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Abstract Service-oriented architecture (SOA) pro-
vides a powerful paradigm to compose service processes
using individual atomic services. When running a service
process, SOA needs an efficient and effective mech-
anism to detect service delivery failures and to iden-
tify the individual service(s) that causes the problem.
In this research, we study the model of accountabil-
ity to detect, diagnose, and defuse the real cause of a
problem when service errors (such as incorrect result or
SLA violation) occur in a service process. Our approach
leverages Bayesian networks to identify the most likely
problematic services in a process and selectively inspect
those services. An evidence channel selection algorithm
is designed to specify which services in a service network
should be monitored to achieve the best cost-efficiency.
We model the channels selection as the classic facilities
location problem. We also adopt a continuous knowl-
edge learning process to manage the dynamic nature of
SOA. The performance study shows that our proposed
accountability mechanism is effective on identifying the
root cause of problems and can achieve significant cost
savings: with 50% of services’ outputs monitored as
evidence, the comprehensive diagnosis correctness can
reach 80% after only 20% of services are inspected.
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1 Introduction

Service-oriented architecture (SOA) using Web services
has emerged as a major software architecture in the
past few years [1,2]. Using SOA, enterprise systems can
define and execute transactions across multiple server
domains at distributed locations. Companies can use ser-
vice-oriented computing’s (SOC’s) plug-and-play inter-
operability to compose business processes and integrate
different services on the fly to enable dynamic cooper-
ation among business partners. Collaboration protocols
such as Web Service Business Process Execution Lan-
guage (WSBPEL) [3] and Web services Choreography
(WS-CDL) [4] have been defined and are being adopted.

The concept of software composition is not new. For
many years, computer system researchers have studied
the methodology of building sound and dependable sys-
tems using well-formed composition rules and deriv-
ing some formal properties that can be assured by the
compositions. The goal of such a methodology is to sim-
plify and improve system development and deployment.
However, the goal is not easy to achieve; there is still a
huge gap between theory and common practice. In [5],
many challenges regarding reliable compositions have
been identified, including multiparty incompatibilities,
scalability issues, policy composability, assurance com-
posability, certification composability, etc. These issues
remain the same, or are even exacerbated, in SOA sys-
tems. This is because SOA promotes dynamic service
discovery and binding. In addition to interoperability,
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SOA compositions often invoke external services that
may not provide an adequate or consistent level of per-
formance and stability. A sound SOA composition meth-
odology thus needs a more systematic measure to handle
the potential discrepancy on the delivery of individual
services.

In a service process involving many service partners,
it is also imperative to have a mechanism to decide the
accountability of individual services, in order to attri-
bute credit for success or responsibility for failure in the
whole process. This is because outputs from individual
services have dependencies: a low output quality from a
service may cause the output quality degradation of all
its successors in a service process. Even worse, successive
quality degradation may be accumulative or multiplica-
tive. So we need to be able to identify the root cause of
an observed service problem.

In this paper, we present the design of an accountabil-
ity framework as part of an integrated SOA deployment
and management solution to detect, diagnose, and defuse
the root cause of a service deficiency (such as functional
errors or service level agreement (SLA) violations). The
accountability framework provides the mechanisms for:
(1) QoS-based service selection [6]; (2) SLA-based real-
time service monitoring [7]; (3) Bayesian network rea-
soning to identify the likely causes of a problem and to
selectively inspect those services; (4) an evidence chan-
nel selection algorithm to find an optimized informa-
tion collection structure; and (5) a broker-based trust
and reputation network for prevention of future prob-
lems [8,9]. In our study, the graph model and probabil-
ity theory are used as the theoretical foundations of the
accountability framework.

Accountability benefits SOA since it enables a com-
puting environment to be traceable, measurable, and
configurable. The goal of accountable computing is to
make all service components have transparency and
controllability in order to facilitate the end-to-end qual-
ity of service (QoS) at run time. Moreover, SOA sys-
tems can be equipped with simple management tools so
that users can easily control and reason with services
whenever a problem is detected. These goals are above
service interoperability and provide opportunities for
researchers to contribute new ideas and solutions.

This paper is organized as follows. The accountability
model and system architecture are defined in Sect. 2.
Section 3 describes the technologies to achieve account-
ability, mainly focusing on the diagnosis mechanism.
In Sect. 4, we present the evidence channel selection
algorithm to achieve better efficiency. Section 5 shows
the performance study of the accountability framework.
Section 6 gives an overview of related research, followed
by the concluding remarks in Sect. 7.

2 Accountability model for service-oriented computing

2.1 Accountability

Accountability has been a major concern in the financial
industry, especially after ratification of the Sarbanes-
Oxley Act of 2002 (also known as the Public Com-
pany Accounting Reform and Investor Protection Act
of 2002), which establishes new enhanced accountability
standards for all US public company management and
public accounting firms. The Act has made accountabil-
ity a mandatory requirement for organizations. A new
agency, called the Public Company Accounting Over-
sight Board, is given the responsibility of overseeing,
regulating, inspecting, and disciplining accounting firms
in their roles as auditors of public companies. The Act
provides the motivation for our research on SOA
accountability as services should be similarly regulated
for effective QoS delivered by a service process.

In [10], a project on results-based accountability for
public institutions has been reported. It identifies the
following elements for systems with accountability:

1. Objective: Outcomes that articulate what programs
are to achieve;

2. Quality: Indicators to measure whether or not out-
comes have been achieved;

3. Benchmark: Performance standards to assess how
programs are progressing;

4. Monitoring: Data collection instruments to regu-
larly obtain indicator data;

5. Feedback: Periodic collection and analysis of data
for decision making and reporting.

Among the five elements of a complete accountabil-
ity measure, the first three are application-dependent
and should be defined by application designers. Infor-
mation technology may be used to implement the other
two. We therefore focus our study on the mechanisms
for performance monitoring and accountability analysis.

