applied to relatively high-dimensional objective functions. Even though using 
space-filling curves to generalize Stochastic Sketching to solve multidimensional objec-
tive functions is theoretically feasible, it may introduce some severe practical difficulties, 
such as the resolution of random numbers. Therefore, other approaches for generalization 
to high dimension form the one-dimensional method should be further studied. The line 
model is currently used as the sketching model in the implementation. Other models ful-
filling the requirements of sketching models may be used. The parameter settings always 
pose a problem for random search methods and, hence, stochastic algorithms. Good 
initial parameters were reported in [31] based on previous computing experience with the 
algorithms. With this fixed parameters setting, the Stochastic Sketching method performs 
reasonably well.  In future studies, we may try to let some of the parameters of Stochas-
tic Sketching be adjusted automatically by introducing the self-adaptation technique to 
Stochastic Sketching, which currently prevails in the field of Evolutionary Algorithms. 

In summary, a new method based on the simulation of human behavior has been proposed 
for global optimization. All essential components of Stochastic Sketching have been introduced 
and discussed in detail as well as the background and concepts according to which Stochastic 
Sketching was designed and developed.  The mathematical foundation of Stochastic Sketching is 
the Pincus theorem. Some multi-modal functions with good results.  It seems that this method is 
comparable in solution quality and the number of function evaluations with the Evolution Strate-

( , , , , ) ( , . , , . , . ),c c Psα βζ ζ0 1500 3 25 5 0 50 0 2=     
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gies method and is better than various variants of the genetic algorithms.  The calculation in-
volved in each step for Stochastic Sketching is less than that for Evolution Strategies. 

 
Table 3. Comparison with evolutionary programming. 

 Stochastic Sketching Evolutional Programming Function 
Succ. Rate Avg. Eval. Succ. Rate Avg. Eval. 

f1 1.0 126.67 1.0 305.00 
f2 1.0 4050.41 0.9 1952.50 
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6. APPENDIX 
 

Table 4. Notations of stochastic sketching. 

 Notation Description 
 s(· ) sketching function 
 Pf,c(· ) sampling guide for a given f(· ) and c 
 N0 number of initial sampling points 
 c zooming controller 
 cα decreasing factor of the zooming controller 
 ζ precision threshold 
 ζβ decreasing rate of the precision threshold 
 Ps satisfaction probability 

 
 

 
Table 5. Other notation. 

 Notation Description 
 µ(· ) Lebesgue measure function 
 Prob(· ) probability function 
 φ empty set 
 B {0,1} 
 E R with the Euclidean norm 
 A feasible region of the objective function 
 x, y,… scalars 
 X̂ Ŷ,… n-dimensional vectors 
 0̂ zero vector (0,0,…,0) 
 f* global optimum 
 x*,  X̂* global optimum point 
 f local optimum 
 x*, X̂* local optimum point 
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 f *   optimum reported by an algorithm 
 x+, X̂+ optimum point reported by an algorithm 
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