2.2 Assumptions

Our system model describes SOA applications where
multiple services form a flow G = (V, E), such as busi-
ness services networks and service supply chains. Each
vertex in V represents an atomic service and each edge
in E represents an interaction between two services.

In this paper, we make the following assumptions on
the system under study. Some of the assumptions may
be relaxed in the future.
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1. The services flow G = (V, E) is a directed acyclic
graph (DAG). For any service s, there is no non-
empty directed path starting and ending on s in the
flow.

2. Each service is atomic. That is, the behavior of a
service is independent of other services.

3. The network connection between services is error-
free, even though individual atomic services may be
problematic.

2.3 A motivating example

Figure 1 shows the credit pull service workflow in the
context of the lending application studied in [11], which
serves as the motivating example in our study. The busi-
ness workflow provides the functionality that allows a
loan sales person to obtain the electronic credit report
of a customer in real time. In the figure, each rectangular
node represents an atomic service running on either an
internal server or any other service provider.

The lending life cycle service initiates the credit pull as
a response to a user request by sending a credit request
message to the credit service. The credit service listens to
this message and passes the request to the external ven-
dor interactions service which in turn places a request
with credit vendors A and B who provide credit query
services. The credit reports obtained from vendors A
and B are used in some local processing and then trans-
ferred and stored in the document service. Finally, the
credit report is sent to the UI. This business process is
completely automated and is executed without human
intervention.

For practical purposes, the response time for the ser-
vice flow is critical to customer satisfaction. If the Lend-
ing Lifecycle Service initiated a credit pull and has not
received the credit report back within an estimated
period of time, the problem could have been in any
of the several services involved in the sequence. There-
fore, an accountability mechanism is useful since a slow
response from an upstream node could cause a chain
of downstream nodes to appear slow. For example, in
Fig. 1, a delay from the Vender A Order-Process Service
could render the Local Processing Service to become
slow as it has to wait for the credit report from A as

input, even though the Local Processing Service actually
functions well by itself. Therefore, the very first service
which breaks the SLA should be identified and repaired
instead of those intermediate services affected by the
root cause.

2.4 Model design and system architecture

The proposed accountability mechanism includes the
Accountability Authority (AA) and Accountability
Agents, as shown in the system architecture in Fig. 2.
They are used in the logic flow of a service process
deployment as shown in Fig. 3. Agents are used to
monitor and collect status information from individ-
ual services. Agents send the information to the AA
who in turn performs the diagnosis whenever an error
is detected.

Our accountability mechanism applies at the service
process execution step (circled by dotted line), which
enables run-time exceptions to be observable and
reportable. The functional steps in the service process
deployment include:

– Service Network Planning: This is the first step in
service process deployment. All applicable service
process plans are collected to build a function graph,
which is then used to conduct QoS-based service
selection. The mapping from a user request to appli-
cable process plans should satisfy the functional
requirements of the user request without considering
its QoS requirements. Parametric consistency check-
ing between services is performed in order to inte-
grate them together. This problem has been studied
by earlier research projects such as [12,13].

– QoS-based Service Selection: Given a function graph,
this step performs the service flow composition by
selecting atomic services based on their QoS parame-
ters and a user’s QoS requirements, such as response
time, cost, and reputation of a service. In [6], QoS
based service selection was achieved by efficient
combinatorial and graph algorithms. Furthermore,
we presented algorithms to compose back-up ser-
vice paths in [7]. If any component service fails or
becomes overloaded during the execution of a
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Fig. 1 The credit pull service workflow in the context of a lending application
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Fig. 2 The system
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service process, a back-up service path not contain-
ing the failed service is created, so that the ongoing
execution will not be interrupted.

– Service Process Execution: This is the step where our
accountability model applies. Without accountabil-
ity, the service process execution appears as a black
box to users. When exceptions occur at run-time, it is
difficult to observe errors and discover root causes of
problems in the service network. Our model achieves
the accountability goal by adding several functional
sub-steps described below.

1. Agent Deployment: Given a composed service
network, agents are deployed to monitor all
atomic services selected as well as the services in
backup paths. Agents are responsible for report-
ing performance exceptions and the states of
service outputs to the Accountability Author-
ity (AA). The issue of how to efficiently deploy
agents can be modeled as a set covering prob-
lem. Namely, given (1) each agent’s capability
on the set of services this agent can cover, and

(2) locations of services, the goal is to select the
minimum number of agents that are capable of
covering all selected services. The set covering
problem is NP-hard. However, approximation
algorithms have been shown to provide feasible
solutions [14].

2. Evidence Channel Selection: The amount of
observable evidence and the number of locations
from which it is generated have a big impact on
the performance of diagnosing problematic ser-
vices. While the agents may check the output
of all selected services, it is not cost effective
to collect all outputs all the time. As informa-
tion collection is not cost-free, it would be better
to monitor only a subset of evidence channels,
enough to support problem diagnosis. The evi-
dence channel selection problem will be investi-
gated in Sect. 4.

3. Bayesian Network Diagnosis: AA leverages the
Bayesian network reasoning mechanism to iden-
tify the root cause of a problem when viola-
tions of SLAs occur in a system. Based on the
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information monitored by the agents, the AA
performs an effective and efficient diagnosis to
determine the services most likely to be the root
causes of the problem. The Bayesian network
reasoning process will be presented in Sect. 3.

4. Service Network Recovery: When problematic
services are identified based on the diagnosis
result, back-up paths can be used to replace
problematic services quickly and effectively [7].
This simple fix can resume the process execution
flow immediately. Since agents are deployed to
cover all services including backup paths. There
is no need to re-deploy the agents. This ser-
vice recovery step can save significant time and
cost. Once the service process is repaired, the
accountability logic goes directly to the next step
of evidence channel selection.

– Reputation Network Refinement: The AA manages
and updates the reputation of each atomic service
based on the diagnosis result. The reputation of a ser-
vice is an important QoS parameter that affects the
service network recomposition in the long term. Ser-
vices that are less likely to violate its SLA are more
likely to be chosen next time when a service process
is composed. We have studied DIRECT [8,15], a
distributed reputation management framework for
Web services, which enables us to effectively and
efficiently evaluate, aggregate, and manage the rep-
utation information scattered in a distributed com-
puting environment.

In summary, the flow in Fig. 3 describes two cycles in
service process deployment: the long-term cycle and the
short-term cycle. The long-term cycle is invoked when a
service process is requested for the first time, or when the
process has terminated and then is restarted. Using this
cycle, the service process is composed from scratch based
on the most current QoS and reputation data about all
services. The short-term cycle is used during service pro-
cess execution. Suppose a service process is in the middle
of execution when some individual service in the process
has failed to function as defined by its SLA. In that case,
we will repair the process by rerouting the service flow to
some other services that are able to provide substituted
functionalities.

Several of the steps in service process deployment,
including service network planing, QoS-based service
selection, and reputation refinement networks, have been
studied earlier [6,8,13]. In this paper, we will concen-
trate on Bayesian network diagnosis and evidence chan-
nel selection. Agent deployment issues will be left as
future work.

3 Diagnosis using Bayesian network reasoning
mechanism

A Bayesian network is a probabilistic graphical
model [16] and is leveraged to perform the root cause
diagnosis in our accountability framework. Bayesian
networks have been a popular model in the AI com-
munity. It has been successfully used as a diagnosis
and trouble-shooting engine in the mechanical opera-
tion and medication treatments fields [17,18]. Bayesian
networks use a directed acyclic graph (DAG) model for
reasoning under uncertainty, where the nodes represent
random variables (discrete or continuous) [19]. Each
variable has a finite set of mutually exclusive states [20].
The directed edges connecting the nodes can be used to
represent direct causal relationships [21].

Assume U = {V1, . . . , Vn} which represents all ran-
dom variables in system. The goal of reasoning under
uncertainty is to calculate the conditional probability of
a variable Vi in one of its states given the states of a set of
other variables {V1, V2, . . . , Vk}, where ({V1, V2, . . . , Vk}
⊂ U) ∧ (Vi /∈ {V1, V2, . . . , Vk}). This conditional proba-
bility is formally specified as:

P(Vi|V1, V2, . . . , Vk) = P(Vi, V1, V2, . . . , Vk)

P(V1, V2, . . . , Vk)
(1)

In probability theory, both P(Vi, V1, V2, . . . , Vk) and
P(V1, V2, . . . , Vk) can be calculated if the full set of joint
probability distributions P(U) is known. However, for
large and complex systems, determining P(U) is a com-
putationally expensive process. On the other hand, since
Bayesian networks explicitly specify the causal relation-
ships between variables which leads to the existence
of conditionally independent nodes, determining P(U)

only requires knowledge of the conditional probability
distributions of every random variable node given its
parent set. In other words, much fewer probability dis-
tributions are required for the calculation of conditional
probabilities than in the standard case, thus making it a
much more computationally feasible formulation. This
fact is shown via the chain rule for Bayesian networks
(equation (2)).

Chain rule in a Bayesian network: Let BN be a
Bayesian network over U = {V1, . . . , Vn}. Then, the
joint probability distribution P(U) is defined as:

P(U) =
∏

P(Vi|pa(Vi)),

where pa(Vi) is the parent set of Vi. (2)

In addition to the advantage of computational feasi-
bility, Bayesian networks have also been selected as the
diagnostic engine in our accountability framework for
the following reasons:
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1. Its applications are systems that are modeled as
directed acyclic graphs (DAGs), such as the service
networks we are targeting.

2. It is capable of dealing with causal relationships in
service networks.

3. It can handle uncertainty in service networks. In
a service-oriented computing environment, service
nodes can be considered as random variables with
probabilistic reputation values. Furthermore, the
causal relationships among services nodes may not
be deterministic.

3.1 Transforming a service network into a Bayesian
network

In a service network, all directed edges represent the
execution flow among nodes. Whereas in a Bayesian net-
work, all directed edges connecting nodes must repre-
sent direct causal relationships among nodes. Therefore,
it is necessary to transform a service network topology
into a Bayesian network topology.

As shown in Fig. 4, an atomic service node servicei has
k inputs and one output. The result of the output set is
determined by the correctness of all inputs and servicei’s
correct operation. In other words, all of the input sets,
as well as the service node’s execution, are the causes
of the output. Therefore, as shown in the right part of
Fig. 4, to represent the causal relationship correctly in
the Bayesian network, servicei’s operation is extracted
out as a separate root variable node (the rectangular
node) and the output set is represented as an individ-
ual variable node (the elliptical node) in the Bayesian
network. Since we have assumed that the network con-
nection among services is flawless, the output node of a
given service becomes the input node for its children.

Independence of a service’s operation nodes After
the transformation, every service’s operation becomes a
root node (i.e., the node has no parent) in the network.
All such nodes S1, S2, . . . , SN are independent random
variables since: (1) any Bayesian network node Vi is
conditionally independent of any subset of nodes that

Servicei

Input 1, ... Input k

Output i

Input1, ... Input k Servicei’s
operation

Output i

Fig. 4 Transforming a service network node to random variable
nodes in Bayesian network

are not descendants of Vi given the parent set of Vi; (2)
each service’s operation node has no parent; and (3) no
service’s operation node is the descendant of any other
service’s operation nodes. The independence of service
nodes matches our assumption in Sect. 2. Since every
service is atomic, whether a service can function nor-
mally and meet SLA is not affected by any impact from
the outside world.

3.2 Configuring a Bayesian network’s parameters

As a requirement for Bayesian network reasoning,
conditional probability tables (CPTs)—the conditional
probability distribution of each variable node over its
parent set—are needed. For those nodes without a par-
ent, the probabilities are not conditioned on any other
node. These are called the prior probabilities of the vari-
ables [20,21].

Therefore, after a service network is topologically
transformed into a Bayesian network, the following
parameters need to be defined for the reasoning engine
to execute:

1. Prior probabilities of the nodes representing a ser-
vice’s operations (rectangular nodes). Those prior
probabilities can be defined by the reputation of
services, which ideally is the likelihood of a service
to function correctly or to meet its SLA and is a con-
tinuous variable in [0,1]. The higher the value, the
more consistent the service is. These values can be
obtained from historical statistical feedback data, if
available.

2. CPTs of the nodes representing a service’s outputs
(elliptical nodes). CPTs describe the correlation
among a service’s inputs, operation, and output.
Suppose a service Vi has k inputs. The CPT of Vi

specifies the probability distribution of outputi’s
states given the states of input1, input2, . . . , inputk,
and service′s operation. The CPT of Vi should
include a complete list (2k+1) of probabilities in the
format of

P(outputi|input1, input2, . . .

inputk, service′is operation) (3)

Our accountability framework allows the co-exis-
tence of both probabilistic and deterministic nodes.
For deterministic nodes, the logic (AND, OR,
k-out-of N) can be easily expressed in probabilis-
tic formats, such as:
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Fig. 5 The transformed Bayesian network for the credit pull service work flow with parameters configured

P(outputi|input1, input2, . . . ,

inputk, service′is operation) = 1 and (4)

P(outputi|input1, input2, . . . ,

inputk, service′is operation) = 0. (5)

This makes our framework flexible for both deter-
ministic and non-deterministic relationships among
inputs, services, and outputs.
These CPTs can be obtained based on the combina-
tions of theoretical considerations, historical cases,
and subjective estimates. The service provider, as
the expert of the service network’s behavior, may
provide such subjective estimates via CPTs of all
probabilities. There may also exist a large database
of cases about the service’s past behavior from which
these CPTs are extracted. CPT adaptation is the pro-
cess of modifying the Bayesian network parameters
to better reflect the experience represented by the
accumulated cases. It is a very active area of research
and some approaches, such as Fractional updating
and fading [20], have been developed to solve this
problem. In this paper, we assume that CPTs can
be obtained from service providers. The adaptation
of a service’s CPT by using historical data is left as
future work for our research.

Figure 5 shows the transformed Bayesian network for
the credit pull business process with the parameters con-
figured. To make the illustration clear, each variable’s
state space is set to binary, i.e., each variable’s state is
either correct or fail. In the example, each service’s oper-
ation node (rectangular node) is specified with the prior
probability (i.e., the reputation of that service) and each
output node (elliptical node) is configured with a CPT.
Those parameters are randomly assigned in the figure. In
practice, the prior probabilities should be obtained from
the services’ past behaviors and the CPTs are produced
by service providers and historical data.

3.3 Reasoning with Bayesian networks

Bayesian networks support any direction of inference,
including causal (top-down) inference; and diagnostic
(bottom-up) inference [19]. In our accountability model,
diagnostic inference, i.e., reasoning about causes based
on evidence, is performed since we want to know the
malfunctions or SLA violations given some observed
evidence. This reasoning flows in the opposite direction
of the directed edges in a service network.

Given the observation of an evidence set
{E1, E2, . . . , En} from corresponding output nodes, the
posterior probability of every service operation node S
(i.e., the conditional probability of S given an evidence
set), denoted as Bel(S) can be reasoned. The inference
results, which include a complete list of service operation
nodes’ posterior probabilities, provide the recommenda-
tions on which services are most likely to be accountable
for the problem in terms of probabilities. We will choose
the service with the maximum Bel(S) value and check
its service logs to find out its correctness. Inspecting the
service log may give us accurate knowledge of a service’s
operational correctness, but is costly and time-consum-
ing. Therefore, using Bayesian network inference can
save significant diagnosis time and cost since it shows the
most likely problematic services. Once a service’s state
is diagnosed, its value can be added to the evidence set
and the Bayesian network inference is conducted again,
the correctness being enhanced after every iteration.

Metrics to Measure the Performance of a Diagnosis
Network To check the effectiveness of the proposed
Bayesian network diagnosis, we use two different met-
rics in our study.

1. Service-log Checking Cost (SCC). Assume the net-
work size is N and each node Si costs Ci to perform
a service log check. If the diagnosis process finishes
after M services are checked, SCC=∑M

k=1 Ck/
∑N

k=1
Ck. SCC quantifies the service-log checking cost.
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The lower the SCC, the more diagnosis cost saving
is achieved.

2. Comprehensive Diagnosis Correctness (CDC).
Assume the number of problematic services is Etotal
and the diagnosis process confirms Ediagnosed ser-
vices to be problematic, CDC = Ediagnosed/Etotal.
The higher the CDC, the more comprehensively
problematic services nodes have been discovered.

When to Stop The Bayesian network inference pro-
cess provides the likely locations of problematic services.
However, at run-time, there is no way to know exactly
how many services have violated their respective SLAs.
Therefore, a stop_condition should be defined to achieve
a significant cost saving with an acceptable CDC. When
the stop_condition is reached, the diagnosis process is
terminated.

A decision_threshold can be used to define the
stop_condition. When all BEL(Service) <= decision_
threshold, the diagnosis process stops. When the
BEL(Q) for a service Q is low, it means that the diag-
nosis network is not certain about whether this ser-
vice is problematic. Then it does not make sense to
continue the service log check. However, the selection
of decision_threshold must be careful. If the decision_
threshold is set too high, the CDC may be too low to be
acceptable. On the other hand, if the decision_threshold
is set too low, although CDC is high, SCC could also
be high. Thus, little cost saving is achieved. Therefore,
the selection of decision_threshold is a trade-off for each
application to decide based on its needs.

Assume there are N service nodes in the network, the
diagnosis algorithm is described in Algorithm 1.

Algorithm 1 Diagnosis Algorithm

Input: decision_threshold, Evidence_Set = {E1, E2, . . . , Em}
1: Set ErrorDiagnosis to ∅
2: repeat
3: Infer the posterior probability Bel(S) for every service

operation node
4: Look for Servicek that has the maximum BELmax(Q)

value in {Bel(S1), Bel(S2), . . . , Bel(SN)}
5: if Servicek’s log check is problematic then
6: Servicek is one of the root cause nodes and is added to

ErrorDiagnosis;
7: end if
8: Add Servicek’s state to Evidence_Set
9: until decision_threshold>BELmax(Q)

10: return ErrorDiagnosis

end

3.3.1 The complexity of the diagnosis algorithm

In the worst case, the complexity of the algorithm is
O(N(log(N)+O(Bayesian))), where O(Bayesian) is the

complexity of Bayesian network reasoning. Bayesian
network inference algorithms are computationally com-
plex. In the worst case, they are NP-hard. Therefore, the
major complexity is from the Bayesian network reason-
ing. There exist several efficient algorithms [16,20], how-
ever, that make Bayesian network inference consisting
of tens or hundreds of variables tractable. The infer-
ence time is between a fraction of a second and a few
seconds using existing Bayesian network engines [22].
The size of most practical service networks is within
the tens or hundreds range. Therefore, the diagnosis
algorithm should be computationally tractable for real-
world applications.

4 Evidence channel selection algorithm

The number and location of observable evidence items
have a big impact on the performance of the Bayesian
network diagnosis process. In the transformed Bayesian
diagnosis network, all output nodes (elliptical nodes)
are candidates for agents to monitor. However, it is not
cost effective if agents collect all information from all
output nodes since agents will be overburdened by the
information collection process. In a distributed system,
this could lead to very high overhead. Therefore we
would like to select only the subset of nodes likely to
provide the most fruitful diagnostic information to the
agents.

4.1 Sensitivity analysis technology

To decide how to select evidence channels, we must
decide which output nodes are the most informative
to the observations of service operation nodes. Sensitiv-
ity analysis technology in the Bayesian network theory
can be used to measure the influence of each service’s
output node on service operation nodes [23,19]. This
technology was initially designed for medical diagnoses
where there may be multiple tests available; and clini-
cians would like to perform a test that decreases the
uncertainty of the diagnosis as much as possible. For
example, if Bel(S) is 60% for a service node S, then
there exists a 40% chance that this service node actu-
ally works well. While if Bel(S) is 90%, the suspicion of
faulty behavior becomes small, which in turn decreases
the liklihood of an unnecessary service log check.

Entropy reduction, or mutual information, of node
Y to node X, is used to measure the influence of Y
to X in Bayesian network sensitivity analysis [23,19].
Entropy uses Shannon’s measure of mutual information
as a measure of how much uncertainty is represented in a
probability mass. Assume x1, x2, . . . are a set of mutually
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exclusive states that X can be, the entropy of a proba-
bility distribution over variable X is defined as:

−
∑

x∈X

P(x)log2(P(x)) (6)

Therefore, assume S is a service with a set of mutu-
ally exclusive states s1, s2, . . . , sm and T is an output
node with a set of mutually exclusive states t1, t2, . . . , tn.
ER(T, S), which denotes the expected benefit of obtain-
ing the information of node T by S, i.e., the entropy
reduction (mutual information) of T to S, is defined as:

ER(T, S) = Entropy(S)− Entropy(S|T)

Entropy(S)
(7)

Using Eq. (6) in Eq. (7), we get:

ER(T, S)

=

∑

t∈T

(
∑

s∈S

P(s|t)log2(P(s|t))
)

P(t)−
∑

s∈S

P(s)log2(P(s))

−
∑

s∈S

P(s)log2(P(s))

(8)

where P× log2P = 0 if P = 0.
ER(T, S) measures the information about S that is

shared by T, i.e., it measures how much uncertainty
about S is reduced by knowing T. The larger the entropy
reduction, the more information T contains about S. If S
and T are independent, then T contains no information
about S. In this case Entropy(S) ≡ Entropy(S|T) and
ER(T, S) is zero. Knowing T does not give any informa-
tion about S. If all information conveyed by S is shared
with T, knowing T provides all necessary information
about S. In this case Entropy(S|T) = 0 and entropy
reduction is 100%.

4.2 Goal of evidence channel selection

If the goal of the evidence channel selection is to max-
imize the total entropy reduction over all services, an
exhaustive simulation could be used to calculate this
total given every possible combination of all output
nodes. In this case, the number of entropy reduction
calculations equals N × 2N , where N is the number of
service nodes. This is not computationally feasible in
most practical cases. Therefore, we constrain ourselves
to a less complex goal:

Choose evidence channels to maximize the lower bound
of the total entropy reduction over all services

It has been proved that entropy function is a convex
function and the entropy reduction of obtaining one

addition evidence item is never negative [24]. Since
service error diagnosis is a bottom-up process, the non-
descendants of a service S are independent of S unless
at least one of S’s descendants’ state is known. There-
fore, to reduce the complexity of the entropy reduction
calculation, we set the lower bound of entropy reduc-
tion of S as the maximum entropy reduction contrib-
uted from one of its observable descendants. Formally,
assume T1, T2, . . . , Tp are S’s observable descendants
set:

ERLowerBound(S) = max(ER(T1, S),

ER(T2, S), . . . , ER(Tp, S)) (9)

The goal of evidence channel selection is to:

max

(
∑

all services

ERLowerBound(S)

)
(10)

4.3 Mapping channel selection to the k-median facility
location problem

With the goal of choosing evidence channels to max-
imize the total lower bound of entropy reduction over
all services, this problem can be mapped to the k-median
facility location problem (or simply the k-median
problem). The k-median problem studies how to place
facilities to serve clients effectively [25,26], such as the
placement of fire stations within a city. The effective-
ness is measured by the distance between a client and
the facility that serves the client. In the k-median prob-
lem, we require that at most k facilities are to be placed
and the total service benefit, measured as the sum of the
distance of each client to the nearest open facility, is to
be maximized.

More formally, in the k-median problem, we are given
two sets: F, the set of facilities, and C, the set of clients.
Let cij denote the benefit of serving client i ∈ C by a
facility j ∈ F; we could think of this as the distance
between client i and facility j. The goal is to identify a
subset of facilities S ⊆ F of at most k facilities such that∑

all clients

ci,j is maximized.

The evidence channels selection problem can be
mapped to the k-median problem as follows:

– Every output node is mapped to a facility in the
k-median problem. If at most k output nodes can be
selected due to the budget constraints, then at most
k facilities can be open.

– Every service node is mapped a client in k-median
problem.
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– An output node Tj can serve service node Si only
when ER(Tj, Si) �= 0

– If Tj can serve node Si, the distance of output Tj to
service Si is defined as:

D(Tj, Si)=D(Si, Tj)=ER(Tj, Si), if ER(Tj, Si) �= 0

(11)

– The goal of selecting output nodes to maximize the
lower bound of the total entropy reduction over all
services becomes the goal of maximizing the sum of
distances of each service to its nearest facility in the
k-median problem.

The k-median problem is NP-Hard. [25] provides
local search heuristics for the metric k-median problem,
which is the best known approximation algorithm for the
k-median problem. The metric version of the k-median
problem assumes that distances cij are symmetric and
satisfy the triangle inequality. These two assumptions
are satisfied in our model since:

1. The distance function is symmetric according to its
definition;

2. Based on the assumptions in Sect. 2, each service
is atomic. The behavior of every service is indepen-
dent of other services. Therefore, since there is no
edge between any two services, no triangle exists in
the network. Hence the triangle inequality is also
satisfied.

Algorithm 2 The Local Search Heuristics Algorithm for the
k-median Problem

F: the set of facilities
K: the k number of facilities that are chosen
op(K) : (K − A)∪B for A ⊆ K and B ⊆ (F − K) such that
|A| = |B| ≤ p

1: K← an arbitrary feasible solution
2: while ∃ an operation op such that, benefit(op(K)) ≥ben-

efit(K) do
3: K← op(K)

4: end while
5: return K

end

As shown in Algorithm 2, the local search heuris-
tics algorithm for the k-median problem first finds a
feasible solution. Then it allows up to p facilities to
be swapped simultaneously. It performs the swap over
and over again until the solution achieves local optimal-
ity. The algorithm can achieve an approximation factor
of 3 + 2/p with a complexity of O(np), where n is the

size of the network. The approximation factor and the
complexity of this algorithm is a trade-off: the larger
the p value, the lower the approximation factor and the
higher the complexity.

4.4 Algorithm for evidence channel selection

In our research, the local search heuristics algorithm is
used as the approximation algorithm for the metric k-
median problem. The algorithm for evidence channel
selection is shown in Algorithm 3.

Algorithm 3 Algorithm for Evidence Channel Selection

1: for each service Si do
2: Calculate Entropy(Si)

3: for each descendant output of Si: Tj do
4: Calculate ER(Tj, Si)

5: Set D(Si, Tj) according to equation 11
6: end for
7: end for
8: Perform k-median local search heuristic algorithm

to find out the k number of evidence channels
T1, T2, . . . , Tk

9: Deploy agents to cover T1, T2, . . . , Tk

end

In the worst case, the complexity of the algorithm
is (N2O(Bayesian) + O(Np)), where p can be set to be
a reasonably small integer and O(Bayesian) is the com-
plexity of Bayesian network reasoning. Therefore, the
complexity of the overall algorithm is dominated by
Bayesian network reasoning process. Again, Bayesian
network inference is tractable when the network con-
sists of tens or hundreds of variables. Therefore, our
evidence channel selection algorithm is computationally
tractable for real-world applications.

5 Performance study

To study the performance of our accountability frame-
work, simulations have been conducted to analyze the
effectiveness and efficiency of the Bayesian diagnosis
network.

5.1 Experimental design

5.1.1 Generating services networks

We use BNGenerator [27], a generator for random
Bayesian networks, to produce random service
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networks. It guarantees that the generated networks are
uniformly distributed in the space of graphs under con-
sideration. BNGenerator can be tuned to accept con-
straints on the size of a network, the maximum degree
for nodes, and the maximum number of edges in the
network. These constraints limit how “connected” net-
works are. In our simulations, the size of randomly gen-
erated service networks ranges from 30 to 50 service
nodes. The maximum in-degree (number of incoming
edges) and out-degree (number of outgoing edges) for
each node are both set to 2. The state space of each node
variable is also set to binary.

5.1.2 Transforming a service network into bayesian
diagnosis network

SMILE [22] is the Bayesian diagnosis network engine
we use to perform probabilistic reasoning. Moreover,
the SMILE API enables us to transform the randomly
generated service network into a Bayesian diagnosis
network based on the transformation rules in
Sect. 3.1.

After the transformation is completed, the size of
the diagnosis network is twice the size of the service
network. Therefore, the size of the diagnosis network
ranges from 50 to 100 in our experiments. For each ser-
vice node, its prior probability is randomly generated
in the range of [0.8, 0.9] based on a uniform distribu-
tion. For each outcome node, a conditional probability
table (CPT) is also randomly generated. The CPT of an
outcome node could represent the deterministic or non-
deterministic relationship among inputs, service opera-
tion, and outputs. Moreover, a mixture of deterministic
and chance (i.e., non-deterministic) service nodes can
also be configured.

5.1.3 SLA violations generation and propagation

Simulated functional errors or SLA violations for a ser-
vice node are determined by comparing its prior prob-
ability with a randomly generated number D in the
range [0,1]. A service operates incorrectly if D >=
priori_probability; otherwise, the it operates correctly.
For each service’s outcome node, its state is also decided
in the same way based on the comparison of a randomly
generated number with a probability decided by states
of its parent’s services’s outputs, this service operation’s
correctness, and this service’s CPT. We topologically sort
all nodes in a Bayesian diagnosis network before decid-
ing the states of services’ outputs. This ensures that the
states of outputs from this service’s parents are always

known before this service’s output state needs to be
decided.

The states of all outcomes are recorded. However,
only a certain percentage of the outcome states are
selected and treated as observable evidence to perform
Bayesian network diagnosis. The k in the k-median
approximation algorithm is calculated by multiplying
Sizeservice network by watch_percentage. The watch per-
centage ranges from 30 to 70% in the simulation.

5.2 Experimental results

In the simulation, for each test case, 10 different net-
work topologies were randomly generated. For each
network topology, the diagnosis simulation was run 100
times. SCC and CDC are recorded in every round when
a service node is being checked for its correctness. The
number of data points of SCC or CDC equals
the number of service nodes, where each data point is
the average value of 100 simulation runs. We assume the
Cost(service log check) for each service is the same. There-
fore, as the network size is fixed, the SCC curve is always
linear. We also calculate Benefit, which is defined to be
(CDC − SCC). It is used to indicate the cost-efficiency
of performing the diagnosis process.

5.2.1 Performance with different evidence channel
selection strategies

This experiment is designed to demonstrate the effec-
tiveness and efficiency of the diagnostic network and
evidence channel selection algorithm. With the same
evidence limit k, three channel selection strategies are
compared:

1. k-median-based channel selection algorithm, as
defined in Sect. 4.4.

2. Top-cluster channel selection strategy, which selects
channels from the top level of the flow, then one
from each level down until k is reached. The chan-
nels selected using this strategy are clustered around
the beginning of the flow.

3. Bottom-cluster channel selection strategy, which
selects channels from the bottom level output nodes;
then one from each level up until k channels are
selected. The channels selected using this strategy
are clustered near the end of the flow.

Figure 6 shows the performance comparison of the
three channel selection strategies when the service
network size is 50 and 50% of services’ outputs are
monitored as evidence. The x-axis is the number of



46 SOCA (2007) 1:35–50

Fig. 6 Comparison of system
performance with different
evidence channel selection
strategies. Service network
size = 50, watch
percentage = 50% (K = 25),
p = 1, 30% probablistic nodes
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service nodes inspected so far in each run. The top 3
curves report the CDC of various strategies and the
bottom 3 curves report the Benefit. As the figures show,
with the same number of evidence channels selected,
both the CDC and Benefit of the evidence channels
selection algorithm outperforms the other two
strategies. For example, after 10 service nodes are
inspected, the CDC of the evidence channel selection
algorithm reaches 80%, while the CDC of top clus-
ter and bottom cluster channel selection strategies are
only about 60%. This demonstrates that the locations
of evidence channels plays an important role for the
performance of diagnosis network and our evidence
channel selection algorithm can significantly improve
it. Moreover, the results also show that our account-
ability model can achieve high diagnostic correctness
and efficiency with low monitoring and inspection cost:
with 50% of services’ outputs monitored as evidence, the
CDC can reach 80% after only 20% of service nodes are
inspected.

In the following experiments, only the k-median-
based evidence channel selection algorithm is used to
select evidence channels.

5.2.2 Differing service network sizes

Figure 7 shows CDC and Benefit for service network size
of 30, 40, and 50. The average problematic services for
the three different network sizes are 2.91, 4.19, and 5.35,
respectively. Since the reputation of each service node is
set in the same range, the smaller the network size is, the
fewer the problematical services there are. Therefore, as
expected, CDC of smaller networks appear higher than
the larger ones because the denominator Errortotal is
small. In fact, the diagnostic network performs well in
all network sizes. As shown in Fig. 7, when 20% of ser-
vices (6, 8, 10 services for service network size of 30, 40,
50, respectively) are inspected, the CDC can reach 87,
78, and 77% for service network size of 30, 40, and 50,
respectively.

Fig. 7 Comparison of system
performance with different
service network sizes. Watch
percentage = 50%, p = 1,
30% probablistic nodes
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5.2.3 Different watch percentage

Figure 8 shows the diagnosis performance when the
watchable evidence percentage is set to 30, 50, and 70%.
The service network size is 50 for all runs. As expected,
more watchable evidence can provide a better result,
which explains the better CDC with same SCC as the
watch percentage increases. After 20% of services are
inspected, the CDCs of 30, 50, and 70% watchable evi-
dence percentage reach 71, 77, and 85%. It is noticable
that even when the watchable evidence percentage is
quite low (30%), the CDC can still reach 71%, which is
acceptable.

5.2.4 Differing heuristic p values

The parameter p is important in the local search heu-
ristic k-median algorithm. It decides the algorithm’s

complexity and the approximation factor. Figure 9 shows
the diagnosis performance when p is 1, 2, and 3. The
network size is 50. As shown in the figure, the perfor-
mance difference is not significant when p changes. It is
because the approximation factor is the upper bound of
ApproximationSolution

OptimalSolution . The actual approximation solution
achieved is about 1.1 to 1.2 times of the optimal solution
in simulation. Therefore, we should select p to be 1 to
minimize the computational complexity.

5.2.5 Different percentages of probabilistic nodes

Figure 10 shows the diagnosis network performance
when the percentage of probabilistic service nodes are
set to 30, 50, and 70%. The network size is 50 for each
run. As shown in the figure, all metrics remain almost
unchanged as the percentage of probablistic service

Fig. 8 Comparison of system
performance with different
watchable evidence
percentages. Service network
size = 50, p = 1, 30%
probablistic nodes
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Fig. 9 Comparison of system
performance with different p
values in the k-Median
heuristic local search
algorithm. Service network
size = 50, watch percentage =
50, 30% probablistic nodes

Performance Study of Diagnosis Network 
with Different p values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Data Point

SCC

CDC of p=1

Benefit of p=1

BEL of p=1

CDC of p=2

Benefit of p=2

BEL of p=2

CDC of p=3

Benefit of p=3

BEL of p=3



48 SOCA (2007) 1:35–50

Fig. 10 Comparison of
system performance with
different percentages of
probabilistic nodes. Service
network size = 50, p = 1,
watch percentage = 50%
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nodes varies. The figure demonstrates that the percent-
age of probablistic service nodes does not affect the
Bayesian diagnosis network performance, which sug-
gests that our diagnosis framework has a broad applica-
tion area, whether the service logic is deterministic or
non-deterministic.

6 Related work

Error diagnosis and troubleshooting in SOA have
become an active research topic in recent years. This
section briefly describes the latest research, noting that
none of which has reached the level of detail achieved
by the accountability model introduced in this paper.
Our accountability model is the first to leverage Bayes-
ian networks to achieve a high diagnosis cost-efficiency
in SOA when the correlations of a service’s inputs, oper-
ation, and output are certain or uncertain. Services’
historical reputation is novelly used to shed light on
the diagnosis process and can be continuously learned
based on diagnosis results. Moreover, an evidence chan-
nel selection algorithm is designed to discover the opti-
mized deployment of information collection resources,
which had not been explored into this level of detail in
previous literature.

– In [28], monitoring and diagnostic services are incor-
porated into the QoS management framework. The
diagnostic service reasons about the causes of deg-
radation conditions in the networked enterprise sys-
tem using a graphical model-based approach, i.e.
causal networks. However, causal network reason-
ing is less than ideal as a QoS diagnosis reasoning

engine. Without the capacity to deal with uncertain
and incomplete information, causal network reason-
ing may produce ambiguous results when evidence
collected is insufficient.

– In [29], a consistency-based diagnosis approach that
spans across individual services is proposed to
enhance fault analysis in SOA. A local diagnoser
is added to each web service S. The global diagno-
ser coordinates the local diagnosers by exchanging
messages. Hypotheses about incorrect outputs of a
web service S may be related to a misbehavior of the
service S itself, or to incorrect inputs from other ser-
vices. The concept of the global diagnoser is similar
to the accountability authority in our model. How-
ever, the consistency-based diagnosis can not deal
with the uncertainty existing in the service network
and does not leverage the historical reputation infor-
mation of services. Moreover, the consistency-based
diagnosis approach presented requires multiple mes-
sage exchange steps between a global diagnoser and
a local diagnoser before the root cause is ruled out,
while our accountability framework can reason out
the root cause with a one-time message exchanged
between the AA and the agents. Furthermore, the
diagnostic correctness of their approach relies on
the ability to collect data from every service. Our
accountability framework requires evidence collec-
tion at a subset of locations and therefore reduces
the monitoring cost.

– In [30], a common architecture for the distributed
diagnosis of Internet faults using autonomous agents
is presented. CAPRI diagnoses faults using prob-
abilistic relational models (PRMs) to combine the
strengths of probabilistic Bayesian inference with
the descriptive power of first-order logic. This
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approach is quite similar to the our Bayesian net-
work diagnosis where every service could be a deter-
ministic or chance node. However, their research
does not study how to select evidence channels to
collect information. Furthermore, our accountability
model provides a more comprehensive framework
targeting the whole service deployment process
including service network planing, selection, mon-
itoring, diagnosis, and recovery.

– In [31], a formal, process-oriented ontology of an
accounting information system is developed to
ensure the reliability of data in information systems.
In accounting processes, each control can cover cer-
tain error classes and eliminate errors to make
accounting data reliable. The authors formulate a
key control selection problem as a set-covering prob-
lem: to choose the fewest set of controls, while still
being effective to ensure that the general ledger
accounts are free of the types of errors in the tar-
get assertions. The idea is adopted to perform agent
deployment in our accountability model: agents are
selected and deployed using set covering algorithms
to monitor exceptions occurring in service networks
with minimum cost.

7 Conclusions

In this paper we present a novel accountability frame-
work to make service process deployments manage-
able and dependable in Service-Oriented Computing
(SOC). The Bayesian network model is leveraged to
diagnose the root causes of malfunctions and service
level agreement (SLA) violations in service networks
when uncertainty exists in the correlations of services’
inputs, operation, and output. Given failure alarms and
evidence detected by monitoring agents in a service pro-
cess, our proposed accountability mechanism is able to
identify the individual service(s) that most likely causes
the problem. Services’ historical reputation information
provide information for the diagnosis process and can
be continuously updated based on diagnosis results. Fur-
thermore, an evidence channel selection algorithm is
designed to specify which locations in the service net-
work agents should collect information that are most
informative. This algorithm uses entropy reduction as
the metric and models channel selection as the clas-
sic facilities location problem. The complexity analysis
shows both the Bayesian network reasoning process and
the evidence channel selection algorithm are compu-
tationally tractable. The performance study shows the
efficiency of the diagnosis mechanism such that it can
save significant diagnosis cost and fit a broad range of

applications. Our integrated SOA deployment and
management solution will benefit SOA management
in terms of end-to-end QoS enforcement and efficient
problematic service detection, diagnosis, and defusion.
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